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Abstract 
Point clouds generated from 3D scans of part surfaces 

consist of discrete points, some of which may be outliers. 

Filtering techniques to remove these outliers from point clouds 

frequently require a “guess and check” method to determine 

proper filter parameters. This paper presents two novel 

approaches to automatically determine proper filter parameters 

using the relationships between point cloud outlier removal, 

principal component variance, and the average nearest 

neighbor distance. Two post-processing workflows were 

developed that reduce outlier frequency in point clouds using 

these relationships. These post-processing workflows were 

applied to point clouds with artificially generated noise and 

outliers, as well as a real-world point cloud. Analysis of the 

results showed the approaches effectively reduced outlier 

frequency while preserving the ground truth surface, without 

requiring user input. 

Introduction 
3D scans are often stored as point clouds, which consist of 

discrete 3D points irregularly sampled from continuous 

surfaces [1]. While advancements have been made in acquiring 

and storing point cloud data, there are still several issues that 

exist with their effective utilization in many applications. One 

of the most prominent issues is the existence of outliers in a 

point cloud, resulting from overexposure, reflective surfaces, 

and user error [2], [3].  

Outlier points are false measurements that do not belong to 

the scanned surface, have geometrical discontinuities, and sharp 

features [4]. Figure 1 shows a point cloud of an automobile 

with many outliers, shown in red.  

Figure 1: A point cloud with many outliers, shown in red 

A scanned point cloud can contain both outliers and noise, 

caused by different sources. The difference between the two is 

that noise refers to random variations in the positional data of a 

scanned point, while outliers deviate significantly from the 

expected distribution of the scanned data [3]. 

Outliers create problems during point cloud registration, 

meshing, and normal estimation [5], [6], [7]. To address the 

challenges outliers create for point cloud applications, several 

open-source application programming interfaces (APIs) have 

been developed from various research projects such as the Point 

Cloud Library [8], MeshLab [9], Open3D [10], and cilantro 

[11]. These APIs include filters that are intended to remove 

outliers without affecting the scanned surface data (i.e. the 

ground truth surface) in point clouds.  

To effectively use a filter provided from one of these APIs, 

a user must determine appropriate filtration parameters so that 

the filtered point cloud is an accurate representation of the 

scanned object. This process requires a user to guess what 

parameters may create a point cloud that contains fewer outliers 

while maintaining “good” points from the ground truth surface, 

and then adjust their guess based on subjective visualization of 

the resulting filtered point cloud.  

Newly developed APIs provide tools to filter point clouds, 

but they do not address issues related to a user’s ability to select 

the appropriate filtration parameters to remove outliers. Many 

outlier filtration methods have been researched, traditionally 

requiring input parameters provided by an expert user. The 

performance of these filters is heavily dependent on the 

selection of suitable parameters.  

Background 

Post-processing Software Advances 
Post-processing to improve the quality of the point cloud 

representation of the scanned object can be very time 

consuming. Raw point clouds (i.e., point clouds that haven’t 

been post-processed) often require a combination of noise 

reduction [12], file size reduction [13], and 3D mesh creation 

[14]. The Point Cloud Library, commonly known as PCL, [8] 

has made concerted efforts to help users choose point cloud 

post-processing techniques.  

Along with these post-processing techniques, PCL also 

implements many statistical metrics that can be used to describe 

aspects of a point cloud. These include metrics like bounding 

box size and location of a point cloud’s centroid. One of these 

metrics is known as the nearest neighbor average distance. This 

metric samples one point, measures the Euclidean distance to 

its nearest neighbor in the point cloud, repeats this process for 

every point in the point cloud, and averages all these distances. 

The nearest neighbor average distance is then calculated using 

Equation 1, where 𝑁𝑁𝐷𝑃
̅̅ ̅̅ ̅̅ ̅̅  represents the nearest neighbor 

average distance of a point cloud P and |𝑃| represents the 

number of points in the point cloud P. 

 

𝑁𝑁𝐷𝑃
̅̅ ̅̅ ̅̅ ̅̅ =

∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑃𝑖  𝑡𝑜 𝑃𝑖
′𝑠

|𝑃|
𝑖=1  𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

|𝑃|
 (1) 

Another statistical analysis method implemented in PCL is 

principal component analysis (PCA). This algorithm, which is 
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well established in data science, can be used on a point cloud to 

find three principal components, along with the percentage of 

variance accounted for by each component. PCA is used in 

point cloud research to align point clouds along their principal 

component axes [15], [16].  

