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Abstract
In the past, several research studies have highlighted the

idea that spectral data produces better tone-accurate images. In-
spired by these studies, this paper introduces the spectral image
color appearance model titled SiCAM, designed for tone map-
ping an HDR hyperspectral radiance cube to a three-channel
LDR image. It is to be noted that SiCAM is inspired by the
iCAM06 image color appearance model, where we adapted the
iCAM06 for hyperspectral input by embedding a spectral adap-
tation transformation, extending the existing chromatic adapta-
tion transform (CAT) method. Additionally, we conducted a psy-
chophysical experiment to evaluate the proposed model and the
effectiveness of having spectral data instead of traditional three-
channel input, for HDR image rendering. The proposed model
is also assessed in comparison to the performance of iCAM06
and the gamma tone mapping approaches. The subjective evalu-
ation indicates that SiCAM either outperformed these methods in
terms of both accurate color appearance and pleasantness or at
least generated comparable results. This also hints that the spec-
tral information might be able to improve not only the acquisition
capabilities but also display rendering. Due to the lack of pub-
licly available HDR spectral datasets, we captured the HDR hy-
perspectral radiance images of four different HDR scenes which
will be made available along with the related source code.

Introduction
High dynamic range (HDR) imaging requires tone-mapping

to scale the large range of luminance that exists in real-world
scenes so that it can be displayed on a standard dynamic range
(SDR) display. Tone mapping attempts to reproduce the orig-
inal HDR scene appearance including contrast, sharpness, and
color while overcoming the output device limitations. Existing
tone mapping algorithms have been proposed only for traditional
three-channel (i.e., RGB) HDR images [1, 8, 10, 19, 22]. Ow-
ing to the fact that having spectral data can produce better color-
accurate images, this paper aims to investigate how the percep-
tual quality and realism in HDR-rendered images are affected
by using HDR hyperspectral data instead of traditional three-
channel HDR images. Moreover, past research studies have also
highlighted that although trichromatic vision serves as the first
stage of color vision processing at the retinal level [5, 13], it
might be possible that the higher levels of the visual pathway
might have some access to spectral data which may complement
trichromatic mechanisms. For instance, the idea of spectral adap-
tation was first introduced by Fairchild [11] which was inspired
by this idea of spectral visual processing. In addition, researchers
are already investigating different aspects of the spectral imag-
ing chain as highlighted in the following paragraph. Hence
foreseeing the future advancements where the whole capture-
to-reproduction pipeline works on spectral processing, our re-
search attempts to incorporate spectral data into the traditional
trichromatic imaging pipeline, where different existing and fu-

ture research studies focused on leveraging spectral processing
can benefit from it. This work also hints that the spectral infor-
mation might be able to improve not only the camera capture
side but also display rendering. It is well known that having mul-
tispectral data can produce better color-accurate images [3, 16],
but whether the same thing can be said for tone mapping too or
not has not been explored yet.

Figure 1. The diagram illustrates the working pipeline of proposed SiCAM

for rendering HDR images.

In the past, only a few studies have attempted to integrate
hyperspectral data to increase the quality and color accuracy of
HDR image reconstruction. M. A. Martinez et al. [20] proposed
a framework for capturing spectral reflectance through HDR hy-
perspectral imaging where the authors used three different fo-
cus settings and for each focus, three different exposure times
were used to obtain the spectral range from 400nm to 1000nm.
Lapray et al. [17] also presented an interesting work that com-
bined HDR and spectral imaging by proposing an HDR spec-
tral imaging pipeline for multispectral filter array cameras which
was intended to estimate relative multi-spectral radiance of HDR
scenes. This has resulted in channel balance correction and noise
reduction. A novel hyperspectral visualization approach based
on HDR was developed by Ertürk et al. [9] which aimed to
retain the high visual quality details while converting hyperspec-
tral images to three-channel color images. Khan, H. A et al. [14]
proposed the idea of multispectral constancy by leveraging Spec-
tral Adaptation Transform (SAT), which allowed the acquisition
of multispectral images independent of illumination.

Most studies, generally, focus on either three-channel HDR
or low dynamic range hyperspectral imaging. Research combin-
ing both HDR and hyperspectral information is limited. Chro-
matic Adaptation transforms (CAT) and perceptual tone map-
ping for HDR hyperspectral image data have not been well ex-
plored. Additionally, finding hyperspectral images with higher
luminance ranges was challenging. Only a few datasets are avail-
able for three-channel HDR images [10, 21, 28, 29] and hyper-
spectral images [4, 7] separately.

