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Abstract
In order to improve traffic conditions and reduce car-

bon emissions in urban areas, smart mobility and smart cities
are becoming increasingly important measures. To enable the
widespread use of the cameras required for this, cost and size
requirements necessitate the use of low-cost standard dynamic
range (SDR) cameras. However, these cameras do not provide
sufficient image quality for a reliable classification of road users,
especially at night.

In this paper, we present a data-driven approach to optimise
image quality and improve classification accuracy of a given ve-
hicle classifier at night. Our approach uses a combination of im-
age inpainting and high dynamic range (HDR) image reconstruc-
tion to reconstruct and optimise critical image areas. Therefore,
we introduce a large HDR traffic dataset with time-synchronised
SDR images. We also present an approach to automatically de-
grade the HDR traffic data to generate relevant and challeng-
ing training pairs. We show that our approach significantly im-
proves the classification of road users at night without having to
retrain the underlying vehicle classifier. Supplementary informa-
tion as well as the dataset are published at https: // www. mt.
hs-rm. de/ nighttime-traffic-reconstruction/ .

Introduction
The future of mobility should be sustainable and safe, yet

diverse and highly available. To meet all these requirements, an
intelligent traffic management system is required. An important
component of such is a reliable traffic classification of road users,
e.g. for traffic flow, signal control or even autonomous driving.
To ensure reliable classification over large areas a high density
and number of cameras is required. For this reason, it is neces-
sary to make use of small low-cost cameras.

Although camera-based systems have high classification ac-
curacy, their performance can be affected by environmental fac-
tors such as weather and lighting conditions, especially low il-
lumination at night leading to a significant gap between day and
night classification accuracy. Bright light sources at night and
resulting reflections from vehicle headlights lead to a significant
loss of image information (clipping) in the relevant image area,
which significantly reduces the classification accuracy. This gap
is exacerbated by a distortion of the data caused by the fact that
daylight images are predominantly used to train the classifiers,
since these can be labelled much more accurately and reliably.

To address this issue, we propose an image-processing ap-
proach to close the accuracy gap between daytime and nighttime
classification with visible-light cameras without the necessity to
retrain a given classifier. Since reducing clipped image areas can
significantly improve classification at night, approaches from im-
age inpainting and HDR image reconstruction are used to recon-
struct and optimise the traffic image data.

We present a large ground truth (GT) HDR traffic dataset
together with a time-synchronous SDR dataset acquired in paral-

lel, and a tool to automatically generate GT and degraded (simu-
lated) SDR patch pairs for training purposes. We adapted a deep
learning model from image inpainting to the underlying use case
of SDR traffic image reconstruction by using approaches from
HDR image reconstruction and achieved a significant improve-
ment in nighttime traffic classification without the need to retrain
a given classifier.

Related Work

Image Inpainting

Great strides have been made in image inpainting, the addi-
tion of missing or deteriorated image content, thanks to deep neu-
ral networks [1–7]. Liu et al. [1] propose a partial convolution
layer with an automatic mask update that adaptively masks con-
volutional operations based on the validity of surrounding pix-
els. They use a pixel-wise L1 loss function for both masked and
non-masked pixels in combination with a perceptual loss using
a pre-trained VGG-16 [8] network to capture high level feature
representations.

Other approaches are GAN-based [2, 3, 7], transformer-
based [4, 5] or diffusion-based [6]. Suvorov et al. [3] propose
a network for large mask (LaMa) inpainting based on a ResNet-
like architecture with fast fourier convolutions (FFCs). FFCs in-
clude fast Fourier transform (FFT) and inverse FFT allowing for
a fast growth of the receptive field.

HDR Single-Image Reconstruction

Various data-driven approaches [9–13] to HDR single-
image reconstruction have been published in recent years. Eil-
ertsen et al. [9] propose such a method using a hybrid dynamic
range autoencoder. A virtual camera is set up to generate a train-
ing dataset of randomly extracted HDR and corresponding SDR
patch pairs. Since the process is designed to reconstruct high-
light areas only, the virtual camera only generates images that
are clipped in the highlights and not in the shadows. To over-
come the difficulty of HDR data availability, they pre-trained the
network on a large set of simulated HDR images.

