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Abstract
Spatial just noticeable difference (JND) refers to the smallest

amplitude of variation that can be reliably detected by the Human
Visual System (HVS). Several studies tried to define models based
on thresholds obtained under controlled experiments for conven-
tional 2D or 3D imaging. While the concept of JND is almost
mastered for the latter types of content, it is legitimate to question
the validity of the results for Extended Reality (XR) where the
observation conditions are significantly different. In this paper,
we investigate the performance of well-known 2D-JND models
on 360-degree images. These models are integrated into basic
quality assessment metrics to study their ability to improve the
quality prediction process with regards to the human judgment.
Here, the metrics serve as tools to assess the effectiveness of the
JND models. In addition, to mimic the 360-deg conditions, the
equator bias is used to balance the JND thresholds. Globally,
the obtained results suggest that 2D-JND models are not well
adapted to the extended range conditions and require in-depth
improvement or re-definition to be applicable. The slight improve-
ment obtained using the equator bias demonstrates the potential
of taking into account XR characteristics and opens the floor for
further investigations.

1 - Introduction
In recent years, the rapid advancement of immersive me-

dia has marked a promising trajectory expected to expand fur-
ther. Despite this progress, democratizing Extended Reality (XR)
faces challenges. Rendering content with Head-Mounted Displays
(HMDs) is computationally intensive. Overcoming these chal-
lenges often involves perceptually-tuned data processing. One
way to achieve this requires a deep understanding of visual per-
ception mechanisms such as masking effects. Those are often
used to build Just Noticeable Difference (JND) models.

A JND model assesses the maximum amplitude of difference
that can go unnoticed by a human observer. This enables adaptive
coding that assigns varying degrees of importance to different
areas of an image. Numerous models have been developed for 2D
[1], and also for 3D [2]. They could be split into two categories:
pixel-domain and frequency-domain JND. Building these requires
well-controlled psycho-physical experiments involving different
targeted conditions (FoV: field of view , viewing distance, degree
of freedom). While they work well for 2D or 3D, their integration
for XR applications such as 360-degree imaging, Virtual Reality,
Augmented and Mixed Reality (VR, AR and MR) could not be
effective. The reason lies in the important differences in terms of
observation conditions (wide FoV, short viewing distance, active
selection of viewports). Nevertheless, the principles exploited in
these models remain valid but may require some adaptations.

In general, pixel-domain 2D-JND models consider the sen-
sitivity of the Human Visual System (HVS), as well as visual
masking (VM) effects. For example, Luminance Adaptation (LA)
addresses the visibility of a stimulus based on the ambient lumi-

nance [3]. Most JND models also consider Contrast Masking
(CM) effect. This refers to the reduction in the visibility of a
stimulus due to the presence in its neighborhood, of other stimuli,
called masks, with similar characteristics [3] [4] . In addition to
the aforementioned effects, the anisotropy of visual acuity across
the Field of view can also be exploited for JND modeling[5] [6].

Different 2D-JND models have been proposed previously.
For instance, Chou and Li’s model [3] laid the groundwork for
pixel-domain models by considering the JND as the maximum
of two factors: the threshold due to LA and the one due to CM.
Subsequently, this model was improved by various authors. Yang
et al. [7], introduced a nonlinear additive relationship between
LA and CM, employing the Canny detector to distinguish be-
tween edge and non-edge regions. This allows dealing with the
co-occurrence of both effects, resulting in higher thresholds when
both LA and CM are involved. Liu’s model [8] improves upon
Yang’s by distinguishing textures from edges using the L1-norm
total variation (TV-L1) method. Thus, CM becomes a combina-
tion of texture masking (TM) and edge masking (EM) allowing
to cope with TM underestimation in Yang’s model. In [9], Wu
proposed a model based on the free energy principle, establishing
that the brain actively predicts the content of an image and avoids
areas that increase uncertainty. This results in higher thresholds
where uncertainty is greater. Later on, Chen and Guillemot [10]
and Liu et al [11] used foveation effect, such that the farthest
pixels from the fixation point have the highest JND thresholds.

We are particularly interested in modeling visual masking
(VM) effects for Extended Reality (XR) applications. The various
masking effects exploited in 2D-JND models remain relevant in
this context. However, the specific parameters and the proposed
methods may require further exploration. Therefore, our objec-
tive is to determine whether or not we can reliably employ these
JND models in immersive imaging and if they accurately predict
VM in this specific scenario. Thus, we conduct a benchmark of
representative 2D-JND models, focusing on their performance in
360-degree environments by simulating the use of Head-Mounted
Displays (HMDs). Furthermore, we propose a method to incorpo-
rate the equator bias, a concept unique to XR, into the estimation
of JND thresholds to demonstrate further improvement prospects.

