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Abstract
Multispectral imaging in contrast with hyperspectral imag-

ing is a cheaper and more accessible method with a feasibly mo-
bile setup. However, the restrained spectral resolution of mul-
tispectral images is a limitation that influences the applicability
of this method in different fields. In this study, we tried to an-
swer the question of whether multispectral images are suitable
enough to be used in the spectral unmixing task. For this spe-
cific application, we explore spectral unmixing of an oil painting
to obtain pigment maps. We observe that the performance of the
multispectral imaging system in the pigment unmixing task is sig-
nificantly influenced by two key factors: the number of bands in
the multispectral imaging system and the spectral range covered
by these bands in relation to the spectral features of the pigments
present in the spectral library.

Introduction
Having specific information about the materials used in a

painting is a powerful tool in various aspects of art studies rang-
ing from authentication to restoration and conservation [1]. A
painting can consist of colorants (pigments or dyes), binders,
and support preparation materials, among which colorants are
of great importance in the restoration process [2]. Common pig-
ment identification techniques can be categorized based on area
of analysis and invasiveness. In the case of the area of analy-
sis, methods can be categorized into point analysis or imaging
techniques. In general, any method that would require pigment
or cross-section sampling is considered an invasive technique;
therefore, chemical analysis and electronic microscopy methods
(i.e. SEM) would fall into this category. On the other hand,
imaging and optical fiber spectroscopy methods are categorized
among the non-invasive methods. The high value of cultural
heritage paintings makes the non-invasive techniques more fa-
vorable for pigment identification tasks. Additionally, the full-
painting nature of the imaging techniques makes these analysis
methods one of the most suitable techniques for this task [3].

Among the varying imaging techniques, hyperspectral
imaging has been vastly used in tackling pigment identification
and mapping tasks [4, 5, 6, 7]. In the hyperspectral imaging
technique, the spectral reflectance of the painting can be cap-
tured in spectral ranges varying from ultraviolet (UVA: 330-
380 nm) to visible (380-700 nm) on to infrared (near IR: 700-
1000 nm and short wavelength IR: 900 to 2500 nm). The cap-
tured spectra later on can be processed to achieve pigment maps
[4, 5, 6, 7]. Pigment mapping can be achieved through several
algorithms. Among these algorithms, there are approaches such
as machine learning algorithms [8] or spectral metric threshold-
ing [4], which try to classify each pixel based on the similarity
of its spectrum to the spectrum of each library member. These
methods do not address the fact that the spectrum in each pixel
is in fact the physical mixture of different materials spectra cap-
tured by the camera sensors. The physical models that describe

this mixture phenomenon are known as spectral mixing models
[9]. These mixing models are the basis of the spectral unmixing
algorithm for pigment mapping. Unlike the pixel-classification
methods, the output of spectral unmixing is a concentration vec-
tor that predicts the concentration of each member of the spectral
library in the unmixed pixel, leading to separate concentration
maps for each member.

In numerous studies, hyperspectral images of paintings have
been used for pigment unmixing purposes [7, 10, 11]. Al-
though hyperspectral imaging is a commonly used technique, the
method suffers from several practical drawbacks. Hyperspectral
imaging devices are expensive. Additionally, the instances with
high spatial and spectral resolutions are commonly line-scanning
cameras and require motorization (either a stage for the sample
or a motorized camera holder) which makes their mobility com-
plicated. In contrast, multispectral imaging is a less expensive
a more mobile member of the spectral imaging devices family.
However, multispectral imaging lacks spectral resolution. While
hyperspectral images have a spectral resolution of less than 5 nm
and uniformly cover the spectral range, the spectral resolution of
the multispectral images is dependent on the number of bands,
and the range of the spectral sensitivity of the bands present in
the multispectral device. In this work, we investigate the possi-
bility of using multispectral images to tackle spectral unmixing
tasks. We explore the effect of band number and spectral range
on the quality of spectral unmixing.

Materials and Methods
Sample Painting

The painting (22×16 cm2) used in this study, which will be
referred to as “The House”, was an artwork created previously by
an artist (Fig. 1). The paints used in this painting were linseed
oil-based paints produced by “Sang” and “Winsor & Newton”.
No further preparation steps were carried out on the pre-primed
canvas and the painting was well-dried when captured.

Figure 1. The RGB-Representation of ”The House” painting.