While PCL provides useful point cloud post-processing 

tools, competitors have also worked to address the need to help 

users choose appropriate post-processing tool(s). In 2018, one 

of these competitors, Open3D [17], was published to make 

point cloud post-processing tools easier to use.  

Statistical Outlier Removal Filter 
Open3D includes a statistical outlier removal filter that 

requires two input arguments called “number of neighbors” and 

“standard ratio”.  The filter removes all points whose average 

distance to the nearest “number of neighbors” lies more than 

“standard ratio” standard deviations outside the average for the 

entire point cloud. This process can be defined as shown in 

Equation 2. In this equation, 𝑃𝑛 represents the raw, unfiltered 

cloud, 𝑃𝑖 represents any single point in 𝑃𝑛 and 𝑃𝑓 represents the 

resulting filtered point cloud. In addition, x represents the value 

given for the “number of neighbors” argument, and y represents 

the value given for the “standard ratio” argument. 

 

Pf = {Pn| The average distance of Pi to its nearest x neighbors    

 is within y standard deviations of the overall distribution} 
(2) 

 

This filter has been shown to reduce the number of outliers 

in a point cloud, but only when used with the correct 

parameters [18]. Finding these correct parameters requires an 

iterative approach, in which a user must repeatedly guess filter 

parameters until satisfactory filtration results are achieved.  

Point Cloud Databases 
Parallel to the development of these advances in post-

processing, several publicly available point cloud databases 

were created [19], [20]. One of these databases, the MVP Point 

Cloud Database, was created to provide a benchmark for the 

point cloud community to use for various applications, 

including point cloud completion, point cloud registration, and 

other standard processes [21]. This database consists of 2,400 

point clouds of varying geometry, each with 2,048 uniformly 

sampled points across the point cloud. An example of a point 

cloud from this database is shown in Figure 2. 

Figure 2: A point cloud of a ship from the MVP point cloud database 

In addition to the MVP database, a database of real-world 

point clouds was introduced by Wolff et al. [22]. This database 

contains several real-world point clouds collected using 

photogrammetry. These point clouds include significant noise 

and outliers. Both the MVP database and Wolff’s database were 

used to evaluate the proposed filtration methods. 

Point Cloud Comparison Metrics 
Research groups have created several metrics to 

quantitatively measure the visual difference between two point 

clouds [23], [24]. Chamfer distance is a numerical measurement 

for the visual difference between two points clouds (e.g., two 

point clouds “A” and “B”) [25], [21]. For each point in point 

cloud A, a corresponding point in point cloud B is found, such 

that the Euclidean distance between the two points is a 

minimum. This distance is then squared and added together, for 

every point in point cloud A. This process is repeated for point 

cloud B, and finally, the two sums are added together.  

Even with all the improvements in point cloud processing, 

there are still areas of potential improvement that need to be 

addressed, including point cloud filters whose filtration 

performance does not rely on user input and standardized 

databases for evaluation of new methods. 

Methodology 
This section describes the approaches used to filter point 

clouds without requiring user input and the methods used to 

evaluate the filter performance. For each artificial point cloud 

that was filtered using these automatic approaches, a percentage 

error was found between the automatically filtered point cloud 

and an estimate of the best filtration results possible. The 

approaches used to automatically find acceptable point cloud 

filtration parameters developed by the authors used the Open3D 

statistical outlier removal filter.  

Automatic Filter Parameter Estimation 
The approaches to determine acceptable parameters for 

Open3D’s statistical outlier removal filter plotted the statistical 

outlier removal filter’s parameters against two metrics of the 

resulting filtered point cloud. One of these metrics was the 

percentage of the filtered point cloud’s variance accounted for 

by the principal component with the least variance. When PCA 

is performed on a dataset, the output is an uncorrelated set of 

principal components. After finding these components, the one 

that accounted for the smallest percentage of variance in the 

cloud was isolated. This percentage, called the “principal 

component least variance ratio” was then plotted against the 

two parameters of the statistical outlier removal filter, using 

matplotlib’s 3D plot feature [26].  

For the surface created, the minimum was found, and the 

“number of neighbors” and “standard ratio” associated with that 

minimum were used as parameters for Open3D’s statistical 

outlier removal filter. This filter was used to produce a final, 

filtered point cloud by using these filtration parameters at this 

minimum location to clean the original, unfiltered point cloud.  

The second metric investigated in this manner was the 

nearest neighbor average distance. A function was created to 

plot the statistical outlier removal filter parameters against this 

average distance. This surface was then plotted using the same 

tools and techniques to plot the principal component least 

variance ratio surface described above. An example of this 
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surface is shown in Figure 3. In this figure, the surface 

minimum is indicated by a red star. Again, the parameters 

associated with the minimum of this surface were used to filter 

the original, unfiltered point cloud. 