The remainder of this paper is organized as follows: In
Section 2, we outline our strategy for applying 2D JND models
to XR. An objective method for studying their performance in
this specific context is described in Section 3. The results are
presented and discussed in Section 4.

2 - Using 2D-JND models with 360-degree
images

XR aims to immerse users in digitally modified or generated
environments, maximizing sensory engagement [12]. Experienc-
ing XR with HMDs involves an expansive FoV and provides a
sense presence. Thus, studying XR requires considering the spe-
cific behavior of the HVS while experiencing visual immersion.
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For instance, it has been observed in prior studies that human
subjects have a strong tendency to focus on elements near the
equator. This phenomenon is referred to as the equator bias [13].
This is leveraged in two ways in our study: first, by extracting
more viewports along the equator ; and also, by modulating the
JND thresholds based on the latitude of the pixels.

2.1 - Viewport extraction
Given that observers do not directly perceive the ERPs

(equirectangular projection) and due to significant geometric dis-
tortions, the JND should not be calculated on ERPs directly [14].
Instead, we extract multiple viewports to mimic the behavior of a
human observer during visual exploration with HMDs. As shown
in Fig 1, 8 viewports located along the equator are extracted from
the sphere, with camera rotations of -135°, -90°, -45°, 0°, 45°,
90°, 135°, and 180°. This is motivated by the fact that an observer
pays closer attention to elements at eye level and the transition
from one viewport to another is conditioned by head movements.
Only one viewport per polar region is extracted since these areas
are often unexplored by viewers.

Since we are interested in what is actually perceived by the
observer, we take the characteristics of the HMDs in consideration
(field of view and spatial resolution). As the used datasets are
from studies utilizing the HTC Vive, with a vertical resolution of
1200 pixels, we extract viewports of 1200x1200 pixels matching
a 90° vertical FoV.

Figure 1: Viewport extraction method based on equator bias

2.2 - Threshold elevation due to equator bias
Given the tendency of observers to focus on regions near the

equator, further areas are perceived with lower visual acuity due to
foveation effect. Thus, one could argue that JND thresholds may
vary based on latitude. To model this, we first need to model the
saliency distribution. Next, we deduce a critical foveation latitude
range, i.e., the range of latitudes where the majority of observers
focus. Finally, a foveation model centered on the boundaries of
this range provides the loss of sensitivity as a function of latitude.

In order to get an expression of the saliency distribution, we
use saliency maps from Salient360![15] and calculate an average
map as shown in Fig 2. It is easy to notice that the average saliency
is concentrated around the equator and could be approximated by
a Gaussian function as follows:

S(∆l) =
N

σ ∗
√

2Π
exp(− ∆l2

2∗σ2 )+β (1)

where N is a normalization factor, σ is the standard deviation
and β is an offset. In our case, N, σ and β are respectively 29, 14
and 0.17. ∆l is the latitude of a pixel P(x,y) in degrees.

Figure 2: Saliency in function of the Latitude
(a) Average saliency map, (b) average saliency distribution

Since all points near the equator can be foveated, there is a
risk of threshold overestimation at those locations if we use the
saliency distribution as elevation factor. Therefore, we define a
latitude range within which we do not modify the JND thresh-
olds. To achieve this, we consider that the boundary regions of
foveation are located at ∆l = {+σ ,−σ} as shown in Fig3. Thus,
thresholds calculated within this range are not affected. Then, a
foveation model F centered at ∆l = {+σ ,−σ} provides the JND
threshold elevation factor. The general model of the equator bias
is expressed as follows:

α(∆l) = min(F(∆l)⊛δ (∆l −σ),F(∆l)⊛δ (∆l +σ)) (2)

where α(∆l) is the elevation factor for the JND threshold at a
latitude ∆l. F(∆l) is a foveation model in which the eccentricity is
calculated solely in the vertical direction, and δ represents a dirac.
The foveation model used here is derived from that of Chen and
Guillemot. The latter allows for the modulation of JND thresholds
based on eccentricity and local background luminance L.

Figure 3: JND elevation factor due to equator bias

(a) represents the foveation model F(∆l), (b) represents the resulting
elevation factor to be applied to the JND map.

