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Abstract
To accommodate displays with varying dynamic ranges, im-

age encoding frameworks are emerging that propose to include
metadata within a standard dynamic range (SDR) image to en-
code an arbitrary, user-defined residual which allows the SDR
image’s pixel values to be transformed into its intended high dy-
namic range (HDR) version. The suggested metadata is a com-
pressed version of the gain map computed as the pixel-wise ratio
between the HDR and SDR image. Multiplying the gain map
with the SDR image reconstructs the HDR image. This paper
proposes an effective alternative for HDR recovery in the form of
a pixel-wise exponent map instead of the multiplicative gain map.
We demonstrate experimentally that the exponent map approach
produces higher quality HDR reconstructions over the gain map
strategy according to several metrics.

Introduction
While most smartphone cameras can capture images with

high dynamic range (HDR) tonal ranges, the final image is typ-
ically encoded in SDR formats like 8-bit sRGB (BT.709) [1] to
ensure interoperability with displays and software applications.
However, with the prevalence of HDR displays on smartphones
and tablets, there is now a need to provide flexible encoding
strategies that accommodate image content for different display
dynamic ranges.

Leading technology developers and standards organizations
are presently formulating encoding guidelines for adaptive dy-
namic range formats. Notable examples are Adobe’s gain map
specification [2], Apple’s Extended Dynamic Range (EDR) [3],
Android’s UltraHDR [4], Samsung’s SuperHDR [5], and the
ISO/WD 21496 recommendation for digital photography [6].

These encoding strategies have all converged on a com-
mon framework for computing a pixel-wise gain map to enable
the translation or interpolation between image variants intended
for Standard Dynamic Range (SDR) and High Dynamic Range
(HDR) displays. Specifically, these gain maps, computed as the
ratio between SDR and HDR pixel values, are downsampled, en-
coded as an 8-bit JPEG file, and embedded as metadata within a
multi-image format (such as HEIC, AVIF, or JPEG-R) alongside
the primary 8-bit SDR image. This embedded gain map can be
decompressed and upsampled to reconstruct the HDR rendition
of the image through multiplication with the SDR image.

In this paper, we propose a subtle algebraic variation on the
gain-map framework, which improves the resulting reconstruc-
tions quantitatively and qualitatively when tested on a dataset
of native HDR images processed through a collection of tone-
mapping operators. Instead of encoding a pixel-wise multiplica-
tive residual (gain map), we propose to encode a pixel-wise expo-
nential residual (gamma map). While a subtle change, we show
that gamma maps give significantly better HDR recovery mea-
sured by three perceptual metrics than gain maps when encoded
as JPEG metadata of the same size (∼25KB). We demonstrate re-
sults on a dataset of 112 SDR/HDR pairs computed using several
tone mapping operators.

Related Work
The human visual system uses gain and non-linear response

within its photoreceptors to maintain visibility in the face of vary-
ing dynamic range [7]. Early imaging engineers designed sys-
tems that took advantage of this property of human vision to ren-
der realistic images in media with limited dynamic range [8].
Over the next century, these design elements were formalized
computationally, culminating in the proposal of several effective
methods. In earlier models, all pixels are processed through the
same non-linear compression function, derived from the global
dynamic ranges of the source scene and target display [9, 10].
Later, locally varying operators to mimic the independent re-
sponse of photoreceptors were proposed [7].

Modern professional and consumer-grade cameras can now
capture images with high dynamic tonal ranges [11]. However,
HDR images need to be converted to SDR using tone mapping
methods to maintain compatibility with SDR displays. While
photographers and cinema colorists often prefer manual tone
mapping, there remains a high demand for automatic methods. A
recent review by Ou et al. [12] details the dominant tone-mapping
strategies implemented in hardware. In the experimental section,
we choose a foundational representative from three categories of
tone mapping methods: exposure/filtering-based [7], log-based
[13], and histogram equalization-based [14]. While the gain map
framework is intended to be agnostic to the tone mapping op-
erator, the operator used does impact the distribution of the gain
map, which creates a differential in the difficulty of compression.