Santos et al. [10] introduce a feature masking mechanism
inspired by [1]. They use soft RGB clipping masks to represent
and suppress clipped image pixels, and adapt the loss function
of [1] to the HDR reconstruction task. Similar to [9], Santos et
al. propose an inpainting pre-training similar to [1]. The train-
ing data is generated by using a patch sampling strategy to select
challenging training patches. Guo and Jiang [13] demonstrate the
importance of the degradation model by considering the source
of noise and compression as well as potential color space dis-
crepancies. Other authors proposed GAN-based reconstruction
approaches [11, 12].

https://doi.org/10.2352/lim.2024.5.1.19
©2024 Society for Imaging Science and Technology

90 Society for Imaging Science and Technology

https://www.mt.hs-rm.de/nighttime-traffic-reconstruction/
https://www.mt.hs-rm.de/nighttime-traffic-reconstruction/


SDR Image Reconstruction
In order to close the accuracy gap between day and night

traffic classification with visible light cameras due to weak il-
lumination at night, we propose an SDR image reconstruction
approach prior to classification. We adapt and combine an in-
painting and an HDR image reconstruction approach to recon-
struct light cones within clipped image areas, thus optimising the
traffic data for classification.

Since most classifiers are trained on high relative contrast
SDR input data and are therefore not familiar with linear or log-
arithmically encoded HDR data, extending them to the HDR do-
main would be counterproductive. Furthermore, only the specific
reconstruction process is of primary importance for the recon-
struction of clipped SDR image information. Thus, we are using
SDR data only in combination with the (non-HDR) loss function
of [1]. With this approach, any pre-trained traffic classifier can
be used without the need for retraining.

Model Overviews
We utilize the feature masking model of [10] (MaskCNN),

as this is one of the best performing HDR reconstruction meth-
ods evaluated by Hanji et al. [14]. However, instead of forcing
the decoder to operate in HDR domain, we stay in SDR domain.
Since GANs are more challenging to train, we choose more clas-
sical convolutional neural networks (CNNs). Thus, we only use
the generator of [3] (LaMa) as a further model, discarding the
discriminator of the adversarial learning approach and use the
loss function of [1] for both networks. In addition, we adapt the
image inpainting model of [3] to the SDR image reconstruction
task, by using image-dependent and soft clipping masks similar
to [10] instead of randomly generated binary masks. We uti-
lize the network architectures proposed by [10] and [3] and train
them for SDR traffic reconstruction by using corresponding data.
Therefore, we call the networks TrafficMask in case of [10] and
TrafficLaMa in case of the generator of [3].

Soft Clipping Mask
According to [10] we use image-dependent soft clipping

masks with values in [0,1]. We input the masks together with
the image data according to the input and concatenation mecha-
nisms of the networks. The same applies to the inference process
as illustrated in Fig. 1 for TrafficLaMa.

VGG-based Perceptual Loss Function
We utilize the VGG-based perceptual loss from [1] consist-

ing of four types of sub-loss functions: per-pixel loss, perceptual
loss, style-loss and total variation (TV) loss. The high-level fea-
tures for perceptual and style loss are extracted by a pre-trained
VGG-16 [8] network. All types of sub-loss functions are applied
separately to both valid and invalid (clipped) image regions.

HxWx3

Generator
Network
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Figure 1: Clipping mask input of TrafficLaMa

Traffic Dataset

Image Acquisition
We created a new large HDR traffic dataset mainly consist-

ing of nighttime images taken under difficult lighting conditions,
but also including twilight and daytime lighting scenarios. For
the acquisition of the HDR data a Sony Venice camera is used.
The overall HDR dataset contains almost 3 hours of material re-
sulting in a total of 265,000 frames including various camera an-
gles and settings in different locations.

In parallel, we capture a widely time-synchronous SDR traf-
fic dataset using a Pacidal NMHC2327D, which is a low-cost
SDR circuit board network camera actually used for traffic recog-
nition applications, directly set up next to the Sony Venice. In
total, more than 15 minutes of different time-synchronised night-
time images were captured, resulting in more than 22,500 HDR
and SDR image pairs. This dataset can also be of particular inter-
est for tasks dealing with position shift problems, such as pixel-
accurate matching, image alignment, etc. Both datasets will be
published. An example image is shown in Fig. 2.