This equator bias function is to be applied on the different
2D-JND maps. Only Chen’s model [10] and Liu’s VR-JND [11]
need to be treated differently. These require predicting fixation
points in the images in order to account for foveation effect. For
this purpose, a saliency prediction method such as Itti and Koch’s
[16] is often employed. The performance of these models is there-
fore directly dependent on the accuracy of the saliency prediction.
Thus, to avoid applying the foveation effect twice and to elimi-
nate the bias associated with the saliency prediction, foveation
is replaced with the previously described equator bias function.
Chen’s model is therefore equivalent to the equator-biased version
of Chou’s. Liu’s model for VR is unique because it was estab-
lished differently from the others by taking depth into account.
This modality is out of the scope of this study, so we assigned
a uniform depth to all areas of the images. It also has its own
foveation computation method which we have used in the equator
bias for this model.

3 - Performance evaluation method
We define the performance of a JND model as its ability to

mimic the flaws of the HVS. However, to our best knowledge,
there is currently no standardized objective method available for
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Table 1: Effects of Equator bias

Chou/Chen Yang Wu Liu Liu VR - 2D
Equator
bias

PLCC
JNDSSIM

JND en-
ergy [dB]

PLCC
JNDSSIM

JND en-
ergy [dB]

PLCC
JNDSSIM

JND en-
ergy [dB]

PLCC
JNDSSIM

JND en-
ergy [dB]

PLCC
JNDSSIM

JND en-
ergy [dB]

Without 0,679 17,56 0,677 17,41 0,657 18,82 0,688 19,83 - -
With 0,687 18,12 0,682 17,9 0,679 20,38 0,694 21,36 0,681 20

Table 2: PLCC Correlation of the JNDIQA with the MOS and Energy of Just Noticeable Difference: The left part displays the PLCC
correlation between the JND-weighted IQA metrics and the Mean Opinion Score (MOS). The right part showcases the energy of JND
calculated using Eq 7 for each JND model. In the last row, the correlation scores were computed across the entire dataset, whereas the
energy of just noticeable difference represents the average of all individual values.

P IQA Yang Wu Liu Chen LiuVR Energy of JND profile

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR Yang Wu Liu Chen Liu VR

1 0.905 0.920 0.902 0.918 0.907 0.917 0.924 0.934 0.903 0.920 0.908 0.923 65.2 115.4 145.5 41.7 65.2
2 0.745 0.740 0.733 0.736 0.742 0.740 0.746 0.746 0.738 0.739 0.736 0.738 59.3 104.5 130.3 67.1 96.2
3 0.665 0.698 0.667 0.703 0.634 0.684 0.719 0.740 0.675 0.708 0.668 0.703 64.0 113.3 142.6 50.7 71.3
4 0.949 0.937 0.948 0.937 0.960 0.928 0.955 0.945 0.948 0.938 0.951 0.939 62.5 110.1 138.4 53.6 84.1
5 0.705 0.705 0.686 0.696 0.698 0.696 0.748 0.736 0.699 0.704 0.692 0.698 64.7 114.4 144.0 51.3 88.8
6 0.830 0.850 0.825 0.847 0.835 0.844 0.849 0.868 0.828 0.848 0.829 0.849 63.9 113.2 142.3 48.8 72.2
7 0.709 0.725 0.724 0.736 0.650 0.709 0.761 0.763 0.723 0.736 0.715 0.734 65.7 116.0 146.2 35.0 57.2
8 0.961 0.896 0.936 0.887 0.966 0.894 0.954 0.900 0.942 0.891 0.942 0.890 57.4 101.0 126.0 116.5 172.3
9 0.901 0.935 0.907 0.937 0.898 0.944 0.914 0.945 0.906 0.938 0.908 0.939 62.9 111.1 139.6 48.0 71.4

10 0.833 0.803 0.823 0.794 0.828 0.795 0.844 0.813 0.826 0.797 0.826 0.796 62.5 110.8 139.3 61.6 94.7
11 0.906 0.849 0.870 0.834 0.908 0.845 0.905 0.854 0.880 0.839 0.877 0.837 56.0 99.3 123.5 106.9 140.2
12 0.982 0.910 0.970 0.906 0.981 0.898 0.978 0.914 0.973 0.908 0.973 0.907 58.1 102.1 127.9 107.7 166.3
13 0.906 0.933 0.917 0.933 0.887 0.927 0.927 0.942 0.915 0.934 0.917 0.937 59.3 103.7 130.0 79.3 149.3
14 0.790 0.810 0.778 0.809 0.759 0.801 0.811 0.839 0.781 0.812 0.780 0.814 61.8 108.6 136.0 70.1 122.1
15 0.862 0.849 0.856 0.845 0.870 0.845 0.876 0.864 0.858 0.846 0.860 0.847 63.7 112.9 142.0 45.4 65.7
16 0.805 0.796 0.815 0.804 0.795 0.793 0.847 0.830 0.819 0.809 0.814 0.805 60.1 109.2 137.2 54.1 83.6

ALL 0.697 0.718 0.682 0.707 0.679 0.706 0.694 0.74 0.687 0.713 0.681 0.71 61.7 109.1 136.9 64.9 100.0

evaluating the performance of JND models. To quantify the
efficiency of the models and conduct a comparative analysis, we
follow the workflow outlined in this section.

