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Abstract
In the convolutional retinex approach to image lightness

processing, a captured image is processed by a centre/surround
filter that is designed to mitigate the effects of shading (illumi-
nation gradients), which in turn compresses the dynamic range.
Recently, an optimisation approach to convolutional retinex has
been introduced that outputs a convolution filter that is optimal
(in the least squares sense) when the shading and albedo auto-
correlation statistics are known or can be estimated. Although
the method uses closed-form expressions for the autocorrelation
matrices, the optimal filter has so far been calculated numeri-
cally. In this paper, we parameterise the filter, and for a simple
shading model we show that the optimal filter takes the form of a
cosine function. This important finding suggests that, in general,
the optimal filter shape directly depends upon the functional form
assumed for the shadings.

Introduction
The famous retinex theory [1, 2] of lightness perception

postulates that the human visual system (HVS) at least partially
attempts to discount the illuminant, which means that scenes are
perceived more in terms of their object reflectances rather than
the light flux that actually enters the eye. Consequently, our psy-
chophysical interpretation of lightness is approximately corre-
lated with scene reflectance.

Recently, a method for optimising the convolution-based
approach to image lightness processing has been introduced [3].
It was shown that the optimal centre/surround filter (in the least-
squares sense) depends primarily upon the autocorrelation ma-
trices for the shadings and reflectances (albedos). By using a
model approach, the autocorrelation matrices can be obtained in
closed form, which results in smooth filters with shape and mag-
nitude that adapt to the scene statistics, which are either known
or can be appropriately estimated. This means that filters can
be designed for specific datasets or scene categories [3]. For ex-
ample, Fig. 1 shows an image from the TM-DIED dataset [4],
which was processed using a lightness filter optimised for that
dataset. The method differs from typical approaches to convolu-
tional retinex where arbitrary parameters that define the shape
and extent of the filter are tuned to give visually pleasing re-
sults [5, 6, 7, 8, 9, 10, 11].

As the prior-art method uses closed-form expressions for the
autocorrelation matrices [3], it follows that, at least in principle,
a closed-form expression could be obtained for the optimal filter.
However, in the derivation of this prior-art method, the optimal
filter calculation involves taking the inverse of a correlation ma-
trix, and this fact alone complicates the search for a closed-form
solution. Nevertheless, it would be advantageous to have a sim-
ple parameterised model of the optimal lightness filter.

In this paper, we adopt a slowly-varying sinusoidal model
of shading. This model accounts for linear shading ramps and
some shadings that are substantially more curved. By adopting

Figure 1. Image (upper) processed by an optimal lightness filter (lower).

this model, we show that the prior-art numerical results can be ef-
fectively parameterised in closed-form by three numbers, each of
which in turn is a function of a single parameter that determines
the shape of the autocorrelation of albedos.

Summary: Optimal lightness processing
Let the colour signals be defined as

c′(x,y) = r′(x,y)e′(x,y), (1)

where r′ and e′ are the image albedo and shading components, re-
spectively, and x,y denote the pixel locations. By defining c(x,y)
= log(c′(x,y)), r(x,y) = log(r′(x,y)), and e(x,y) = log(e′(x,y)),
the above equation can be converted to a sum [12] in the loga-
rithmic domain,

c(x,y) = r(x,y)+ e(x,y). (2)

We seek to derive a matrix operator Lr that, when applied to a
colour signal image, will best recover the corresponding albedo
image in a least-squares sense. It can be shown [3] that such
an operator depends upon the autocorrelation statistics of the
albedos and shadings.

In order to understand autocorrelation, assume that we have
an infinitely large dataset of colour signal images, along with
the component albedo and shading images. Now consider one-
dimensional (1d) scan lines of length p pixels that pass through
the centres of the dataset images. The scan lines can be taken in
all directions by rotating the dataset through all angles. Let us
also assume that we know the functional form for the sets of pos-
sible shading scan lines, {e(x)}, and albedo scan lines, {r(x)}.
Of central interest are the shading and albedo autocorrelation
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Figure 2. (a) Example of an optimised 1d centre/surround filter, fr, with p

= 321. The centre extends almost to unity but is shown close to the origin

here for clarity. (b) Extracted surround function, fr,s, for the same filter.