Our work is also related to methods that aim to up-covert
legacy SDR images to HDR. Mantiuk et al. [16], Cyriac et al.
[17], and several industry groups (such as Dolby, Colorfront,
HDR10) offer analytical solutions for converting between SDR
to HDR. These methods perform well where quantization, com-
pression, and clipping errors are minimal but are not capable of
recovering missing HDR details. While these methods target a
similar purpose of SDR to HDR conversion, they are forced to
do this blindly. The problem addressed in this paper assumes that
HDR and SDR versions are already defined at encoding time and
stores metadata in the SDR file such that the HDR image can be
reconstructed.

Method
We first describe the existing gain map framework and then

our modification in the following section.

Existing Framework
Figure 1 provides an overview of the adaptive dynamic

range encoding framework. Given an HDR scene captured by
camera sensors typically using 10-12 bits, the image is tone
mapped to a standard dynamic range and quantized to 8 bits (N-
bit quantization is denoted as QN(·)), and stored as a JPEG file
for general interchange. The framework will compute a pixel-
wise gain map and embed this with the primary JPEG as meta-
data.
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Figure 1. An image is captured and different renderings for HDR and SDR are derived through quantization and tone-mapping. Since 8-bit SDR images are

more interoperable, it is advantageous to encode this as a JPEG along with metadata from which the HDR version can be reconstructed. This is accomplished

by converting the SDR image into the HDR display representation and taking SDR to HDR ratio to produce a gain map. Then, once normalized and encoded

with JPEG compression, this can be embedded alongside the SDR image in a multi-image format. Finally, the HDR version can be reconstructed after the

fact by decoding and de-normalizing the gain map and multiplying it by the SDR image.

Adobe’s [2] preliminary version of the under-development
ISO gain map standard (ISO/WD 21496 [6]) begins with three-
channel color images S and H, encoded for SDR and HDR dis-
play, respectively. First, the SDR image is transformed into the
display space of the HDR image as in Figure 1, such that they
share a common representation. The gain map is computed as

f (x,y) =
(H + ε)

(S+ ε)
, (1)

where ε is a small offset applied to each image to avoid divide-
by-zero errors.

Then, f (x,y) is normalized to range [0,1] for JPEG-
encoding. This is accomplished by computing the maximum and
minimum gain map values, fmin and fmax, and then normalizing
the gain map in log2 space like so:

fnorm(x,y) =
(log2( f (x,y))− log2( fmin))

(log2( fmax)− log2( fmin))
. (2)

Finally, a power γ is applied after the normalization pro-
cess to redistribute gain map values for quantization. Both An-
droid [4] and Adobe [2] documents recommend resizing the map.

Specifically, these documents recommend quantizing the
gain map to 8-bit precision, down-sampling to 1/4 resolution or
lower, and encoding with JPEG compression at a quality setting
from 85 to 90 out of 100 [4]. Using a multi-picture format (e.g.
HEIC, AVIF, JPEG-XL, JPEG-R) the map can be stored along-
side S. The parameters log2( fmax) and log2( fmin)) values, ε ,
and γ are then stored as XMP metadata. This strategy allows for
legacy 8-bit applications to process S as normal, while applica-
tions that have implemented gain map decoding can reconstruct
its corresponding HDR representation.

However, the decoding process returns a slightly differ-
ent function f ′norm(x,y), due to quantization, downsampling and
compression. This process starts by converting the 8-bit gain
map back to a floating point representation in the range [0,1] and
the normalization is inverted as follows:

f ′(x,y) = 2( fnorm(x,y))∗(log2( fmax)−log2( fmin))+log2( fmin). (3)

Finally, the SDR image is converted back to a floating point
representation and then to the HDR display space (as above) and
the HDR rendition, H ′ is reconstructed:

H ′ = (S+ ε)⊙ f ′(x,y)− ε. (4)

Proposed Variation
Instead of finding a gain map as in equation 1 of the existing

framework, we advocate the use of a pixel-wise exponent such
that (H + ε) = (S+ ε)g(x,y). We can solve for g(x,y) as follows:

g(x,y) = logS+ε (H + ε), (5)

or alternatively,

g(x,y) =
log(H + ε)

log(S+ ε)
. (6)

After encoding, we apply compression and decoding as in
the existing framework (equations 2 and 3). The resulting gamma
map g′(x,y) is applied as a pixel-wise exponent in place of equa-
tion 4 of the existing framework.

