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Abstract
Accurate reproduction of human skin color requires knowl-

edge of skin spectral reflectance data, which is often unavail-
able. Traditionally, spectral reconstruction algorithms attempt
to recover the spectra using commonly available RGB camera
response. Among various methods employed, polynomial regres-
sion has proven beneficial for skin spectral reconstruction. De-
spite their simplicity and interpretability, nonlinear regression
methods may deliver sub-optimal results as the size of the data
increases. Furthermore, they are prone to overfitting and require
carefully adjusted hyperparameters through regularization. An-
other challenging issue in skin spectral reconstruction is the lack
of high-quality skin hyperspectral databases available for re-
search. In this paper, we gather skin spectral data from publicly
available databases and extract the effective dimensions of these
spectra using principal component analysis (PCA). We show that
plausible skin spectra can be accurately modeled through a lin-
ear combination of six spectral bases. We propose a new ap-
proach for estimating the weights of such a linear combination
from RGB data using neural networks, leading to the reconstruc-
tion of spectra. Furthermore, we utilize a daylight model to es-
timate the underlying scene illumination metamer. We demon-
strate that our proposed model can effectively reconstruct fa-
cial skin spectra and render facial appearance with high color
fidelity.

Introduction
Faithful representation of human skin color is crucial for

virtual and augmented reality [1], skin cancer detection [2],
forensics [3], prosthetic limb manufacturing [4], and the cos-
metic industry [5]. Indeed, this requires access to detailed spec-
tral reflectance data of the skin. Hyperspectral cameras are able
to record the skin reflectance at high spectral and spatial resolu-
tion [6]. However, these cameras are significantly costly com-
pared to standard consumer RGB cameras. Additionally, the
time-consuming process of high-resolution hyperspectral acqui-
sition renders it impractical for human subjects, who must re-
main still during the acquisition. On the other hand, despite be-
ing more affordable, RGB cameras utilize only three color sen-
sors to capture the scene radiance. As a result, RGB imaging
can only gather a limited information encoded in the scene. To
address this, spectral reconstruction algorithms have been devel-
oped to infer the missing information from the RGB image of the
scene [7]. Although the problem is heavily underconstrained, it
is still feasible to upsample from three channels to more, given
that most hyperspectral bands are highly correlated [8].

The simplest algorithms for spectral reconstruction tasks
utilize regression methods. Linear regression, for example,
maps RGB values to spectra through a linear transformation [7].
Extending this approach, nonlinear regression methods trans-
form RGB values into a set of higher-order polynomial or root-
polynomial terms, offering a more complex model for spectral
reconstruction. These spectral reconstruction approaches are all
pixel-based, meaning that they recover the spectrum of a pixel

independent of the spatial location of that pixel in the image.
In contrast, deep neural network approaches [9] leverage RGB
patches for training. Indeed, they need a large amount of data
and significantly more powerful processing and mapping archi-
tectures.

There is a very limited body of work focused on the spec-
tral reconstruction of human skin from RGB images. One po-
tential reason for this is the difficulty in acquiring high-quality
hyperspectral data specifically for human skin. Although several
hyperspectral image databases of outdoor and indoor scenes are
publicly available for research [11], high-quality databases ded-
icated to skin are scarce, to our knowledge. This results in sig-
nificant challenges for spectral reconstruction algorithms, espe-
cially for patch-based methods like deep neural networks, in ac-
curately reconstructing large skin patches, such as human faces.
In this paper, we introduce a simple paradigm for skin spectral re-
construction utilizing neural networks. Initially, we demonstrate
the feasibility of accurately modeling a plausible skin spectrum
with a set of spectral bases. Following this, we propose a neu-
ral network-based procedure to determine the set of weights re-
quired to linearly combine these bases for reconstructing the skin
spectra. This method also includes estimating the spectrum of
the scene illumination. We further validate the effectiveness of
our method by demonstrating its application in rendering human
faces across various skin tones.