Our study addresses these limitations by extending CAT
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to the hyperspectral domain, and processing and evaluating the
effectiveness of hyperspectral HDR radiance data for accurate
HDR image rendering. The main contributions of our study are:

• A framework for HDR hyperspectral data acquisition, post-
processing, and rendering.

• A new adaptation of the iCAM06 color appearance model,
SiCAM, designed for perceptual transformation of HDR
hyperspectral radiance cubes to SDR images (Figure 1).

• The Hyperspectral Adaptation Transform (HAT), extending
CAT processes into the hyperspectral domain.

• Four HDR hyperspectral radiance images.

Data acquisition and processing
The HySpex VNIR-1800 line scanner was used to capture

HDR hyperspectral data, covering a spectral range of 400nm to
1000nm with 186 bands at 3.26nm intervals. The HDR scene in-
cluded a bright LED backlight with a reflective color checker on
one side to create dark regions, and a transmissive (chromogenic
film) color target on the other side to create highlights, as shown
in Figure 2. A neutral density filter was also added to the top
corner of the transmissive color target to create mid-tones. A
halogen lamp partially illuminated the reflective color checker to
raise the luminance of the dark regions, which the hyperspec-
tral camera struggled to capture at its maximum integration time
setting. Only the area within the red borders in Figure 2 was in-
cluded in our HDR scene, which was set up as a flat scene with
low depth due to the camera’s limited depth of field. The detailed

Figure 2. The HDR scene setup is illustrated on the left side, with room

lights turned on for demonstration. Only the area within the red borders is

captured with the hyperspectral camera, as shown in the image on the right.

workflow for HDR hyperspectral data capture and processing is
presented in Figure 3. To properly capture the details of our HDR
scene, two hyperspectral cubes were captured at the exposure of
20ms and 40ms. These short exposure settings were empirically
selected to effectively capture the details residing in the brighter
regions of this scene. The third hyperspectral cube was acquired
at a longer exposure setting of 440ms to capture details of the
darker regions. Additionally, three dark frames were captured
with the lens cap in the dark room, at each identical exposure
settings (i.e. 20ms, 40ms, and 440ms) to perform the dark cur-
rent correction. HySpex VNIR-1800 stores the captured data in
16-bit raw digital numbers. Later, these three hyperspectral cap-
tures were then converted to absolute radiances and individually
stored in 32-bit file float format through the HySpex software
package.

According to the characterization, the hyperspectral cam-
era’s linearity was valid up to 40,000 digital counts, beyond
which data capture became unreliable. To correct this, a look-
up table (LUT) based non-linearity correction [26] was applied.
This involved storing scaling factors in the LUT, representing
the ratio of the ’ideal’ response to the measured response. These
factors corrected the radiance values for digital counts in the non-
linear region, as digital numbers and radiances are directly pro-
portional. The correction was applied to 63,000 digital counts to

Figure 3. The workflow for processing hyperspectral data to calculate

hyperspectral HDR radiance cube.

leave some headroom for extremely non-linear data. Finally, the
three individual hyperspectral radiance images were fused based
on a rectangular-shaped weighting function. The merging with
such weighting helps to discard the pixel values affected by dark
noise and over saturation at the extreme ends of the camera’s
sensitivity range. The resultant estimated HDR hyperspectral ra-
diance cube of the HDR scene was stored in a 32-bit float format,
with RGBE encoding.

Proposed SiCAM model
To accurately render captured HDR hyperspectral radiance

images, we introduce SiCAM, a color appearance model extend-
ing the iCAM06 model [15]. SiCAM retains the original per-
ceptual principles while incorporating a hyperspectral radiance
processing pipeline and a Hyperspectral Adaptation Transform
(HAT) instead of the traditional three-channel CAT. Figure 1 out-
lines the SiCAM workflow, with newly introduced processing
steps discussed in the following subsections:

Bilateral filtering for base layer
The first step in the iCAM06 model is splitting the input

image into base and detail layers, reflecting the human vision
system’s sensitivity to local contrast (detail layer) over global
contrast (base layer). As shown in Figure 1, SiCAM uses
an HDR hyperspectral radiance cube input instead of a three-
channel HDR image, and the goal is to preserve spectral infor-
mation through most of the initial processing stages. In SiCAM,
base layer is obtained by applying the bilateral filter channel-
wise on the input image. The bilateral filtering [6, 25] is a non-
iterative edge preserving Gaussian smoothing as given by equa-
tion 1 where Jsch is the output pixel value at location sch, f is the
function that operates on spatial domain, g is the function which
works on pixel intensities, Ω is the kernel window around the
central pixel and kch is the normalizing function to constraint the
sum of the weights equal to 1. Both f and g are defined as Gaus-
sian in this equation and M represents the number of channels in
the hyperspectral image.