matrices Cee and Crr, the matrix elements of which are

[Cee]i j =

v∫
u

p(e′) ei(x)e j(x) de′, (3a)

[Crr]i j =

b∫
a

p(r′) ri(x)r j(x) dr′. (3b)

Here ei(x), ri(x), e j(x), and r j(x) are shading and albedo values
on a scan line at pixel locations i and j, respectively, and these
have been normalised to the ranges [u,v] and [a,b] for shadings
and albedos, respectively. The integration is over the infinitely
large number of possible scan lines according to the probability
density functions, p(e′) and p(r′). Both Cee and Crr have dimen-
sion p×p.

Crucially, it can be shown [3] that the p×p least-squares
matrix operator Lr for recovering the albedo directly depends
upon Cee and Crr,

Lr =
(

Cee + C⊤
r Ce + Crr + C⊤

e Cr

)−1(
Crr + C⊤

e Cr

)
. (4)

(Here Cr and Ce are vectors representing the mean scan lines,
which are typically constants). The significance of Eq. (4) is that
matrix operators (and associated convolution filters - see below)
that are optimal for specific image datasets or scene categories
can be obtained by using Eqs. (3a) and (3b) to model their au-
tocorrelation statistics. The relevant formulae are summarised
below. (See Ref. [3] for further details).

Convolution Filter: Rather than apply the matrix operator Lr to
recover albedo scan lines, we can instead use the central column
of Lr as a 1d convolution filter. This can be convolved with colour
signals (in the logarithmic domain) to recover the corresponding
albedo scan lines,

r(x) ≈ fr(x) ⋆ c(x). (5)

Significantly, fr turns out to be a centre/surround filter. An ex-
ample is illustrated in Fig. 2(a). The sharp discontinuities at the
extremities of the filter will be discussed later in the paper. Since
symmetry was built into the construction of the scan lines, a sym-
metric 2d filter, fr,2d, can be constructed simply by interpolating
and renormalising the surround [3], and so

r(x,y) ≈ fr,2d(x,y) ⋆ c(x,y). (6)
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Figure 3. (upper) Example sinusoidal scan lines. (lower) Example albedo

scan line.

In order to preserve chromaticity, the filter should be applied only
to luminance colour signals [7].

Autocorrelation matrix formulae
Shadings: Let us assume that the shading scan lines take the
functional form of slowly varying sinusoids,

ei(x) =
A
2
+

A
2

sin(kx+φ) , (7)

where k is the wavenumber, φ is the phase, and logarithmic
units have been used so that A is the amplitude in the range
[logu, logv]. By assuming uniform probability density functions
for k, φ , and A and integrating over all possible scan lines ac-
cording to Eq. (3a), it can be shown [3] that the autocorrelation
matrix elements are given by

[Cee]i j =
log2 u+ logu logv+ log2 v

12

×
(

1+
sin(kmax (y− x))

2kmax (y− x)

)
,

(8)

where x = (i−1)/(p−1) and y = ( j−1)/(p−1) for i = 1,2, · · · p
and j = 1,2, · · · p, with p being the length of the scan lines. Here
kmax = 2π/λmin, where λmin is the minimum allowed wavelength
for the sinusoids. The mean shading scan line turns out simply
to be a constant,

[Ce]i =
logu+ logv

4
. (9)

Albedos: It has been shown that the albedo autocorrelation ma-
trices of real world image datasets can be matched to those of
Mondrian image datasets [13]. If albedo values are normalised
to the range [a,b] = (0,1] (before the logarithm is taken), then the
Mondrian model is given by

[Crr]i j = 1+α
| j−i|. (10)

For a given pixel i on a Mondrian scan line such as that illustrated
in Fig. 3, the parameter α defines the probability that the adjacent
pixel at i+1 takes on the same value (a step), or a different value
in the range (a,b] (a jump). The average or expected step length,
s, is related to α by

s =
1

1−α
. (11)
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The mean albedo value is given by

[Cr]i =−1. (12)

Note that scale and offset parameters can be applied to Eq. (10) to
alter the albedo probability density function away from a uniform
distribution, however we set these to unity in this paper.