Background
Most off-the-shelf RGB digital cameras contain three types

of sensors, red, green and blue, each with a different sensi-
tivity to a broad range of visible light spectrum. Each sensor
k = r,g,b integrates spectral data over the visible spectral range
ω = [400−700nm]; overall, camera sensors provide trichromatic
color responses of the scene:

ck =
∫
ω

s(λ )l(λ )qk(λ ) dλ + εk, {k = r,g,b} (1)

where s(λ ) denotes the spectral reflectance of the scene imaged
by the camera, l(λ ) refers to the illumination spectrum, qk(λ ) is
the spectral sensitivity of the camera sensor of type k, εk is the
acquisition noise, and c = [cr,cg,cb] is the trichromatic camera
response. Given that spectral data are available at discrete inter-
vals, the integration can be approximated by inner products as
follows:

c = QT s, (2)

where Q is a matrix derived from the element-wise product of
l(λ ) and q(λ ), and T is matrix transpose. All spectral recon-
struction methods aim to accurately recover s using the informa-
tion embedded in c. Among the early methods, linear regression
establishes a relationship between c and Q through a single lin-
ear transformation matrix. Considering the entire database of N
spectral reflectances S, and their corresponding RGB data C, one
can express the relationship as follows:

CM = S, (3)
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where M denotes the linear transformation matrix, which is de-
rived using error minimization criteria such as the least squares
method. It is well established that recovering spectral reflectance
from camera responses is inherently prone to the problem of
metamerism: more than one reflectance can give rise to the same
RGB values [12]. Furthermore, the task becomes even more
challenging when dealing with complex surfaces, such as hu-
man skin, which comprises several layers of cutaneous tissue,
each with distinct optical properties [13, 31]. In such cases, a
simple linear transform will not suffice to accurately approxi-
mate the spectra. To address nonlinear relationships, polynomial
[7] and root-polynomial [14] regressions, and neural networks
[15, 16] are likely to provide better reconstruction performance.
In the domain of skin spectral reconstruction, the literature sug-
gests that most of the existing research has benefited from re-
gression methods. In a pioneering work, Imai et al. [17] used
second-order polynomial regression to recover the spectra for
color reproduction on a CRT display. Xiao et al. [18] combined
polynomial regression with principal component analysis (PCA)
to reconstruct skin spectra, benefiting from access to compre-
hensive spectrophotometric measurements of human skin spectra
and silicone skin samples. Recently, Li et al. [19] have aimed to
enhance the accuracy of skin spectral reconstruction using poly-
nomial regression by reevaluating the strategy for preparing the
training dataset.

Method
We propose a straightforward neural upsampling procedure

to transform measured RGB values of skin into spectral data, as-
suming these RGB values are acquired under broadband daylight
illumination conditions. We will first outline the preparation of
the training dataset tailored for this method. Additionally, for
comparison purposes, we apply regression-based spectral recon-
struction models on the same dataset.

Skin dataset
In this research, we use three publicly available databases of

human skin spectral reflectance. The first database [18] includes
4,392 measurements from 482 subjects of Caucasian, Chinese,
and Kurdish ethnicity, taken from the forehead, cheek, inner arm,
and back of the hand, covering a spectral range of 360 to 740
nm at 10 nm intervals. The second database [20] contains mea-
surements of the right inner forearm from 100 subjects, spanning
250 to 2500 nm at 3 nm intervals. Both databases have no age
or gender constraints. Additionally, we use the ISET Hyperspec-
tral Image Database [21], which has 24 hyperspectral images of
human faces, covering 400 to 950 nm at 3.5 nm intervals. We
selected two 10×10 pixel patches from the forehead and cheek,
excluding specular highlights. We then clipped the data to 400
to 700 nm and interpolated it to 31 spectral bands at 10 nm in-
tervals. Altogether, we have a skin spectral reflectance dataset
of approximately 14,600 measurements, as illustrated in Figure
1 (left). For all spectra, we calculate the corresponding CIEXYZ
tristimulus values and CIELAB color values, i.e., L*, a*, b*,
and C*, using the CIE 1931 color matching functions, under the
CIE standard D65 illuminant [22]. In Figure 1 (right), we also
show the distribution of the calculated CIELAB color values for
both non-facial and facial skin on the a*-b* and C*-L* chro-
matic planes. We observe that the color gamut of facial skin falls
within the color gamut of non-facial skin. Consequently, we an-
ticipate that a model trained on skin color data from non-facial
regions could optimistically be applied to the reconstruction of
facial skin color. We note that such a model is highly unlikely

to work properly for facial hair, lips, and special features such as
freckles, moles, and tattoos.