Jsch =
1

kch(sch)
∑

pch∈Ω

f (pch − sch)g
(
Ipch − ISch

)
Ipch (1)

where; kch(sch) = ∑
p∈Ω

f (pch − sch)g
(
Ipch − ISch

)
and, ch ∈ {1,2, . . . ,M}

In iCAM06, bilateral filtering is applied in the XYZ trans-
formation of the input RGB HDR image. In SiCAM, however,
this filter is applied directly to the spectral radiance data for each
channel, as shown in Equation 1. We believe bilateral filtering in
XYZ space can be represented by filtering the spectral informa-
tion directly. Tristimulus values are linear combinations of in-
coming spectral radiances with the CIE’s Color Matching Func-
tion (CMF) [27], as shown in Equation 2 for X , where r is the
spectral radiance and x̄(λ ) is the CMF.
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For uniform surfaces, the bilateral filter acts as a regular
Gaussian smoothing filter. In areas with details, it performs edge-
preserving smoothing by considering both intensity differences
and spatial locations of neighboring pixels. In smoother areas,
the bilateral filter weights, k, are determined solely by spatial lo-
cations, not intensity values. The tristimulus value X can then be
calculated as in Equation 3, demonstrating that applying weight
k on X is equivalent to applying it on the spectral radiance r,
supporting our approach.

X = r(λ1)x̄(λ1)+ r(λ2)x̄(λ2)+ . . .+ r(λn)x̄(λn) (2)

kX = kr(λ1)x̄(λ1)+ kr(λ2)x̄(λ2)+ . . .+ kr(λn)x̄(λn) (3)

For detailed areas, weights are calculated considering both spa-
tial locations and intensity values on edges. Therefore, we apply
the bilateral filter’s edge-preserving weighting function directly
in the spectral domain, as shown in Equation 1. While ideally,
edges should be more strongly preserved for wavelengths where
the HVS is more sensitive, developing a bilateral filter that in-
corporates human contrast sensitivity is beyond the scope of this
work and a potential future research direction.

The base layer results from the spectral bilateral filter, com-
bined with low-pass filter results, is used for chromatic adapta-
tion. The base layer and the input hyperspectral radiance image
are transformed to XYZ tristimulus values to calculate the detail
layer and combine it back with the chromatically adapted and
tone-mapped base layer, as shown in Figure 1.

Hyperspectral Adaptation Transform (HAT)
In place of the three channels CAT, SiCAM uses HAT. The

proposed transform (HAT) as given by equation 4 where J′ is
a 3x1 matrix of tristimulus values, C is Mx3 CIE 2◦ CMF ma-
trix, and B is Mx1 matrix of the spectral radiance of single spa-
tial pixel location, M is the total number of channels of radi-
ance cube, and D is the partial adaptation factor of the illumina-
tion. We define L′

diag as a diagonal matrix given by equation 5,
where the diagonal entries consist of D65(λm)/W (λm) where m
defines the number of wavelength samples in the hyperspectral
cube, D65 is the CIE D65 illuminant spectrum and the W is the
white spectral cube that is calculated by applying low pass fil-
tering on the input spectral radiance cube as depicted in Figure
1.

J′ =CT (DL′
diagB+(1−D)B) (4)

L′
diag =


D65(λ1)
W (λ1)

0 · · · 0

0 D65(λ2)
W (λ2)

· · · 0
...

...
. . .

...
0 0 · · · D65(λm)

W (λm)

 (5)

Chromatic adaptation in SiCAM is achieved through the calcu-
lation of L′

diag using Von Kries scaling, adjusted for scene illu-
mination. Instead of using known scene light source spectra as
in Fairchild’s method [11], we estimate the source white W (λ )
by applying low-pass filtering to the input hyperspectral cube.
Unlike previous methods applied to uniform-colored patches un-
der uniform illumination, our approach handles complex HDR
scenes with non-uniform illumination. Besides adapting to D65
illumination, the HAT converts spectral radiances of each pixel
to tristimulus XYZ values. The remaining steps in SiCAM, in-
cluding tone mapping, follow the same iCAM06 model process-
ings [15].