Hyperspectral Imaging
The imaging was carried out using a HySpex VNIR1800

line-scanner camera (Norsko Elektro Optikk). The spectral range
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of the capture covered 400 to 1000 nm with a sampling interval
of 3.26 nm. The lens used for this capture had a working distance
of 1 m and a resolution of 1800 pixels per line. As a result, each
pixel covered a 168×168 µm2 of the painting. The illumination-
capture configuration for this capture was set to 45:0 and the
painting was illuminated by two Halogen Smart Light 3900e
light sources as shown in Figure 2. The Spectralon R⃝ white cal-
ibration tile was used in the capture setup for reflectance calcu-
lation. Additionally, a gray tile with uniform diffuse reflectance
was used to perform flat-field correction since the Spectralon tile
was not wide enough.

Figure 2. The scheme of the imaging setup.

Multispectral imaging simulation
Initially, a set of 16 hypothetical bands were selected. While

the bands in the NIR range are completely artificial the visible
bands are taken from an LED-base multispectral camera. The
bands were defined in a way that they would cover the full spec-
tral range of the VNIR hyperspectral camera [9]. Figure 3
presents the spectra of the bands used in this study.

Figure 3. The Spectral sensitivity of the simulated multispectral camera.

Mixing Models
Theoretically, the mixing of the pigments’ spectra can have

three configurations. The first case is when the pigments are
present in two completely separate regions without overlapping.
In this case, the mixing happens only optically and at the cam-
era level which is the dominant mixing configuration in the case
of the pointillism painting style [12]. The second configuration
happens when two layers consisting of a single type of pigment,
overlay each other. Finally, there can be a mixture of various
types of pigment particles (at a microscopic level) dispersed in
the binder. In this case, more complex mixing phenomena are
present [10].

In the case of the first configuration, since the spectra are
mixed only at the camera level the mixing phenomenon would
have an additive nature [11]. In contrast, the second configura-
tion, where the light reflected from one layer would interact with

Table 1: Mixing models suggested by Grillini et al. [11]

Label Model type Equation

MAdd Additive R =
q
∑

i=1
Rici

MSub Subtractive R =
q
∏
i=1

Rci
i

MHyb Hybrid
(Subtractive-
Additive)

R =

(
q
∑

i=1
Rτ

i ci

)(
q
∏
i=1

Rci(1−τ)
i

)

the pigments in the other layer as it transmits through the later
layer, has a subtractive nature [11]. Finally, in the third con-
figuration (suggested by Grillini et al. [11]), both phenomena
are to some extent present and can be modeled by a Subtractive-
additive hybrid model. It is worth mentioning that the mixing
models used in this study do not model the inter-scattering effect
at the particle level. Table 1 summarizes the mentioned mixing
models where q is the number of members in the spectral library,
τ is a constant that defines the extent of hybridity ranging from 0
(fully additive) to 1 (Fully subtractive), Ri is the spectrum of ith

member of the spectral library, and ci is its concentration in the
mixture. Grillini et al. [10, 11] had shown that the subtractive
model or a hybrid model with the τ value of 0 could outperform
the two other models when used in an unmixing algorithm. As a
result, the subtractive mixing model was used for unmixing pur-
poses in this study.

Pigment Unmixing Algorithm
The pigment unmixing was carried out by solving a concen-

tration optimization problem per pixel using the mixing models
presented in table 1. The optimization was carried out using
the non-linear optimization function “fmincon()” with a sequen-
tial quadratic programming algorithm in MATLAB (The Math-
Works Inc., Natick, MA, USA.). As for the cost function, the
optimization was penalized based on the mean square of the dif-
ference between the mixture spectra and the predicted mixture
spectrum (Eq. 1); where the predicted mixture spectrum was the
output of the mixing model. The optimization was carried out
while considering two main constraints: non-negativity and sum-
to-one. The optimization was initialized with an equal concen-
tration of the library members while maintaining the sum-to-one
constraint.

MSE =
n

∑
i=1

((
Rprediction,i −Runmixed,i

)2
/n

)
(1)

Spectral Library
Table 2 shows the pigments present in the painting. The

spectra of the spectral library were taken from the Fiber Optics
Reflectance Spectra (FORS) of Pictural Materials database pro-
vided by the Institute of Applied Physics (Italy) [14]. The spec-
tra were obtained using fiber optics spectroscopy of pure pig-
ments dispersed in linseed oil and painted over wood panels of
15 mm thickness. The spectra were interpolated using cubic in-
terpolation to match the sampling intervals of the spectral image.
Figure 5 shows the spectra of the members of the spectral library.
Here is the table 2.