HDR and SDR Ground Truth Data
Since we follow an SDR reconstruction approach before

classification, the target image to be generated should be a re-
constructed SDR image with high relative contrast and reduced
clipping. Therefore, it is necessary to generate high-quality SDR
data from the HDR without causing a loss of image informa-
tion, apart from the loss of absolute brightness and contrast. For
this, we make use of the dynamic local tone mapping method de-
scribed in [15–17], that performs HDR-to-SDR conversion based
on a histogram guided correction mask, in combination with an
accurate color volume mapping described in [18].

The resulting SDR data is used as GT in the training pro-
cess. Both, the resulting HDR (PQ-ST2084 Rec. 2020) and SDR
(Gamma BT.709 Rec.709) TIFF datasets consisting of 8032 full
HD frames each will be published. Figure 2 shows a correspond-
ing example image.

SDR Image Degradation and Augmentation
For traffic reconstruction, we generate two different train-

ing datasets: The first one is generated semi-automatically by
hard clipping the 8032 images of the GT dataset for highlight
degradation, and then applying a logistic function with different
growth rates for highlight and shadow degradation. The function
is applied to image luminance (Y) and the resulting percentage
change is determined and applied to the individual RGB chan-
nels to achieve a natural clipping behavior of the colors. The real
SDR images acquired with the Pacidal NMHC2327D are used
as a reference for degradation. An example is shown in Fig. 2.
After degradation, a total of 33,028 patch pairs are automatically
extracted from the 8032 full HD pairs using a simple static ex-
traction mechanism.

In addition, a large amount of the acquired traffic data con-
tains smooth, unstructured image regions that are of no relevance.
Therefore, we develop a method for automated degradation and
augmentation to generate relevant and challenging training im-
ages. This method is based on the virtual camera presented
by [9], but we implemented two additional degradation meth-
ods: One based on applying a logistic function for highlight and
shadow clipping, the other based on conventional gamma manip-
ulation for shadow clipping only. Furthermore, we select vehicle
patches via object recognition using YOLOv8m [19, 20]. Once
all vehicles in the image have been extracted, additional areas
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Figure 2: Captured traffic dataset. From left to right: a GT HDR example imagery, a tone-mapped SDR GT, a semi-automatically
degraded (simulated) SDR and the real SDR captured by a real traffic camera (Pacidal NMHC2327D)

with a high level of structure and detail can be extracted based
on the length of image gradients similar to the patch sampling
approach of [10]. In addition, two global patches are extracted
that cover the entire right and left portions of the image.

Clipping is performed randomly in terms of clipping
method and intensity. No other degradations are applied. Com-
mon augmentations are performed. According to this procedure,
we automatically generate a very diverse second dataset consist-
ing of 127,677 patch pairs. Patches extracted in varying sizes are
always scaled to the target patch size using bilinear interpolation.

Experiments

Datasets
For pre-training we use the MIT Places [21] dataset and cre-

ate a subset of 500,000 training patches. This dataset is corrupted
by multiplication with random binary masks generated on-the-fly
during training process.

We also use a film and television (FTV) dataset collected
on our own as well as our new traffic dataset for fine-tuning pur-
poses. The FTV dataset, which originally consisted of mainly
HDR material, is generated according to the approach of dy-
namic tone and color volume mapping [15–18] in combination
with the semi-automatic degradation approach described above,
resulting in 123,532 patch pairs.

These datasets consist of 512x512 pixel patches and are
equally used for training both networks, TrafficMask and Traf-
ficLaMa. For evaluation under real world conditions, we use a
real SDR traffic dataset generated by a traffic detection system
including 300 daytime and 300 nighttime images of various types
provided with accurate GT labels.

Training Details
Since HDR traffic data is only available to a very limited

extent, we use a multi-stage training strategy according to [9]
and [10] by performing pre-training on the image inpainting task
using the adjusted MIT Places dataset. We then perform a first
fine-tuning stage to adapt the learned representation to the SDR
image reconstruction task using the FTV dataset. In the second
fine-tuning stage, we use our new traffic dataset. Both fine-tuning
sets are used in combination with the corresponding soft clipping
masks generated on-the-fly during training. The loss function ac-
cording to [1] is used for all training sessions without exception.
The durations of each training stage can be found in Table 1. The
networks are initialized according to [10] and [3] respectively.
Training is done on an NVIDIA Quadro P5000 GPU with 16GB
VRAM using a batch size of 10 for TrafficMask and a batch size
of 6 for TrafficLaMa in each training stage. Apart from the dif-
ferences in the data, the three training stages and their selected
training parameters do not differ from each other. In each train-
ing stage for both networks, the optimisation is performed using
the Adam optimiser with the default parameters, learning rate is
chosen to be 2×10−4 and gradient clipping is applied.