Figure 1. Spectral curves of 14,600 skin reflectance measurements, gath-

ered for our research from three publicly available databases [18, 20, 21]

(left), CIELAB gamuts of facial and non-facial skin colors (right).

Regression-based spectral reconstruction
We utilize linear regression (LR), 6th order polynomial

regression (PR6), and 6th order root-polynomial regression
(RPR6) in our skin spectral reconstruction experiment. To create
the training set for these models, we make use of the gathered
skin reflectance spectra dataset. For each spectrum, we calculate
the corresponding RGB values using the CIE 1931 color match-
ing functions following Equation 2. For illumination, we employ
the new daylight equation proposed in [23]:

l(λ ,T ) = µ1λ
−5 f (λ )e−µ2/T λ , (4)

where T refers to daylight correlated color temperature (CCT),
f (λ ) denotes a filter correction function, l(λ ) is the daylight
spectrum, and µ1 and µ2 are constants equal to 3.7418× 10−16

Wm2 and 1.4388×10−2mK, respectively.
To ensure our trained models are versatile and not specific to

any illumination, we calculate skin RGBs across a range of natu-
ral daylight CCTs from warm to cool daylight. Empirical studies
show that a shift of 5.5 Mired temperature units (reciprocal color
temperature 106

T ) is required for the difference in light color to
become perceptible [24]. Therefore, we sample the CCT range
of 2500K to 15000K at intervals of 5.5 Mired units. To help our
models maintain performance with changing light intensity, we
augment the training data by scaling the skin reflectance spectra
with constants from 0.1 to 2, simulating different exposure levels.
Following [10], we prepare the training dataset for the regression
models by dividing the spectra and their corresponding RGB val-
ues into four subsets. Two subsets are used for training, one for
validation and optimizing regularization parameters, and the final
subset for testing. Nonlinear regression models risk overfitting,
where the model performs well on training data but poorly on
unseen data. To prevent this, we use ridge regularization [10].

While regression-based spectral reconstruction is simple
and interpretable, it can become suboptimal and time-consuming
with larger datasets. Managing model complexity is crucial to
prevent overfitting. Although regression models offer regular-
ization strategies like ridge regularization, advanced regulariza-
tion methods in neural networks may better manage overfitting
in large, complex datasets. Therefore, we propose a neural ap-
proach for skin spectral reconstruction, demonstrating that skin
spectral reflectance can be accurately modeled with a set of spec-
tral bases.
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Skin spectral bases
The reflectance spectra of most real-world surfaces, such as

human skin, have been proven to be naturally smooth (see Fig-
ure 1, left). Consequently, those spectra can be accurately mod-
eled using a limited number of spectral bases, often as few as
six to nine [8]. Inspired by this fact, we perform principal com-
ponent analysis (PCA) on the database of skin spectra to obtain
the first six spectral bases (i.e., PCA eigenvectors) to represent
all the spectra. Hence, with appropriate weighting factors, any
skin spectrum can be modeled as a linear combination of the six
spectral bases:

s′(λ ) =
6

∑
k=1

wkbk(λ ), (5)

where wk represents the weight for the kth spectral basis, bk(λ )
denotes the kth spectral basis, and s′(λ ) signifies the derived skin
spectral reflectance. In this paper, we define the range of λ as
being from 400 to 700 nm sampled at 10 nm intervals. Figure 2
(left) illustrates the six skin spectral bases derived using PCA. To
demonstrate the effectiveness of this simple model, we calculate
the weights wk for two skin spectra from the database, one repre-
senting a light skin tone and the other representing a darker one,
using the Penrose–Moore pseudo inverse method [26]. We then
apply Equation 5 to reconstruct the spectra.