Based on the points made by the artist, the dark blue patches
only contained ultramarine blue, while in the case of light blue
patches were mixed with white paint. The windows contained
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Figure 4. Simulated camera sensitivities and the spectra of spectral library members: a)13-band camera, b)10-band camera, c) 7-band camera, d) 4-band

camera

Table 2: List of members of the spectral library.

Paint Pigment Binder Title of library
member

Blue Ultramarine Linseed
oil

Ultramarine Blue

Yellow Ochre Linseed
oil

Ochre Yellow

Lemon
Yellow

Cadmium Linseed
oil

Cadmium Lemon
Yellow

Brown 1 Raw Sienna Linseed
oil

Raw Sienna

Brown 2 Raw Umber Linseed
oil

Raw Umber

Brown 3 Burnt Umber Linseed
oil

Burnt Umber

White Zinc Oxide Linseed
oil

Zinc White

White Titanium diox-
ide

Linseed
oil

Titanium White

Figure 5. Spectra of the spectral library members.

cadmium lemon yellow, while the walls were mostly painted us-
ing ocher yellow. The roof and the door were mostly painted
using burnt umber and the light brown lines were painted using
raw sienna and raw umber. According to the supplier the white
paint contained titanium dioxide and zinc oxide.

Ground truth
To obtain a ground truth for the performance of the hyper-

spectral image in pigment unmixing, the discussed unmixing al-

gorithm was carried out on the spectrum of each pixel using the
subtractive mixing model. Figure 6.a illustrates the result of the
unmixed hyperspectral image.

Results and Discussion
Multispectral simulation

To evaluate the performance of different multispectral im-
ages in the pigment unmixing task, initially, several hypothetical
multispectral cameras were created by selection of various com-
binations of the bands described in figure 3. To simulate the
response (I) of each multispectral camera from the hyperspec-
tral cube equation 2 was used where si is the spectral sensitivity
of the band at the ith wavelength and n is the total number of
the bands. In order to resample the spectral library, equation 2
was used to calculate each band’s response to the members of
the spectral library and the responses were used in the unmixing
process.

Iband =
n

∑
i=1

(Ri − si)/
n

∑
i=1

si (2)

Study on the effect of band number
To investigate the effect of the number of the bands on the

unmixing performance, the unmixing was carried out in several
steps, and in each step, a new camera was simulated by removing
one band from the range of 400-600 nm, one band from the range
of 600-800 nm and one band from the range of 800-1000 nm.
These spectral ranges were decided based on the location of the
spectral features of the members of the spectral library and were
chosen to make sure that even after the removal of several bands
no important spectral range would remain uncovered. In the first
trial, a 13-band camera was simulated by removal of the 3rd, 9th,
and 13th bands. Figure 4a shows the remaining bands along the
spectra of the spectral library. The same approach was followed
to simulate a 10-band camera by removing the 5th, 10th, and 15th
bands (Fig. 4b). In the next steps, a 7-band and a 4-band cam-
era were simulated by removal of the 2nd, 7th, 12th band (Fig.
4c) and the 6th,8th, and 14th (Fig. 4d) respectively. The simu-
lated camera sensitivities were then used to calculate the camera
response through equation 3 and the unmixing optimization was
carried out based on the subtractive mixing model.

Figure 6 shows the pigment maps obtained from the simu-
lated response of the two extremes of multispectral band numbers
in comparison to the pigment maps obtained from the hyperspec-
tral cube. As it can be seen, while the pigment maps obtained
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Figure 6. Comparison of the pigment maps obtained from: a) Hyper-

spectral camera, b) 16-band Multispectral camera, c) 4-band Multispectral

camera

from both cameras show a similar structure as in the ground truth
(hyperspectral cube’s pigment maps), it is visible that the 4-band
multispectral camera responses have considerable confusion in
the case of raw sienna, titanium white, cadmium lemon yellow
and zinc white.

Figure 7. Evaluation of the unmixed pigment maps in the presence of

different numbers of spectral bands in terms of RMSE for the members of

the spectral library

Figure 7 quantitively summarizes the performance of each
simulated camera in comparison to the ground truth in terms of
RMSE (Eq. 3). According to these diagrams, a general de-
crease in the number of channels leads to a higher level of inac-
curate concentration prediction. The most drastic changes were
observed in the case of ultramarine blue, titanium white, zinc
white, and raw sienna.

Finally, even with a 4-band multispectral camera the pig-
ment concentration map error per member remained below 7.5%.
Additionally, it was observed that a minimum 7-band multispec-
tral camera response can potentially provide pigment maps with
an average error of 2.4%.