Figure 3: An example of the nearest neighbor average distance surface 

created in this process, with the surface minimum indicated by a red star 

Synthetic Noise and Outlier Generation 
To evaluate the automated point cloud filtration 

approaches proposed using the MVP point cloud database, a 

point cloud from the MVP Point Cloud Database was corrupted 

using an algorithm similar to past research [27]. This corruption 

algorithm randomly selected a percentage of points in the MVP 

point cloud, equal to the corruption percent parameter, and 

moved these points in a random direction. The extent of this 

movement was determined using a normal distribution, whose 

mean was zero and whose standard deviation, σ, was found by 

multiplying the length of the MVP point cloud’s 3D diagonal 

by some predetermined magnitude multiplier parameter.  

Multiple values for the magnitude multiplier and 

corruption percentage parameters were used and presented in 

the results section. An image of a point cloud with noise and 

outliers generated through this process, (referred to as a 

“corrupted cloud”), can be seen in Figure 4. For this figure, a 

magnitude multiplier and corruption percentage argument of 

0.05, and 0.2 respectively were used to generate outliers. 

 

Figure 4: A corrupted point cloud generated from the MVP database with 

generated noise and outliers shown in red 

Synthetic Filter Performance Measurement 
To quantitatively measure the performance of these 

automated approaches when used on synthetic point clouds, a 

metric was created to assess how well these approaches filtered 

a corrupted MVP point cloud. This metric, called the summary 

statistic, was defined using Equations 3-7.  

 

RMSE =

√
Σ𝑝𝑖

′∈𝑃𝑓𝑝𝑖∈𝑃𝑜
(distance between 𝑝𝑖 and 𝑝𝑖′)

2

|𝑃𝑓|

nearest neighbor average distance in original cloud
 

(3) 

Precision = 
|noise and outlier points removed by filter|

|points removed by filter|
*100 (4) 

Recall =  
|noise and outlier points removed by filter|

|corrupted points in original corrupted point cloud|
∗ 100 (5) 

Accuracy = 
|corrupted points removed by filter|+|correct points left|

|points in original point cloud|
*100 (6) 

Summary statistic = 
avg(precision, recall, accuracy)

RMSE
 (7) 

 

The definition of RMSE, precision, recall, and accuracy in 

the above equations are derived from past research [28], [29]. 

In the RMSE equation (3), 𝑃𝑓 and |𝑃𝑓| represent the filtered 

MVP point cloud and the number of points in the point cloud, 

respectively. Additionally, 𝑃𝑜 represents the ground truth MVP 

point cloud. If a point 𝑝𝑖′ ∉ 𝑃𝑓, but 𝑝𝑖 ∈ 𝑝𝑜, because of 𝑝𝑖 being 

filtered out, that index i is not used in the RMSE calculation. 

To assess filter performance on synthetically corrupted 

point clouds, the summary statistic was computed twice. Once 

for the automatically filtered MVP point cloud and the second 

for a point cloud using the best possible parameters for the 

statistical outlier removal filter. Then, the percentage error 

between these two summary statistic values was computed. 

These best possible parameters were found by selecting the 

filtration parameters that resulted in a maximum for the 

summary statistic. 

The chamfer distance between the ground truth point cloud 

and a filtered point cloud was also used as a performance 

measurement. In this case, the best possible parameters were 

found using the minimum of the chamfer distance. 

Evaluation of Automatic Parameter Selection 
 The proposed approaches were evaluated by first 

corrupting a random MVP point cloud using the process 

described in the Synthetic Noise and Outlier Generation 

section. This corrupted point cloud was then filtered using the 

minimum nearest neighbor average distance approach or the 

minimum principal component least variance ratio approach.  

  These filtered point clouds were compared to an optimally 

filtered point cloud, following the summary statistic and 

chamfer distance metrics described in the Automatic Filter 

Performance Measurement section. This process was repeated 

ten times. The percentage errors were averaged, and the process 

was repeated for 49 additional MVP point clouds. These 50 

average errors were again averaged together. Analysis of these 

point clouds was repeated five separate times with different 

amounts and magnitudes of corruption. 

Finally, when evaluating filtration performance on the 

real-world point cloud that was filtered using these methods, 

the summary statistic and the chamfer distance evaluation 

methods could not be used. These methods require knowledge 

of a point cloud’s ground truth surface, which was not available 

for the real-world point cloud. As a result, the filtration of the 
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real-world point cloud was evaluated from a visual perspective 

as well as quantitatively, by comparing the percentage of points 

removed by the minimum nearest neighbor average distance 

approach, compared to the percentage of points removed by the 

filter presented by Wolff et al. [22]. 