Figure 2. The six skin spectral bases derived using PCA to represent the

entire skin spectral data (left), two pairs of ground truth skin spectra and

their estimations using the six spectral bases following Equation 5 (right).

Figure 2 (right) presents both the ground truth and the cor-
responding modeled skin spectra. The nearly perfect match be-
tween the ground truth and the reconstructed spectra indicates
that a plausible skin spectrum can be accurately represented us-
ing six linear spectral bases. It is noteworthy that we explored
both a lower and higher number of bases in our experiments.
Utilizing fewer bases led to sub-optimal reconstructions, while
increasing the number of bases did not enhance the model’s per-
formance.

Neural spectral reconstruction
By reducing the effective dimensionality of skin spectra, we

enable the use of shallow neural networks for skin spectral recon-
struction. We design a multilayer perceptron (MLP) and train it
to learn the mapping from the space of skin RGB to the space
of skin spectral bases. This involves finding a set of weights to
linearly combine these bases to accurately reconstruct the skin
spectra. Figure 3 provides a schematic overview of our MLP
architecture designed for skin spectral reconstruction. The archi-
tecture of our MLP comprises three hidden layers with 128, 512,
and 128 nodes, respectively. Both the input and hidden layers
utilize the ReLU activation function. Our observations indicate
that adding more hidden layers or nodes results in only a slight
enhancement of training performance. The final layer consists

of 6 nodes and employs the sigmoid activation function to pro-
vide the estimated weights. The MLP hyperparameters are opti-
mized using the adaptive moment estimation (Adam) optimizer,
aiming to minimize the mean squared error (MSE) between the
predicted and ground truth weights. For training our MLP, we
employ the same dataset used for the regression models. For
each skin spectrum, in addition to RGB values, we determine a
set of six weights wk as outlined in Equation 5. We then split
the dataset into two subsets: one for training and the other for
validating the MLP. On average, the entire training duration is
approximately 45 minutes, using a GPU-accelerated desktop PC
equipped with an Intel(R) Core(TM) 14th Gen i9 3.60 GHz pro-
cessor and 32GB of RAM.

Figure 3. Schematic representation of our fully-connected multilayer per-

ceptron (MLP).

Results
The spectral reconstruction algorithms recover an estimate

of the reflectance spectrum for the given ground truth spectrum.
To measure how closely the estimated spectrum matches the
ground truth, we employ three widely used evaluation metrics:
the Mean Relative Absolute Error (MRAE) [27], the Root-Mean
Squared Error (RMSE) [28], and the CIEDE2000 color differ-
ence ∆E00 [29]. Figure 4 illustrates the spectral curves of three
reconstructed skin spectra by two of the tested models, i.e., PR6
and the proposed MLP.

In Table 1, we present both the mean and the 99th percentile
for MRAE, RMSE, and ∆E00 across 150 skin spectra that were
not seen by the trained algorithms. We compare the performance
of linear regression (LR), 6th order polynomial regression (PR6),
6th order root-polynomial regression (RPR6), and our MLP in
accurately recovering these unseen skin spectra.

Figure 4. Spectral reconstruction results for three skin spectra using the

6th order polynomial regression (PR6) and the MLP, shown from left to right,

correspond to patches 3, 7, and 11 in Figures 5-6, respectively.

It is noteworthy that our exploration extended to polyno-
mial regression orders beyond 6. Despite a significant increase
in training time, the enhancement in reconstruction performance
was minimal. We also assess the performance of the tested mod-
els at three brightness levels i.e., original, half and double, to
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ensure consistent performance despite variations in scene expo-
sure. Essentially, the models should recover spectra with con-
sistent shapes across different magnitudes under various expo-
sure settings. To simulate changes in scene exposure, we scale
the RGB values by constants of 1 (original), 0.5 (half), and 2
(double) following the method in [17]. After reconstructing the
respective spectra, we then compare these spectra with the corre-
sponding ground truth spectra, which are also scaled by the same
constants.