The significance of the expected step length, s, defined by
Eq. (11) is that it can be matched to the average or expected ob-
ject size in real image datasets [13]. In other words, it measures
how correlated albedo values of neighbouring pixels are in im-
ages. It is a key quantity that affects the shape and magnitude of
the optimal filter.

Method
Surround construction

In order to obtain a functional form for the surround, a value
for the surround needs to be assigned where the filter centre is
located. To proceed, note that Eq. (4) can be modified to recover
shadings rather than albedos, in which case the central column
of the matrix operator would be a 1d shading filter, fe(x), rather
than an albedo filter [3]. Furthermore, it can be shown that

fr(x)+ fe(x) = δ (x− x0), (13)

where x0 denotes the filter centre [3]. (The fact that the albedo
and shading filters sum to give a delta function is a consequence
of the fact that the optimisation is carried out in the logarithmic
domain. This filter property differs from that of other formu-
lations of convolutional retinex, where typically the surround is
normalised to spatially integrate to unity [5]). From Eq. (13) it
follows that the surround, which we denote as fr,s, can be con-
structed as

fr,s(x) =
{

fr(x), x ̸= x0
fr(x)−1, x = x0

. (14)

Here the spatial grid is defined by the set of p integers {x} in the
range

−int
( p

2

)
≤ x ≤ int

( p
2

)
, (15)

where p is the filter length and int denotes the integer part. The
filter centre is located at x0 = 0. Given a functional form for the
surround, the centre/surround filter can be constructed by revers-
ing Eq. (14).

Another issue to address is that in Fig. 2(a) it is evident that
the example 1d centre/surround filter, fr, has observable discon-
tinuities at the two edge pixels. This is found generally and is
due to a natural property of Toeplitz matrix inverses [14], which
appear in Eq. (4). Although these two pixels have negligible ef-
fect on the overall influence of the filter in terms of shading re-
moval, one approach to removing them would be to introduce a
regularisation term that favours continuity when solving the re-
gression [3]. However, the regularisation can slightly modify the
shape of the filter, which is not appropriate in the current context
as we are aiming to parameterise the true closed-form analytic
result. Therefore, we choose to simply omit the two edge pixels
when constructing our surround.

Figure 2(b) shows the type of surround function, which
we seek to parameterise, extracted from the example filter of
Fig. 2(a).

Parameter normalisation
In order to obtain a filter surround parameterisation that is

valid for any chosen filter size, appropriate normalisations are
required.

• When using the Mondrian model for the albedo autocorre-
lation matrix, the manner by which the expected step length
for the 1d Mondrian patches or steps, s, affects the filter
shape depends upon the filter size. This means that s should
be normalised in proportion to the filter length, p. Given
that s is defined by Eq. (11), let us introduce a normalised
expected step length, sn, that is defined as a percentage of
the filter length,

sn =
s
p
×100 =

100
(1−α)p

. (16)

If we choose p to be the same length as the shortest side of
the image, then s cannot be longer than p, in which case the
maximum value for sn is 100. The minimum value for sn is
100/p.

• The minimum wavelength for the sinusoidal shadings,
λmin, must scale in proportion to the filter length, p. In the
present manuscript, we assume that λmin = 2p, i.e. twice
the length of the filter.

Parameter fitting
The procedure for parameterising the filter surround, fr,s,

can be outlined as follows:

• Choose a sufficient number of sample points (pixels) for
performing the parameterisation. This defines the filter
length, p.

• Randomly choose a small number of test values for the nor-
malised Mondrian step length, sn.

• For each sn, solve Eq. (4) to obtain the matrix operator, Lr,
using the expressions for the shading and albedo autocorre-
lation matrices defined by Eqs. (8) and (10) and the mean
vectors defined by Eqs. (9) and (12).

• For each sn, extract the 1d centre/surround filter as the cen-
tral column of Lr, and obtain the surround function using
Eq. (14).

• Find a common function such as a polynomial, denoted
f̃r,s(x), that fits the surround function fr,s(x) for each of the
test sn values to an acceptable error.

• After finding a suitable f̃r,s(x), perform the same fitting
procedure using a fine grid of sn values in the interval
[100/p, 100]. This will reveal the functional form of the
coefficients that define f̃r,s(x).