RMSE =

√
q

∑
i=1

(
Chyper,i −Rmulti,i

)2
/q (3)

Unmixing of the Hyperspectral Cube
To investigate the spectral range covered by the selected

bands on the obtained pigment maps, two scenarios were com-
pared. In the first, case 10 spectral bands were chosen in a way
that 6 covered the visible range and 4 covered the NIR range
(Fig. 4b). On the other hand, in the second scenario, the bands

were selected in a way that only the visible range was covered
(Fig. 8). As it can be seen in Figure 8, the absence of bands in
the NIR range would mean that the imaging system would miss
important spectral features which would probably lead to confu-
sion.

Figure 8. Simulated sensitivities of the Visible-only camera and the spectra

of spectral library members.

The pigment maps obtained from the visible-only band con-
figuration are presented in Figure 9. As shown in Figure 9, in
the absence of bands in the NIR range the unmixing algorithm
fails to detect raw sienna as it confuses the raw umber with raw
sienna. Additionally, the algorithm confuses ultramarine blue
and ocher yellow. Referring to the spectra of ultramarine blue
and ocher yellow along with the spectral bands of the visible-
only camera in figure 8,it can be observed that an important part
of ultramarine blue’s spectral features falls within the NIR range
which possibly plays a role in the observed confusion.

Figure 9. Pigment map of 10-band visible-only multispectral camera sim-

ulated response.

Figure 10 shows the RMSE values per library member for
the two configurations. As it can be observed, the exclusion of
the NIR region has led to an average of 3.9 times higher RMSE.
Additionally, the absence of NIR bans has led to changes in the
mostly confusing library members. While in the case of the
VNIR range the most confused pigments are ochre yellow and
raw sienna, in the case of visible-only configuration the most
problematic pigments are raw and burnt umber.

Figure 10. RMSE per library member for pigment maps obtained using

the visible-only and VNIR configuration.

Conclusion
To investigate the applicability of multispectral imaging

techniques for spectral unmixing tasks, several multispectral
cameras with various numbers of spectral bands and spectral
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ranges were modeled. The camera responses in each case were
simulated using the hyperspectral image of an oil painting. To
obtain a ground truth for the hyperspectral image unmixing per-
formance, a pigment unmixing algorithm based on a subtractive
mixing model was used. The comparison of the pigment maps
obtained from the simulated spectral cameras of varying band
numbers to the ground truth pigment maps showed that an in-
crease in the number of channels leads to better pigment map
prediction. The number of suitable bands however is dependent
on the desired precision. It was observed that a multispectral
imaging device of 7 bands that cover the VNIR range would only
incorporate a 2.4% error in the pigment maps. It was also ob-
served that in case the spectral range of the multispectral imaging
device fails to cover the spectral range in which the spectral fea-
tures of pigments are present, the concentration prediction error
can drastically increase. Given these observations, it is suggested
to investigate the introduction of a multispectral imaging system
with the most suitable number of bands and spectral range, based
on the spectral features of the most commonly used pigments

References
[1] Z. Yonghui, R. S. Berns, and F. H. Imai, “Pigment Identification of

Artist Materials Via Multi-Spectral Imaging,” in Computer Image
Analysis in the Study of Art, San Jose: SPIE 6810 (2008)

[2] A. Cosentino, “Panoramic, Macro and Micro Multispectral Imaging:
An Affordable System for Mapping Pigments on Artworks,” J Con-
serv Mus Stud, vol. 13, no. 1 (2015)

[3] B. Brunetti et al., “Non-invasive investigations of paintings by
portable instrumentation: The MOLAB experience,” Topics in Cur-
rent Chemistry, vol. 374, no. 1. Springer International Publishing,
pp. 1–35 (2016)

[4] F. Daniel et al., “Hyperspectral imaging applied to the analy-
sis of Goya paintings in the Museum of Zaragoza (Spain),” Mi-
crochemical Journal, vol. 126, pp. 113–120, May 2016, doi:
10.1016/j.microc.2015.11.044.

[5] C. Cucci, J. K. Delaney, and M. Picollo, “Reflectance Hyperspectral
Imaging for Investigation of Works of Art: Old Master Paintings
and Illuminated Manuscripts,” Acc Chem Res, vol. 49, no. 10, pp.
2070–2079, 2016.

[6] H. Deborah, S. George, and J. Y. Hardeberg, “Pigment Mapping
of the Scream (1893) Based on Hyperspectral Imaging,” in ICISP,
LNCS 8509, Cherbourg: Springer, pp. 247–256 (2014)

[7] E. M. Valero, M. A. Martı́nez-Domingo, A. B. López-Baldomero, A.
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