Figure 4. The comparison of the outputs generated by SiCAM and iCAM06

where the iCAM06’s output has an overall slightly yellowish color cast (also

see figure 5 ) while the reflective color checker is hard to be seen.

Figure 5. The figure illustrates the zoomed-in patches of the outputs gen-

erated by SiCAM(left-sided) and iCAM06(right-sided) where iCAM06 ap-

pears yellowish and less color-accurate (also compare white patches of both

outputs).

SiCAM Results:
Similar to iCAM06, the final output of SiCAM is an 8-bit

tone-mapped sRGB image. SiCAM generates sharper and more
tone accurate rendering of the HDR hyperspectral images. Fig-
ure 4 shows the results, demonstrating better color fidelity with
SiCAM. Figure 5 highlights zoomed-in patches where SiCAM’s
output appears more saturated and visually accurate, with neutral
rendering in areas where iCAM06 appears yellowish. These im-
provements comes from SiCAM’s hyperspectral adaptation mod-
ule, which captures finer spectral details. To further evaluate
SiCAM’s perceptual accuracy, we conducted an experiment, de-
tailed in the following sections.

Psychophysical experiment
To evaluate SiCAM’s performance, we compare its output

perceptually with HDR and SDR renderings, as well as the real
stimuli setup of the HDR scene. Subjective image quality as-
sessment [18,23] is the most reliable method for analyzing HDR
image quality due to the absence of standardized metrics for eval-
uating HDR and hyperspectral images. In our experiment, partic-
ipants rate the quality of HDR and SDR renderings of the HDR
hyperspectral image of the scene on both HDR and LDR dis-
plays, relative to the provided reference real HDR scene.

Observers
The experiment is conducted with 30 observers, all having

normal or corrected vision. Their average age was around 27
years, with most already familiar with image quality assessments
and experienced in psychophysical studies. Clear instructions
were provided to participants, and a pilot experiment preceded
the main one to ensure understanding and accurate rating.
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Figure 6. The experiment was set up in a dark room with three adjoining

partitions to avoid interaction for three different types of stimuli during the

subjective study which includes an original HDR scene, an HDR image dis-

played on an HDR monitor, and tone-mapped images which were displayed

on an LDR monitor.

Experimental setup
As shown in Figure 6, the experiment was conducted in a

dark room with three different partitions containing: a physical
HDR scene, an HDR display, and an LDR display. The HDR
image was rendered on PVM-X2400 24-inch 4K HDR Sony dis-
play, with resolution of 1920-by-1080 pixels and calibrated to
REC.2020 PQ mode. Meanwhile, the tone-mapped images were
shown to observers on a 24-inch, DELL LDR display with a
pixel resolution of 1920-by-1080 and calibrated to sRGB color
space. The observers were positioned at a distance of roughly
100cm from the LDR screen and 160cm from the HDR screen.
At these distances, each stimulus was subtended approximately
14.25 degrees of visual angle. It is important to note that the
white points and luminance ranges of these three types of stim-
ulus (i.e. HDR scene, HDR display, and LDR display) differed
significantly. Therefore, participants were required to undergo a
minimum adaptation period of 60 seconds for each partition as
illustrated in figure 6. The participants were allowed to either
complete the experiment in a single sitting based on their mem-
ory or they had the option to revisit the original HDR scene at
any time during the experiment.

Test stimuli
The HDR hyperspectral radiance cube contained 186 bands

spanning 400nm to 1000nm, with a peak luminance exceeding
4000 cd/m2. However, the visible spectral range of CIE’s 1931
2◦ CMF is from 380nm to 780nm. Consequently, the input cube
was clipped to 119 bands within this range. Notably, both the
HDR and SDR displays used in the experiment have peak lu-
minances of 1000 cd/m2 and 230 cd/m2 respectively, requir-
ing a tone mapping process even for HDR rendering, discussed
in the following subsection. In total, seven tone-mapped im-
ages of the original HDR hyperspectral radiance capture were
utilized, generated using three methods: iCAM06, SiCAM, and
gamma tone mapping as illustrated in Figure 7. SiCAM oper-
ates on an HDR hyperspectral radiance cube, while iCAM06 and
gamma tone mapping require a three-channel HDR image input.
Thus, a display-referred HDR rendering pipeline, discussed in
the following subsection, is used to convert the original HDR
hyperspectral radiance image to a three-channel HDR image in-
put for iCAM06 and gamma approaches. As depicted in Fig-
ure 7, more test images were created by reducing spectral bands

