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Abstract
With the increasing popularity across various scientific re-

search domains, virtual reality serves as a powerful tool for con-
ducting colour science experiments due to its capability to present
naturalistic scenes under controlled conditions. In this paper, a
systematic approach for characterising the colorimetric profile of
a head mounted display is proposed. First, a commercially avail-
able head mounted display, namely the Meta Quest 2, was char-
acterised by aid of a colorimetric luminance camera. Afterwards,
the suitability of four different models (Look-up Table, Polynomial
Regression, Artificial Neural Network and Gain Gamma Offset)
to predict the colorimetric features of the head mounted display
was investigated.

Introduction
Virtual Reality (VR) has emerged as an innovative technol-

ogy, finding its use in diverse fields such as healthcare [1, 2, 3],
education [4, 5] and psychology [6, 7, 8]. Its capacity to create
immersive, controlled environments has made it invaluable for
conducting scientific experiments [6, 9], particularly in colour
science. In this context, the fidelity of colour reproduction in VR
environments, facilitated by Head Mounted Displays (HMDs), is
critical for ensuring the realism and accuracy of visual stimuli.
VR HMDs are used to present stimuli to participants, necessitating
precise colour reproduction to maintain experimental accuracy.
Such experiments underscore the importance of establishing pre-
cise relationships between device settings and device-independent
photometric and colorimetric attributes [6, 10, 11].

While past research about display characterisation has fo-
cused on the colour characterisation of conventional displays such
as Liquid Crystal Displays [12, 13], research regarding VR HMDs
is still ongoing. Early HMDs were less colorimetrically accurate
and had problems, for instance, producing an output that has blue
distortion. Current HMDs perform much better, as evidenced by
experiments. [14, 15, 16].

Modern displays can be prone to additivity issues though,
which arise when the sum of different channel outputs does not
match that of the combined channel output. Therefore, basic char-
acterisation models may not be suitable for HMD characterisation
[17, 18]. Prior to the presented work, a study was conducted that
systematically compared the colorimetric performance of various
colour characterisation models through simulation [19]. The cur-
rent work transcends the domain of simulations and introduces
field experiments with a commercially available HMD, namely
the Meta Quest 2. A pipeline is designed to perform a colour
characterisation of the HMD. First, the stability of the HMD is
measured, followed by testing the linearity and additivity. After
these basic tests, four carefully chosen characterisation models
are trained on selected training points spread across the chromatic-
ity gamut of the HMD. Recognising the inherent challenges in
HMDs, such as colour channel interactions and additivity issues,
empirical data from the headset is investigated and rigorously

evaluated. By doing so, the aim is to validate the effectiveness
of the characterisation models in practical, real-world scenarios
and to present a proper method to characterise an HMD. The
presented method can easily be generalised for profiling and char-
acterising HMDs, and also makes it easy to compare different
devices. The results and discussions provided in this paper present
the colorimetric characteristics of Meta Quest 2 HMD and shed
light on the performances of each model, allowing one to make
informed decisions when choosing the most suitable colour char-
acterisation method for their specific applications in VR and other
high-fidelity settings. The culmination of these efforts aims to
establish a robust framework for precise colorimetric characteri-
sation, address the limitations of existing models, choose a proper
colour characterisation model, and facilitate more accurate colour
rendering in scientific experiments.

Setup
An Alienware m15 laptop (16 GB RAM, 64-bit Windows

10 Enterprise operating system, Intel® Core™ i7-8750H CPU
operating at 2.2 GHz, NVIDIA GeForce GTX 1060 graphics card
with 6 GB Video RAM) was used in the study. The Alienware
laptop and the Meta Quest 2 HMD were connected by the Oculus
Link cable in conjunction with the Oculus desktop app, which is
the primary software interface for managing the headset.

Methodology
HMD characterisation pipeline
Stability

The stability assessment of the HMD followed a structured
method. Initially, a fully black image was displayed for 30 min-
utes, after which four different images (Red, Green, Blue, and
White) were successively displayed, for 120 minutes each. Be-
tween the four presented images, the black screen was shown for
30 minutes each time.

A colorimetric camera (TechnoTeam LMK-6-12 Colour),
incorporating a high-resolution image sensor of 4078 by 2998 pix-
els and measuring in CIE XYZ colour space (1931 2◦ observer),
was used for HMD characterisation.

For each of the four images, colorimetric luminance images
were continuously captured and analysed. Stability was assessed
by calculating the relative difference between the maximum and
minimum luminance channel outputs recorded within a fifteen
minutes timeframe. The HMD was assessed as stable when the
calculated relative difference is less than 0.5% of the minimum
observed reading in the time window [20].