• Since the coefficients will be functions of the normalised
expected step length, sn, generate look-up tables for the
coefficients. Alternatively, if possible, find functions that
approximate the coefficients to an acceptable error.

Results
The parameter fitting described above was carried out for

sinusoidal shadings (see Fig. 3). Logarithmic units were used
with shadings normalised to the range [log(u), log(v)] = [−6,0],
which corresponds to [u,v] = [0.025,1] when exponentiated. The
albedo values were normalised to the full range, (0,1], before
taking the logarithm. A spatial grid of 1801 points was used for
the surround parameterisation, i.e. p = 1801, and the expected
albedo step length, s, was also divided into p increments between
1 pixel and 1801 pixels so that 100/1801 ≤ sn ≤ 100.
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Figure 4. Filter surround, fr,s, (coloured lines) together with the parame-

terised result, f̃r,s, (coloured circles) for a selection of normalised expected

step values, sn. The filter length was chosen to be p = 1801 pixels.

Significantly, over most of the range of sn values, specifi-
cally 0.4 ≤ sn ≤ 100, it can be shown that the filter surround can
be parameterised by the following simple function,

f̃r,s =
a0

p
+

a1

p
cos

(
wx
p

)
, (17)

where p is the filter length and the spatial grid {x} has been de-
fined by Eq. (15). The coefficients a0, a1, a2 and w are all func-
tions of sn. Clearly, a0/p corresponds to an offset, a1/p is the
amplitude of the cosine term, and w/p is the period of the cosine.

For very small sn values in the range [100/p, 0.4], it can be
shown that an extra term should be added to Eq. (17),

f̃r,s =
a0

p
+

a1

p
cos

(
wx
p

)
+

a2

p
cos

(
2wx

p

)
, (18)

where the new coefficient a2 is again a function of sn.
As illustrated in Fig. 4 for a selection of sn values, the dif-

ference between the filter surround and its parameterised version
(described by Eq. (17) or (18)) is imperceptible. Indeed, the
RMS error is found to be negligible with an average value of
9.34× 10−9 over the entire parameter range. The accuracy of
the results suggests that these equations would be the functional
form of the closed-form result if Eq. (4) were to be solved ana-
lytically.

Since the coefficients a0, a1, a2, and w are all functions of
sn, in practice these could be stored in a look-up table and the
coefficient values corresponding to any chosen sn could be gen-
erated by interpolation. Nevertheless, it would be very useful if
the coefficients themselves could be parameterised. It was found
that a reasonable fit could be obtained by using fourth-order ra-
tional functions of the form

g(sn) =
b0 +b1sn +b2 s2

n +b3 s3
n +b4 s4

n

c0 + c1sn + c2 s2
n + c3 s3

n + s4
n

, (19)

where g = a0, a1, w, or a2. Figure 5 shows a comparison be-
tween the coefficients obtained numerically and those by fitting
using Eq. (19). The RMS errors for the fits were 0.0318, 0.0780,
0.0046, and 0.0250 for a0, a1, w, and a2, respectively. This
means that when Eq. (19) was used to generate the coefficients,
the average RMS error (over the entire range of sn values) be-
tween the filter surround and its parameterised version increased
from 9.34×10−9 to 1.45×10−5.
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Figure 5. Numerically obtained coefficients (cyan lines) for Eqs. (17) and

(18) as a function of normalised expected Mondrian step length, sn, together

with the parameterised fits (black circles) that were obtained using Eq. (19).

A logarithmic scale has been used for the horizontal axes to display the a0,

a1 and w coefficients. A fine linear grid has been used to parameterise the

a2 coefficient up to sn = 0.4.

Conclusion
In this paper we have established that, for slowly varying

sinusoidal shadings, the optimal centre/surround convolution fil-
ter for mitigating shading from images takes the form of a co-
sine function. This suggests that, in general, there is a direct
link between the functional form assumed for the shadings and
the shape of the optimal filter. This finding opens up interesting
possibilities for future investigation. For example, it may be pos-
sible to find shadings that lead to a Gabor filter [15, 16], which
is thought to be the type of filter involved in perception by the
HVS.
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