Figure 7. The figure illustrates that seven tone-mapped images were

generated as shown above which were used as test stimuli during the psy-

chophysical experiment.

through Gaussian spectral binning, sampling the 119 bands to 10
and 39 bands chosen empirically. These images from the reduced
hyperspectral cube were included to explore the number of bands
necessary for better tone-mapped rendering. All test images were
displayed against a gray background with luminance equivalent
to 20% of the adapting white point of the respective displays.

Display referred HDR rendering pipeline
To convert the hyperspectral radiance capture of the real

HDR scene into a three-channel RGB HDR image with a max-
imum luminance of 1000 cd/m2, several transformation steps
were followed. Initially, the dot product of hyperspectral radi-
ances with CIE’s 1931 2◦ CMF was calculated to estimate three-
channel tristimulus values. These were then converted to ab-
solute luminances in cd/m2 by scaling them with a 683 lm/W
constant factor [27]. Our HDR scene’s maximum luminance,
measured at approximately 4000 cd/m2 using a CS2000A spec-
troradiometer, exceeded the HDR display’s capability of 1000
cd/m2. Thus, tone mapping was necessary to compress the
scene’s luminance within the HDR display’s limits, calibrated
to REC2020 PQ mode. A gamma of 1.3 was applied to compress
the dynamic range of the absolute HDR hyperspectral image to
fit within the HDR screen’s capabilities. Additionally, we charac-
terized the HDR display to obtain the inverse colorimetric trans-
formation matrix for converting absolute XYZ to linear device
dependent RGB values [2]. These converted linear RGB values
were then rendered linearly to the PQ mode of the display using
the MATLAB Psychtoolbox REC2020 and perceptual quantizer
(PQ) encoding-based rendering module [12].

Procedure
In this experiment, three stimuli were used: the original

HDR scene, an HDR image displayed on the HDR monitor
screen (rendered as described above), and seven tone-mapped
LDR images shown on the SDR monitor screen. The experi-
ment assessed both observer preference (pleasantness) and color
fidelity (faithful reproduction of original HDR scene colors) of
the rendered images. Observers rated each of the seven test SDR
images on a scale of 0 to 100, with 100 indicating excellent repro-
duction and 0 indicating the worst. These images were displayed
sequentially, with observers comparing each with the physical
HDR scene as a reference. Additionally, observers compared the
HDR image rendered on an HDR display with the physical HDR
scene, evaluating overall contrast, colorfulness, sharpness, and
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Source DF SS MS F-Stat P-Value
Between Groups(CA) 6 20954 3492.35 5.67 0.00002
Within Groups(CA) 161 99130.80 515.71
Between Groups(CP) 63.16 19.349 3.869 13.338 0.0000
Within Groups(CP) 61.28 23.055 4.611

Table 1. ANOVA for Color Appearance(CA) and Color Pleas-
antness(CP) Rating Scores.

naturalness.

Experimental results
Figures 8 and 9 show the observers’ ratings of color fidelity

and pleasantness, while Figure 10 represents ratings for individ-
ual attributes of HDR rendering on the HDR display. For color

Figure 8. Subjective scores for color appearance.

fidelity (Figure 8), observers preferred SiCAM over iCAM06 and
gamma tone mapping. The box plot shows ratings for how ac-
curately each method reproduced the physical HDR scene, with
the original HDR scene as the reference. SiCAM consistently
outperformed the other methods, with gamma TMO receiving
the lowest scores. iCAM06 mostly showed comparable perfor-
mance to SiCAM. Interestingly, SiCAM with 39 bands scored
lower than SiCAM with 10 bands and the full spectrum, possi-
bly due to the band selection method, suggesting room for opti-
mization in future research. For pleasantness (Figure 9), both
iCAM06 and SiCAM produced similar results, while gamma
TMO again scored significantly lower. The comparable per-
formance of iCAM06 with SiCAM is probably due to the fact
that the yellowish color cast and nonuniform patch renderings in
iCAM06’s output (Figure 5) were likely less noticeable to the ob-
servers since images were shown to them one at a time without
any side-by-side comparison.