The final recovered HDR image, H ′ is given by:

H ′ = (S+ ε)g′(x,y)− ε. (7)

Experiments
This section tests the proposed gamma map variation

against the existing gain map framework.

Dataset
In the work of Cyriac et al. [17], a dataset of 28 HD

(1920×1080) SDR and HDR mastered images provided by
Froehlich et al. [21] and the ARRI camera group [22] (encoded
in BT.709 [1] and BT. 2100 [23], respectively) were used as ref-
erences to optimize the method. Starting from their native for-
mat (HDR or SDR), a professional colorist derived an ideal vi-
sual match in the alternative format using DaVinci Resolve as
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Table 1. Our proposed gamma map is compared against the standard gain maps for approximating manual and automatic tone
mapping transforms representative of the most prominent approaches implemented in hardware (log [13], filtering [7], histogram
equalization [14]) using Cyriac et al.’s dataset of cinema images as a source [17]. Best results in bold.

TM Method HDR-VDP3 [26] ↓ Mean ∆E00 ↓ PQ VIF [27] ↑ Size (KB) ↓
Manual Gain 9.85 2.01 0.75 22

Gamma 8.39 1.63 0.76 25
Drago et al. [13] Gain 9.17 1.89 0.61 25

Gamma 8.00 1.67 0.68 25
Reinhard et al. [7] Gain 7.91 2.02 0.81 29

Gamma 7.68 1.62 0.78 20
Larson et al. [14] Gain 9.72 1.97 0.77 22

Gamma 8.10 1.60 0.81 24
Average Gain 9.16 1.97 0.73 25

Gamma 8.04 1.63 0.75 24

GT SDR GT HDR Gain Gamma GammaGain

10

5

0

ΔE00
5.01 2.78

5.51 3.74

2.40 0.93

1.72 1.25

3.17 1.73
Figure 2. Qualitative comparison between the proposed gamma maps and the existing gain map framework on cropped regions from the dataset of Cyriac

et al. [17] with manually tone-mapped SDR images. PDF assumes all images are in SDR/sRGB format. Thus, the HDR images appear desaturated. Still, the

gain map results exhibit spurious colors, compression artifacts, and aberrations in the standard approach, while the gamma map alleviates these artifacts.

Especially noticeable are the overshot highlights visible at high-contrast edges in the Gain images. ∆E00 heat maps are included to aid in localizing artifacts,

where the maximum value is set to ten ∆E00. The mean ∆E00 for each map is shown in the bottom right corner.
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a color grading platform. To accomplish this task, the colorist
employed global non-linear mappings and local contrast adjust-
ments via image segmentation. A Sony BVM-X300 with HDR
and SDR calibration profiles was employed as a reference moni-
tor. The HDR profile was set to a peak white luminance of 1,000
cd/m2 and ST. 2084 [24] decoding function, while the SDR pro-
file was calibrated to BT.709 (100 cd/m2, 2.4 gamma). The col-
orist switched profiles to properly compare the two renderings.
In this way, the SDR/HDR image pairs were derived with an au-
thentic cinema workflow.

To account for alternative mappings between SDR and
HDR, the HDR images were processed by automatic tone map-
ping methods representative of the three major categories from
the review of Ou et al. [12]. To do this, HDR images were
transformed to a display linear representation with BT.709 pri-
maries (without clipping or quantization) such that they were out
of range and required tone mapping. Then, the methods of Drago
et al. [13] (log-based), Reinhard et al. [7] (exposure-based) and
Larson et al. [14] (histogram equalization) were employed via
their MATLAB HDR toolbox implementation from Banterle et
al. [25] with default parameters.