We adopt a similar method to the one developed for 3D-JND
models comparison in [17]. In this approach, well-known quality
metrics are modified to create JND-weighted versions in which
the weight of a pixel depends on its JND threshold. Therefore, the
performance of the JND model is linked to the performance of the
weighted metrics. Given that we only consider luminance in this
study, we use SSIM (Structural Similarity Index), as described in
[18], and PSNR (Peak Signal-to-Noise Ratio). Embedding JND
within these two metrics is straightforward. We thus define two
JNDIQA, namely JNDSSIM and JNDPSNR, formulated as follows:

QualMap(x,y) =
SSIM(I(x,y), I′(x,y)).min(JND)

JND(x,y)
(3)

JNDSSIM(I, I′) =
∑

H
x=1 ∑

W
y=1 QualMap(x,y)

∑
H
x=1 ∑

W
y=1

min(JND)
JND(x,y)

(4)

where I and I’ are respectively the pristine image and the impaired
image. QualMap represents the quality map of I’ weighted by
the JND thresholds. JNDSSIM(I,I’) is the final predicted score of
the impaired image I’.
Similarly, we modify the calculation of Mean Squared Error
(MSE) to give more importance to pixels with lower JND thresh-
olds. The resulting Weighted MSE (WMSE) is then used in the
calculation of JNDPSNR as follows:

WMSE =
∑

H
x=1 ∑

W
y=1

min(JND)
JND(x,y) .(I(x,y)− I′(x,y))2

∑
H
x=1 ∑

W
y=1

min(JND)
JND(x,y)

(5)

JNDPSNR(I, I′) = 10∗ log10(
2552

WMSE
) (6)

A score is predicted for each viewport of the degraded images
using Eq 4 and 6. Subsequently, a global score for the entire image
is computed by averaging the scores of the viewports. Finally, the
correlation between the predicted scores and the Mean Opinion
Score (MOS) is examined. The higher the correlation, the closer
the predicted quality is to the human judgement, and thus, the
more efficient the JND model is. However, correlation alone
is not sufficient to compare the models. It is possible for two
models to produce very close correlation scores. In such cases,
to distinguish between them, one can compare the amount of
luminance variation they tolerate. This can be approximated with
the mean energy of the JND (θ ) map such as:

θ =
1

H.W

H

∑
x=1

W

∑
y=1

JND(x,y)2 (7)

We believe that performance should be a combination of the
correlation scores calculated with Eq 4 and 6 and the amount of
imperceptible difference. We define a relative performance index
PI as follows:

PI(JNDk) = corr(MOS,JNDIQA).
θk

max(θ)
(8)

where JNDk is the k-th model considered in this study and θk
its mean energy. Thus, when the correlation score and the mean
energy of JND profile are simultaneously high, the performance
index is high. Conversely, if one or both are low, the performance
is decreased. This index is used only for inter-model comparison
because it evaluates only the performance of each model relative
to the others.

4 - Experimental results
For the benchmark, we used the OIQA dataset proposed

in [19] . This dataset consists of a set of 16 pristine images
impaired with JPEG and JPEG2k compression, white Gaussian
noise, and Gaussian blur. Each type of degradation was applied
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with five intensity levels. Since most IQA metrics perform poorly
for the images with WGN in the dataset [19], we chose not to
include these images to reduce potential biases due to the metric.
Therefore, we rely on a set of 15 degraded images per pristine,
resulting in a total set of 240 images.

First, we successively calculated the JND maps for all view-
ports. Then, the correlation scores of the JNDIQA with the MOS
over the whole dataset, and the energy of tolerable difference
were computed. We compared the performance of JND models
with and without elevation by the equator bias function and the
results are presented in Table 1. We observe that the equator bias
function allows for a slight improvement in terms of correlation
with the human judgement. We also tolerate more luminance
variation, with an average gain of 1.035 dB. The simultaneous
improvement of both factors shows that the equator bias can be
effectively utilized in modeling visual masking for the XR context.
This function is exploited throughout the remainder of this study.