Linearity and Additivity
The linear relationship between driver values and displayed

luminance was checked for each channel (R,G,B) of the Meta
Quest 2 HMD. To this end, the luminance of a set of input images
was measured. The input images included the R, G and B channels
set to values encompassing the entire scale from 0 to 255, with an
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increment of 6. Additivity assessment was conducted through the
comparison of the sum of tristimulus values obtained from sepa-
rately displayed RGB colour channels with the tristimulus values
derived from the corresponding achromatic stimulus. Initially,
images showcasing maximum intensity in the red, green and blue
channels were captured. The mean XY Z values were computed
from the region of interest (ROI), comprising the top 5 percentile
pixels in each luminance image. Subsequently, an image featuring
the maximum white stimulus (R = G = B = 255) was presented.
To assess additivity, the cumulative XY Z values of the individual
colour channels were compared with the XY Z values of the white
stimulus. In an ideal scenario, the sum of the luminance values
for the red, green, and blue channels should equal the luminance
value obtained for the corresponding white image. The same pro-
cedure was repeated for all other equal R/G/B combinations, set
to the same value ranging between 0 and 255, with an increment
of 6.

Assessment of prediction models
In a prior study by the authors [19], the suitability of matrix-

based models (e.g., Gain Offset Gamma Offset (GOGO), Gain
Gamma Offset (GGO), Gain Offset Gamma (GOG)), and other
models like Polynomial Regression (POR), Look-up Table (LUT)
and Artificial Neural Network (ANN)-based models were assessed
using simulation data. Findings revealed that POR, LUT and
ANN-based models outperformed the other alternatives, achieving
a CIELAB colour difference (∆E*

ab) of less than 1 between input
and predicted colours. Consequently, these three models were
selected for testing the Meta Quest 2 HMD. For comparison, a
simple GGO model was also included.

Colorimetric accuracy of each of the four different models
was tested with the following procedure. First, all models were
trained on a dataset of 630 images. This dataset includes a series
of images that spans the three individual channels, as well as
images formed from combinations of two and all three channels,
resulting in cyan, magenta, yellow and achromatic hues. A sys-
tematic increment of 6 was applied to each individual and distinct
combination of colour channels extending up to a driver value of
252, resulting in a total of 295 images (including black). As such,
the dataset counts 42 pure red, green and blue images. The same
number of cyan, magenta, yellow and grey images is produced,
while there is one pure black image. Apart from these combi-
nations, 7 additional driver RGB values were chosen from the
set I = {0,42,85,128,170,212,255}, with which 335 additional
unique combinations of values were created. Following on the
presentation of each image in the HMD in a random order, a mea-
surement was performed with the colorimetric luminance camera.
From the defined ROI the average tristimulus XY Z values were
calculated, resulting in 630 (XY Z, RGB) training pairs.

To test the accuracy of each trained colour characterisation
model, 19 test points were carefully selected, encompassing the
chromaticity gamut of the HMD device. The chromaticity gamut
of the device was determined from the maximum red, green and
blue output, converting the respective XY Z values into CIE 1976
Y, u′,v′ coordinates using LuxPy [21]. The 19 different test points
were selected to uniformly cover the chromaticity gamut of the
HMD. First, 9 points were selected on the boundary of a triangular
80% area of the HMD gamut. Let the vectors vr,vg,vb represent
the vertices of the triangle in u′v′ space, corresponding to the
vertices of that selected area. The test points on the boundary
are given by Eqs. 1-3. To ensure that all test points are inside
the gamut of the HMD, the luminance value of each point was
calculated by selecting the ten nearest points from the training set,

and their average luminance was selected as the luminance of that
test point. Next, 10 additional test points were chosen from the
interior of the selected area of the chromaticity gamut. The colour
coordinates are calculated from Eqs. 4-8 where Pb,x(1 ≤ x ≤ 9)
and Pi,y(1 ≤ y ≤ 10) refer to the boundary and interior points,
respectively.
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Finally, to test the trained characterisation models, a testing
procedure was used in which the trained models are employed
to predict RGB values (RGBpredict ) corresponding to target XY Z
values (XY Ztarget ) of the 19 test points. These RGB values are dis-
played in the HMD and from the acquired luminance image, XY Z
values are calculated (XY Zmeasured). To determine the colorimet-
ric accuracy of the trained models, XY Ztarget and XY Zmeasured
are compared.

Results and Discussion
Stability

Stability data were obtained according to the method de-
scribed earlier. The blue, green and (combined) white channels
reached stability within the minimum stabilisation time period of
30 minutes. The red channel took around 36 minutes to stabilise.

To assess the repeatability of the HMD, all measurements
were done twice (on two different days). Thus, two training
datasets were obtained, each containing 630 images. The average
∆E*

ab between the two days for all the 630 points was found to be
0.32, which clearly indicates a good repeatability of the device.