Table 1: Evaluation statistics under original exposure.
Mean 99th percentile

Model MRAE RMSE ∆E00 MRAE RMSE ∆E00
LR 0.064 0.021 2.546 0.119 0.042 3.776
PR6 0.039 0.012 1.274 0.076 0.025 3.291
RPR6 0.039 0.013 1.313 0.081 0.030 3.414
MLP 0.033 0.010 1.011 0.094 0.025 3.326

The mean results in Table 1 show that under original ex-
posure, the proposed MLP demonstrates superior performance
across all evaluated metrics, indicating its effectiveness in accu-
rately reconstructing skin spectra. Furthermore, when consider-
ing the 99th percentile scores, the MLP model remains robust,
providing reliable spectral reconstructions even in the tail end
of the distribution. As expected, both PR6 and RPR6 markedly
outperform the linear regression approach, with PR6 perform-
ing slightly better than RPR6. For a pictorial visualization of
the results, Figure 5 showcases the RGB renderings of 24 pairs
of ground truth and recovered skin spectra by the MLP and the
best performing regression model i.e., PR6 in the form of skin
patches. In each image, the ground truth and recovered colors are
displayed within the same patch, with the inner circle represent-
ing the reconstructed spectrum and the outer frame indicating the
ground truth spectrum. We see that under original exposure, the
spectra reconstructed by the MLP yield RGB colors that more
closely match the ground truth RGB colors when compared to
those reconstructed by PR6.

Figure 5. Spectral reconstruction results for 24 skin spectra by the 6th

order polynomial regression (PR6), and the MLP, under original exposure.

The RGB renderings are performed for the CIE 1931 color matching func-

tions and D65 illumination. In each patch, the inner circle corresponds to

the reconstructed spectrum and the outer frame corresponds to the ground

truth spectrum. The mean ∆E00 color difference errors for PR6 and MLP are

1.39 and 0.95, respectively.

When the exposure varies, all the tested models perform
slightly worse. However, the models retain their performance
better when the exposure increases. The MLP performs consid-
erably worse when the testing exposure is halved, while the per-
formance of the LR slightly improves. This trend aligns with
the findings reported in [14], which demonstrated that neural
networks for spectral reconstruction tend to underperform with
changes in image exposure. Although we have tried to over-
come this by augmenting the training data, the MLP still ex-
hibits this shortcoming. As mentioned previously, we augmented

the training dataset not only by a set of scales to address the
models’ exposure variability but also by training our the mod-
els with RGB data calculated across a broad range of daylight
CCTs. This approach enables us to reconstruct the skin spec-
tra from RGB data regardless of the underlying illumination. To
verify the illumination-independency of our proposed model, we
reconstruct the 150 test skin spectra for two extreme daylight
conditions, i.e., warm with a CCT of 3500K and cool with a CCT
of 9000K. The reconstruction results for the same set of 24 test
spectra are depicted in Figure 6. The MLP reconstruction errors,
in terms of mean ∆E00 color difference are 1.065 and 1.019 for
the CCTs of 3500K and 9000K, respectively. This indicates that
the trained MLP can successfully reconstruct skin spectra under
various daylight illumination conditions.

Figure 6. Spectral reconstruction results for 24 skin spectra by the MLP,

under daylight illumination with CCTs of 3500K and 9000K. In each patch,

the inner circle displays the reconstructed color and the outer frame displays

the ground truth color. The mean ∆E00 color difference errors for CCTs of

3500K and 9000K are 1.065 and 1.019, respectively.