The second part of our study focused on the overall behavior
of JND models with 360-degree images. To investigate this, the
correlation of the weighted metrics with the MOS was calculated,
on each pristine image and its degraded versions, and also on the
entire dataset. Even if our work was not on improving the IQA
metrics, a performance enhancement of the SSIM and PSNR was
expected if the JND models were adapted to XR. This has been
achieved by Fezza et al. with SSIM in 3D imaging [18]. The
results of our experiment are presented in Table 2. We observe
that the overall PLCC and SROC values are generally low for all
JND models on the entire dataset even if we have some very good
scores for individual images. However, we are more interested
in the differences provoked by the JND models rather than the
correlation values. We see in the last row of the table that, across
the entire dataset, the correlation values obtained with the baseline
metrics are slightly higher than those embedding the JND, except
for Liu’s model with PSNR. At first glance, the 2D-JND models
do not improve the performance of the metrics but we do notice
some increased values for certain models on each pristine image
individually. Thus, we attempted to verify if these differences
brought by the JND could be significant. Statistical tests between
the scores from each JND-IQA and the baseline metrics were
conducted. As given in Table 3 , the results of the T-Test indicates
that the changes are not statistically significant. The fact that the
2D-JND models do not have significantly positive impact on the
quality metrics suggests that they may not be well-suited for our
experimental context. It is thought to be related to a misestimation
of thresholds in different areas of the image. Some imperceptible
differences in 2D conditions become noticeable in immersive
conditions and vice-versa. This prevents the 2D-JND models
from improving the quality metrics in this context.

Table 3: P-values of the T-Test between JNDIQA and baseline IQA

p-value Yang Wu Liu Chou / Chen LiuVR

PSNR 0.43 0.409 0.278 0.47 0.458
SSIM 0.499 0.473 0.2 0.455 0.469

The third observation from this study concerns inter-model
comparison. Despite using different JNDIQA metrics, we observe
in Table 2 that they demonstrate roughly equivalent correlations
with the MOS on the whole dataset. This suggests that the JND
models are similarly correlated with human judgment. Nonethe-
less, as shown in Fig 4 (a) and (b), Liu’s JNDIQA seems to cor-
relate slightly better with the MOS than the other JND-weighted
metrics. However, as correlation alone does not provide sufficient
information to rank the JND models, we complemented the com-
parison with the amount of difference tolerated by each of them

as reported in Table 2. In order to establish a ranking of 2D-JND
models in the XR context, we calculated the performance index of
each using Eq 8 . The findings are presented in Table 4 and reveal
that when considering both the correlation of JNDIQA with human
judgement and the ability of the JND models to tolerate lumi-
nance variation, Liu’s outperforms the others. As the JND models
studied here rely on the same masking effects, we can deduce
that it is the use of the TV-L1 method for CM that has made the
difference. This demonstrates the importance of differentiating
texture from edges, thus indicating an increased sensitivity of the
HVS to these characteristics in our context.

Table 4: Performance index for ranking

Liu Wu Liu VR - 2D Chou / Chen Yang

Perf Idx 0.694 0.541 0.497 0.326 0.310

Figure 4: Correlation of JNDIQA with the Mean Opinion Score
Illustration of the correlation between JNDIQA metrics and the MOS. (a)

JNDSSIM (b) JNDPSNR

However, these results should be nuanced as several visual
modalities were left aside in this study. Notably, we did not take
into account the sense of depth provided by visual immersion
which may explain why Liu’s model for VR did not stand out
from the others. Finally, we realize that the effect of JND models
on quality metrics is subtle. This limits our ability to deduce an
exact performance from them. We could have raised the JNDs to
a certain power in Eq 4 and 6, but that would have overestimated
the performance gaps between the different models and biased
our study. We acknowledge that this benchmarking method is de-
batable, particularly the notion of assessing JND models through
quality metrics. However, it allows us to obtain results that we
can interpret quantitatively.

Conclusion
The performance analysis of various 2D-JND models within

an XR framework poses a complex challenge since there is no
standardized objective method to do so. In this study, we con-
ducted a benchmark of 2D JND models specifically on 360-degree
images by integrating them into quality metrics and studying their
correlation with human judgment. However, the aim was not to
propose new IQA metrics. The findings of this study suggest that
original 2D-JND models exhibit limited suitability for immersive
environments as none of them can be reliably used for quality
assessment purpose. Although the models are roughly equivalent
in this regard, the final inter-model comparison showed that Liu’s
2D-JND model performs relatively better than the others. This
underscores the significance of distinguishing between texture
and edge within our specific context. We also found that account-
ing for equator bias led to slight improvements in the models’
performance, thereby showcasing the potential for improvement
tailored to the specificities of XR. This approach will undergo
subjective cross-validation in future work. A strategy to integrate
more sophisticated phenomena in XR will also be explored in our
forthcoming research.
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