Comparisons
The existing gain and proposed gamma map frameworks

were implemented in MATLAB as described above. Bicubic re-
sizing was employed to obtain the 1/4 resolution version, and
the gamma parameter was not used. JPEG gain map images were
stored with the quality parameter set to 90 out of 100.

We employ an HDR native metric (HDR-VDP3 [26]) which
has been designed to predict visual sensitivity to image differ-
ences in HDR luminance regimes via psychophysical experimen-
tation. To account for color differences, we employ the CIE Delta
E 2000 color difference metric (∆E00) on a pixel-wise basis. Fol-
lowing the recommendation from Sugito et al. [27] on HDR met-
rics, we also apply the Visual Information Fidelity (VIF) metric
to reconstructed HDR signals encoded as described in the previ-
ous section. This work demonstrated that applying this standard
SDR metric to HDR encoded images achieves a higher correla-
tion to observer opinion scores of block-based compression arti-
facts than native HDR metrics.

Quantitative Results
Table 1 shows the comparison of the proposed gamma map

variation versus the standard gain map framework for encod-
ing a variety of tone mapping differences. The gamma map
framework shows consistent improvements with respect to HDR-
VDP3, mean ∆E00, and PQ VIF while maintaining the resulting
metadata size.

Qualitative Results
Figure 2 compares the proposed and standard approaches

for several images from the dataset tested in Table 1. It can be
observed that the spurious JPEG artifacts are alleviated by the
gamma map framework in a number of examples. Pixel-wise dif-
ferences are visualized in ∆E00 heat maps, where the maximum
value is set to ten ∆E00.

Discussion
Using the simple algebraic variation of gamma maps, we

show in Table 1 that we outperform the existing gain map frame-
work with the same metadata memory footprint. The qualitative
results of Figure 2 further emphasize the benefits of the proposed
variation which alleviates acute JPEG artifacts.
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Figure 3. Compression artifacts are alleviated in gamma maps because

their values are better distributed than those of gain maps. This is demon-

strated by plotting their maximum histogram values (the quantity of the most

common pixel) for each manual tone-mapping pair in ascending order of

gamma map value.

Analysis of the residuals showed that gain maps resulted in
a distribution of values that were more likely to cluster tightly
around the max value, which is a less efficient use of the quan-
tization space. Gamma maps, on the other hand, resulted in dis-
tributions which occupied a wider range with a lower max value.
This is demonstrated in Figure 3, which shows the maximum his-
togram value max(max(r),max(g),max(b)) for gain and gamma
maps of each image pair in the manual dataset in ascending order
across the x-axis.

There is a relevant distinction between the logarithmic en-
coding of the proposed variation and that of the existing frame-
work. While our proposed variation works in the image inten-
sity domain, the existing framework’s logarithmic and exponen-
tial processing steps occur during normalization in the domain of
pixel-wise gain. Here, small values are not necessarily correlated
to low intensity, losing the perceptual alignment of the proposed
variation. The result is that variations in the non-linear encoding
parameters of the existing framework trade quality for metadata
size, while we improve quality and maintain metadata size.

Conclusion
The current display ecosystem needs a dynamic encoding

scheme to facilitate transformations between displays with vary-
ing reproduction capabilities, that are viewed in varying envi-
ronments with varying brightness settings. Specifically, a stan-
dard for encoding arbitrary local mapping transforms in the form
of a gain map of pixel-wise linear scalar values between im-
ages rendered for SDR and HDR display has been proposed
by major technology developers. While effective for encoding
the transforms in a manner which is not restrictive to mastering
artists, the suggested technique is heavy and prone to artifacts
related to its compression. We propose a variation to this stan-
dard where pixel-wise exponents are calculated. We demonstrate
through qualitative and quantitative experiments that this encod-
ing improves results by alleviating compression artifacts. For
future work we are interested in conducting psychophysical ex-
perimentation into the ideal intermediate representation between
dynamic range renderings.
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