Model Pre-
Training

Fine-
Tuning 1

Fine-
Tuning 2

Overall

TrafficMask 2:15:56:20 0:10:05:53 0:13:17:19 3:15:19:32
TrafficLaMa-1 1:20:37:39 0:13:20:17 0:17:39:33 3:03:37:29
TrafficLaMa-2 1:20:37:39 0:13:20:17 2:13:54:08 4:23:52:04

Table 1: Duration of the individual training stages in [d:h:m:s]

Classification Model for Evaluation
For evaluation, we classify the real SDR traffic dataset

with and without applying the trained reconstruction networks
to the test dataset. For this purpose, we use a real classifica-
tion model that is in productive use for actual traffic classification
tasks. This model, based on ResNet [22] and EfficientNet [23],
was trained to categorise the nine classes ”car or van”, ”mo-
torcycle”, ”truck”, ”bus”, ”tractor”, ”other motor vehicle”,
”non-determinable motor vehicle”, ”no motor vehicle” and ”un-
known” using a dataset containing approximately 80% daytime
and 20% nighttime images.

Evaluation Metrics
In addition to a simple ground truth score (GTS), averag-

ing the predicted probabilities of the respective GT classes over
all test images, we apply the earth mover’s distance (EMD) [24]
and the Kullback-Leibler divergence (KLD) [25] to the resulting
class probability vectors (distributions) by averaging the result-
ing EMD and KLD values over all test images as well.

Qualitative Results
With our reconstruction approach, we achieve a significant

reduction of light cones in clipped nighttime traffic images, as
shown in Fig. 3. Both, TrafficLaMa and TrafficMask achieve
almost the same significant reduction. However, TrafficMask
based on [10] tends to introduce slight artefacts in headlight
cones, resulting in inaccurate reconstructions. Furthermore, the
overall brightness of both results is visibly reduced compared to
the untreated input, although TrafficMask leads to a stronger re-
duction.

Figure 3: Qualitative results of nighttime SDR traffic reconstruc-
tion. From left to right: untreated inputs captured by Pacidal
traffic camera, results of TrafficMask, results of TrafficLaMa
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Nighttime Classification Results Daytime Classification Results
Model GTS ↑ EMD ↓ KLD ↓ GTS ↑ EMD ↓ KLD ↓
None (untreated) 0.8659 0.01212 1.34451 0.9274 0.00765 0.60011
TrafficMask 0.8867 ▲2.4% 0.01111 ▲8.3% 1.13047 ▲15.9% 0.9196 ▼0.8% 0.00928 ▼21.3% 0.64368▼7.3%
TrafficLaMa-1 0.8926 ▲3.1% 0.01042 ▲14.0% 1.06115 ▲21.1% 0.8458 ▼8.8% 0.01325 ▼73.2% 1.29657▼116.1%
TrafficLaMa-2 0.8938 ▲3.2% 0.00895 ▲26.2% 1.05438 ▲21.6% 0.8872 ▼4.3% 0.00957 ▼25.1% 0.97042▼61.7%

Table 2: Evaluation of the quantitative results of nighttime and daytime classification before and after SDR image reconstruction

Quantitative Results
For quantitative evaluation, we input each of the 300 day

and 300 night test images in three different versions into the clas-
sification model: An untreated one, a version reconstructed by
TrafficMask and one reconstructed by TrafficLaMa-1, resulting
in three class probability vectors per test image. Both reconstruc-
tion networks are fine-tuned using the first semi-automatically
generated traffic dataset. The resulting class probability vec-
tors and the GT class (distribution) are compared using the GTS,
EMD and KLD metrics. The results are shown in Table 2. As can
be seen, all three metrics clearly show a significant improvement
in nighttime classification accuracy achieved by each reconstruc-
tion model. Furthermore, all metrics clearly show that Traffi-
cLaMa outperforms TrafficMask. The same can be observed
with the average discrepancy between day- and nighttime clas-
sification accuracy, as shown in Table 3.