Results 
Table 1 shows results from the MVP point cloud 

evaluation process described in the Evaluation of Automatic 

Parameter Selection section. Each row shows the average 

results of 500 experimental runs, using 50 point clouds. In total 

the results from 2,500 experimental runs are shown, using the 

minimum nearest neighbor average distance approach. 

Table 1: Filtration results from 50 randomly sampled MVP 

Point Cloud 

Corruption 

Percentage 

Magnitude 

Multiplier 

Average 

Summary 

Statistic 

Error 

Summary 

Statistic 

Standard 

Deviation 

Average 

Chamfer 

Distance 

Error 

Chamfer 

Distance 

Standard 

Deviation 

30% .05 4.17% 2.06% 30.86% 25.32% 

20% .1 6.12% 3.00% 22.22% 40.64% 

20% .05 8.17% 3.65% 70.96% 42.79% 

20% .01 7.66% 3.76% 214.17% 115.74% 

10% .05 15.07% 5.21% 249.37% 154.88% 

This automatic approach had high error when used on 

point clouds with a small amount and magnitude of outliers. As 

the magnitude and number of outliers increased in a corrupted 

MVP point cloud, the average percentage error dropped. 

Additionally, the error percentage in the summary statistic 

generally followed the direction of the error in the chamfer 

distance, but the amount of change between different levels of 

noise was greater for the chamfer distance error percentage.  

When performing this experimental process using the 

minimum principal component least variance ratio approach, 

the same trends appeared. That is, higher corruption magnitudes 

and percentages resulted in better performance. However, the 

percentage errors and standard deviations were much higher 

when using the minimum principal component least variance 

ratio approach.  

Figures 5 and 6 show a point cloud being filtered using the 

minimum nearest neighbor average distance approach. When 

filtering this point cloud, a chamfer distance error of 80% was 

recorded. This demonstrates that, although high chamfer 

distance and summary statistic errors were recorded when using 

these automated approaches, the filtered point clouds still 

contained fewer outliers, while maintaining the ground truth 

surface. 

  

Figure 5: Corrupted MVP point 

cloud to be filtered using the 

minimum nearest neighbor 

average distance approach 

Figure 6: Filtered MVP point 

cloud, filtered using the minimum 

nearest neighbor average distance 

approach 

These automatic outlier filtration approaches were also 

tested on a real world point cloud presented by Wolff et al. 

[22]. Figures 7 and 8 show the real-world point cloud before 

and after filtration using the proposed minimum nearest 

neighbor average distance approach.  

 

 

 

Figure 7: Original real-world point 

cloud 

Figure 8: Real-world point cloud 

filtered with minimum nearest 

neighbor average distance 

approach 

  

 From a qualitative perspective, the results of this automatic 

filtration using the minimum nearest neighbor average distance 

are comparable to the filter presented by Wolff et al. [22]. 

Conversely, when using the minimum principal component 

least variance ratio approach, many outliers were left in the 

filtered point cloud. Quantitatively, the minimum nearest 

neighbor average distance approach removed 28.08% of points 

in the original point cloud, compared to the 69.56% of points 

removed by the filter presented by Wolff et al. [22]. 

 This difference in percentages is due to these proposed 

approaches not effectively removing surface level noise, unlike 

Wolff’s filter. However, Wolff’s filter additionally requires 

information regarding the color of all points in a point cloud. A 

user does not always have this information, in which case, these 

proposed approaches would provide a good alternative method 

to effectively remove outliers from the point cloud. 

Additionally, it is possible that Wolff’s filter was overly 

aggressive, removing more points than necessary. 

Conclusions & Future Work 
This paper presented automatic methods for determining 

appropriate parameters for Open3D’s statistical outlier removal 

filter. The proposed approaches use relationships between a 

point cloud’s nearest neighbor average distance and principal 

component least variance ratio. The effectiveness of these 

approaches was investigated using the MVP point cloud 

database and a real-world point cloud with noise and outliers. 

Through this investigation, it was concluded that these 

approaches tend to work better as the quantity and magnitude of 

outliers present in a corrupted point cloud increase. These 

findings were supported by a wide array of tests performed on 

these filtration techniques. Additionally, it was concluded that 

these approaches do not effectively remove surface level noise. 

This research presents potential for future work. Plotting a 

full grid of points every time a point cloud needs to be filtered 

is a computationally intensive task. These approaches could 

instead be redesigned to use a gradient descent technique.  
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