Figure 9. Subjective scores for pleasantness

To assess the variability in the observers’ ratings, we con-
ducted an ANOVA analysis [24]. The results, summarized in

Table 1, show significant differences in both color appearance
and pleasantness ratings, with F-stat values and very low p-
values (0.00002 for color appearance and 0.0000 for pleasant-
ness). These results, along with the box plots in Figures 8 and
9, indicate a significant difference between the scores for SDR
images generated using gamma tone mapping and SiCAM. How-
ever, the difference between iCAM06 and SiCAM scores, partic-
ularly for pleasantness, is less noticeable.

Figure 10. The rating scores revealed that the sharpness received higher

ratings compared to other attributes, while ratings for naturalness varied

between 65% and 75%. Colorfulness was slightly better rated than image

contrast as depicted from the given plot.

In addition, the rating scores for the individual attributes
of the HDR rendering on HDR display are provided in Figure
10. From the evaluated attributes, image sharpness was given the
highest rating, while the rating scores for naturalness varied be-
tween 65% to 75%. Furthermore, colorfulness obtained a slightly
higher rating, compared to image contrast. Generally, it can be
inferred that the overall perceived quality of the HDR image was
quite close to that of the physical HDR scene.

Conclusion:
In this study, we investigated how the perceptual quality and

realism in HDR-rendered images are affected by using HDR hy-
perspectral capture of an HDR scene instead of traditional three-
channel HDR imaging. We proposed the spectral image color
appearance model, SiCAM, designed to perceptually render an
HDR hyperspectral radiance images. Although SiCAM is in-
spired by the latest iCAM06 HDR image rendering model, it sig-
nificantly extended it to use hyperspectral data and Hyperspec-
tral Adaptation Transform(HAT). The experimental perceptual
evaluation results as well as our observations suggest that the
proposed SiCAM model generated better or at least compara-
ble results with iCAM06. SiCAM significantly outperformed the
conventional gamma based tone mapping rendering approaches.
The performance of SiCAM model can be further improved by
incorporating more optimal band selection method, perceptual
bilateral filtering, and other adjustments such as color saturation
compensation and better tone mapping function. Hyperspectral
data alone isn’t enough for better HDR rendering; an efficient
and perceptually accurate processing model is equally important.
We also hope the four HDR hyperspectral images we will make
openly available will benefit the HDR and hyperspectral imaging
community.
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vis/nir hyperspectral imaging and its application to works
of art. Optics Express, 27(8):11323–11338, 2019.

[21] Manish Narwaria, Matthieu Perreira Da Silva, Patrick
Le Callet, and Romuald Pepion. Tone mapping-based
high-dynamic-range image compression: study of opti-
mization criterion and perceptual quality. Optical Engi-
neering, 52(10):102008–102008, 2013.

[22] Erik Reinhard, Wolfgang Heidrich, Paul Debevec, Sumanta
Pattanaik, Greg Ward, and Karol Myszkowski. High dy-
namic range imaging: acquisition, display, and image-
based lighting. Morgan Kaufmann, 2010.

[23] David M Rouse, Romuald Pépion, Patrick Le Callet, and
Sheila S Hemami. Tradeoffs in subjective testing methods
for image and video quality assessment. In Human Vision
and Electronic Imaging XV, volume 7527, pages 108–118.
SPIE, 2010.

[24] Lars St, Svante Wold, et al. Analysis of variance
(anova). Chemometrics and intelligent laboratory systems,
6(4):259–272, 1989.

[25] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for
gray and color images. In Sixth international conference on
computer vision (IEEE Cat. No. 98CH36271), pages 839–
846. IEEE, 1998.

[26] Giorgio Trumpy, Casper Find Andersen, Ivar Farup, and
Omar Elezabi. Mapping quantitative observer metamerism
of displays. Journal of Imaging, 9(10):227.

[27] Günther Wyszecki and Walter Stanley Stiles. Color sci-
ence: concepts and methods, quantitative data and formu-
lae, volume 40. John wiley & sons, 2000.

[28] Feng Xiao, Jeffrey M DiCarlo, Peter B Catrysse, and
Brian A Wandell. High dynamic range imaging of natu-
ral scenes. In Color and imaging conference, volume 10,
pages 337–342. Society of Imaging Science and Technol-
ogy, 2002.

[29] Emin Zerman, Giuseppe Valenzise, and Frederic Dufaux.
An extensive performance evaluation of full-reference hdr
image quality metrics. Quality and User Experience, 2:1–
16, 2017.

London Imaging Meeting 2024 83