Linearity and Additivity
The variation in luminance (Y values) with driver values

shows a non-linear relationship. The sum of tristimulus values
of the individual primaries [(R = 255,G = B = 0);(G = 255,R =
B = 0);(B = 255,R = G = 0)] exceeds the tristimulus value of
the white stimulus (R = G = B = 255). This observation aligns
with prior research findings which also pointed toward additivity
issues with modern HMDs [17, 18]. These findings are exempli-
fied numerically in Table 1, in which the XY Z values of the red,
green, and blue primary at maximum driver output are presented
together with the XY Z values of the white stimulus (first day mea-
surements). The summed X , Y and Z values of the RGB primaries
are 3.49%, 2.27% and 3.63% higher than the X , Y and Z values
of the white stimulus, respectively. This is consistent with the
results described in the literature [17, 18].
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Table 1: Colour space specifications for Meta Quest 2

Primary X Y Z u’ v’

Red 27.98 14.83 1.47 0.439 0.524
Green 26.68 52.08 9.56 0.128 0.560
Blue 14.44 6.53 72.90 0.174 0.178
White 66.77 71.81 80.98 0.193 0.466
Combined RGB 69.10 73.45 83.93 0.194 0.465

Characterisation
To characterize the Meta Quest 2 HMD, the ANN, LUT,

POR and GGO models were used. For the ANN model, a network
with three deep hidden layers comprising 200, 200, and 100
neurons, respectively, was chosen based on results obtained from
the colorimetric performance of various colour characterisation
models through simulation. The used LUT was three dimensional
and the chosen interpolation method was linear. Several tests were
done to discern the best degree of a polynomial, resulting in the
adoption of a degree 4 polynomial for the POR model.

In Fig. 1, the chromaticity gamut of the Meta Quest 2 HMD
is presented as a black triangle in CIE 1976 u′v′ colour space. The
19 test points to assess the four different colour characterisation
models are annotated as ‘x’ markers and ‘+’ markers, indicating
the boundary and interior points, respectively.
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Figure 1: The chromaticity gamut of the Meta Quest 2 HMD is
shown as a black triangle. The boundary points are annotated
as ‘x’ markers and the interior points as ‘+’ markers. Note that
the colours on the diagram are solely for reference and may not
accurately reflect specific colours.

In Fig. 2, boxplots are presented that show the colour dif-
ference between the 19 defined test colours and their matching
set colours as derived from the four characterisation models, ex-
pressed as ∆E*

ab. The boxplots are grouped based on the capture
days (Day 1 and Day 2), followed by the type of test point (left
vs. right part of individual graphs: 10 interior points vs 9 bound-
ary points). The results for each applied calibration model are
presented in a different colour.

The choice of POR or LUT as a colour characterisation
model seems to be the best option. Especially for the interior test
points, both models outperform the ANN and GGO models by
a large margin. Taking into account only the interior points, the
POR model achieves a mean ∆E*

ab of 1.81 over both capture days,
similarly the LUT achieves a mean ∆E*

ab of 1.84. In general,
the ANN model does not perform well. This could potentially be
attributed to the fact that building a good neural network requires
a considerable amount of data and parameter tuning. Since the
LUT and POR models already perform better, they are a better
choice considering the time and effort of data collection. Besides
the inferior general performance, among all models, the ANN also
possesses the largest interquartile range, followed by the GGO
model. This shows that there is a higher degree of variability in
observed colour differences depending on the test points for these
two types of colour characterisation models. This finding is even
more valid for the boundary test points, for which for all tested
characterisation models, large interquartile ranges are observed.
Thus, all models performed considerably worse for the boundary
test points than for the interior test points.

Conclusion
In this paper, four different colour characterisation models

(LUT, POR, ANN and GGO) to characterise an HMD were tested
in practice, on a commercially available HMD: the Meta Quest 2.
From the results, it can be concluded that the POR and LUT colour
characterisation models perform significantly better than the ANN
or GGO models. The performance of colour characterisation
models is affected by the location of a point on the colour gamut
of a device, for instance, whether it is located closer to the gamut
boundary or situated considerably inside the gamut. All four
models perform considerably worse for boundary points, possibly
due to higher energy output and power consumption. In summary,
for conducting colour science experiments in which achieving
high colour accuracy is important, the use of a suitable colour
characterisation model is advised. In this practical study, the
POR and LUT models were the preferable colour characterisation
models, since they performed significantly better than the other
tested models. Future work will consist of testing the presented
colour characterisation pipeline on a more recent HMD from the
same manufacturer.
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Figure 2: Performance of various colour characterisation models across two different days for Meta Quest 2 HMD. The colour difference
between the 19 defined test colours and their matching set colours as derived from the four characterisation models are expressed as
∆E*

ab. The dashed lines in each boxplot represent the mean ∆E*
ab, while the solid lines represent the median ∆E*

ab values. The bar
represents the interquartile range of the data, and the small circular dots represent the outliers.
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