Facial spectral reconstruction
As discussed previously, we anticipate that a model trained

on skin color data from non-facial regions such as inner forearm
and back of the hand could be effectively applied to reconstruct
the spectral reflectance of facial skin. To evaluate this hypothesis,
we employ our trained MLP to reconstruct the skin reflectance
spectra of facial images across various skin tones, including fair,
light, and brown. To capture the facial photographs, our acqui-
sition setup features a lighting arrangement with broadband cool
white LED panels that simulate daylight with a CCT of 7000K,
and a Canon EOS 850D DSLR camera. The LED panels are
all cross-polarized with respect to the camera, allowing specular
cancellation. The raw facial RGB images are inputted into the
MLP to estimate the weights of the skin spectral bases for each
pixel in the image, and subsequently reconstruct the spectrum
of that pixel, thereby generating what is termed a hyperspectral
facial image. After reconstructing the spectra, the next step in-
volves estimating the underlying illumination of the face image.
To achieve this, we employ the Nelder-Mead simplex method
[30], in combination with the new daylight model proposed in
[24]. We aim to minimize the ∆E00 color difference between the
ground truth and reconstructed face images, through iteratively
adjusting the CCT value in Equation 2, until the lowest ∆E00 is
achieved. By following this estimation approach, we acknowl-
edge that the estimated illumination of the image, while having
a matching CCT, represents a metamer of the actual scene illu-
mination with a different spectral power distribution (SPD), as
illustrated in Figure 8.

Figure 7 shows comparisons between the ground truth facial
images and their reconstructions using the MLP and the illumi-
nation estimation paradigm described above for three subjects.
We can see that the face reconstructions are a close match to the
ground truth photographs, indicating high fidelity in the recon-
structions. Across all three subjects, the most significant dis-
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Figure 7. Comparisons between the ground truth facial images (top row) and their reconstructions (bottom row) using our proposed model. The subjects

represent ’fair,’ ’light,’ and ’brown’ skin tones, from left to right.

crepancies between the ground truth and the recovered images
are observed in the lips and surrounding regions, as well as in
areas with freckles, brown spots, and dimmer pixels. While the
facial features are precisely detailed in the reconstructed images,
the model falls short in accurately reproducing the colors in these
areas. This limitation was anticipated, considering the training
set does not include measured spectra for lips and certain skin
features.

Figure 8. The spectral power distribution (SPD) of the LED panels used

in our facial acquisition setup, with a CCT of 7000K, is shown in black. The

corresponding daylight spectrum, calculated using Equation 4, is depicted

in dark brown. The estimated illumination spectra for the facial images of

the subjects with ’fair’, ’light’, and ’brown’ skin tones are illustrated in distinct

colors.

To effectively evaluate the color reproduction fidelity of our
method, we select patches on the subjects’ foreheads (excluding
the lips). We then calculate the ∆E00 color difference between
the ground truth and reconstructed patches. Figure 9 displays the
renderings of these patches, along with their corresponding color
reproduction error maps in terms of ∆E00. The ∆E00 error maps
reveal a mean ∆E00 of 1.24 for the subject with a fair skin tone,
1.18 for the subject with a light skin tone, and 1.71 for the sub-
ject with a brown skin tone. We can see that the model performs
less effectively for the subject with a brown skin tone, and the
one with pronounced facial features, like freckles. This is pri-

marily due to the fact that the dataset used for training the MLP
contains fewer spectra of darker skin tones compared to those ac-
quired from subjects with lighter skin tones. This underscores the
critical need for a well-balanced, high-quality hyperspectral skin
database to ensure the model’s robustness and accuracy across a
wide range of skin tones and features.

Figure 9. Comparisons between ground truth and their reconstructed skin

patches, selected from the forehead of the subjects with ’fair’ (top row), ’light’

(middle row), and ’brown’ (bottom row) skin tones. The color reproduction

error maps are also displayed on the left.

Conclusion
In this paper, we introduce a new method for high-fidelity

spectral reconstruction of facial RGB images. Our approach
eliminates the need for additional information such as color chart
measurements, the camera’s spectral sensitivities, or the scene’s

London Imaging Meeting 2024 99



illumination spectrum. We achieve close matches to ground truth
facial photographs across a range of skin tones, demonstrating
the method’s effectiveness. We recognize that access to a high-
quality facial hyperspectral database would further enhance the
robustness of our results. We are optimistic about achieving this
in future work.
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