Improvement of classification discrepancy
GTS ↑ EMD ↓ KLD ↓

Discrepancy 0.0615 0.00447 0.7444
TrafficMask 0.0407▲33.8% 0.00346▲22.6% 0.53036▲28.8%
TrafficLaMa-1 0.0348▲43.4% 0.00277▲38.0% 0.46104▲38.1%
TrafficLaMa-2 0.0336▲45.4% 0.00130▲70.9% 0.45427▲39.0%

Table 3: Improvement of the discrepancy between nighttime and
daytime traffic classification

The aim is to reduce this discrepancy using the proposed re-
construction approaches. This goal is clearly achieved by both
network approaches. Since the training was designed to improve
the nighttime and not the daytime classification accuracy, apply-
ing the networks to the daytime images leads to an average degra-
dation of the classification accuracy as shown in Table 2. For the
underlying average test image resolution of 100x90 pixels, the
real-time requirements are achieved with 11 ms inference speed
for TrafficMask and 32 ms for TrafficLaMa using the NVIDIA
Quadro P5000 GPU.

Ablation Study
Since TrafficLaMa outperforms TrafficMask, we conduct

the ablation study exclusively on TrafficLaMa. However, in ad-
dition to the untreated test dataset, we use a version reconstructed
by TrafficLaMa and fine-tuned to the semi-automatically gener-
ated traffic dataset (TrafficLaMa-1), and a version fine-tuned to
the traffic dataset generated by our dataset tool (TrafficLaMa-2).
Each of the three dataset versions are again forwarded into the
classifier. The averaged results for the 300 night- and daytime
images using the metrics are also shown in Table 2 and 3.

Each metric shows that TrafficLaMa-2 outperforms
TrafficLaMa-1, thus leading to a further improvement in classifi-
cation accuracy. Especially through the EMD metric, this trend
becomes particularly clear. This, and the fact that we are able to
generate our data fully automatically in a relatively short time, is
a great advantage considering that the data previously had to be
generated in a very time-consuming and laborious process.

Limitations and Future Work
Although we demonstrate that our approach to SDR image

reconstruction achieves a significant improvement overall, this
is not achieved in every classification case. In some cases, re-
construction even leads to an accuracy degradation. This can be
caused by artefacts in headlight cones, color or by the reduc-
tion of the overall brightness or contrast. Fig. 4 shows a failure
case, which is classified as a car after reconstruction, while the
untreated camera output is correctly classified as a truck.

Figure 4: Failure cases of SDR traffic reconstruction. From left
to right: untreated input captured by Pacidal traffic camera, result
of TrafficMask, result of TrafficLaMa

Various measures could be adopted to improve nighttime
reconstruction and classification, such as including classification
in an end-to-end learning process, using alternative network ap-
proaches such as GAN or transformer architectures, applying
video reconstruction and other classification approaches or fur-
ther using the time-synchronous SDR dataset, which is only used
as a reference for SDR degradation. Instead, this dataset could
be incorporated directly into the training process using applica-
tions such as pixel-accurate matching in order to generate a more
realistic training dataset.

Moreover, daytime classification is also currently reduced
by the reconstruction process. Since the boundary between day
and night is not discrete but rather fuzzy due to dusk and dawn, it
is necessary to determine the point at which an improvement in
classification occurs to make optimum use of the reconstruction.

Conclusion
In this paper, we addressed the challenge of improving the

accuracy of traffic classification at night with low-cost SDR cam-
eras that struggle to capture high-quality images under low-light
conditions. Our data-driven approach combines image inpaint-
ing and HDR reconstruction techniques, which we adapt to SDR
traffic image reconstruction. We presented a large HDR traffic
dataset together with time-synchronised SDR data, which en-
ables effective training of the adapted reconstruction models.
Our method involves the automatic degradation of traffic image
data to generate sophisticated training image pairs.

The experimental results show a significant reduction of
overexposure and a better classification of nighttime traffic with-
out retraining the classifier. While our approach is promising,
it also shows its limitations, such as occasionally degraded clas-
sification accuracy after reconstruction. Future work may focus
on exploring end-to-end learning and alternative network archi-
tectures. The use of time-synchronised datasets and methods for
reconstructing video images could also help to improve the re-
construction and classification of night-time traffic.
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