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Abstract
The primary objective of this paper is to demonstrate the

utility of symplectic numerical techniques for ray tracing within
gradient-index media. The relevant mathematics are explained
in brief, deriving the optical Hamiltonian independently of the
Lagrangian optical formalism before constructing a symplectic
ray tracing algorithm. Numerical experiments with the Lüneburg
and Maxwell fish-eye lenses compare the effectiveness of sym-
plectic methods with standard numerical integration techniques,
challenging the idea that the increased accuracy of higher-order
numerical methods justifies their elevated computational cost.
Further uses for symplectic ray tracing are also discussed.

Introduction
Symplectic ray tracing is born out of Hamiltonian optics,

first described by William Rowan Hamilton in his 1828 paper
Theory of systems of rays [13]. Indeed, Hamilton’s formalism
was then applied to dynamics more generally [12], where it is
now a fundamental component of undergraduate courses in both
classical and quantum mechanics [8, 9]. While several volumes
have been published specifically on Hamiltonian optics [4, 24,
28], Hamilton’s analysis is seldom exploited to its full potential,
typically being neglected in favour of an equivalent Lagrangian
framework, which has proven useful for ray tracing in gradient-
index (GRIN) media [15, 20, 25].

Nonetheless, by adopting the Hamiltonian perspective, we
may construct numerical techniques for ray tracing in GRIN
media that are both accurate and computationally inexpensive.
Since the calculation of ray trajectories in GRIN lenses typically
requires the solution of a nonlinear partial differential equation
which is only analytic in certain cases [19], symplectic numeri-
cal methods prove to be valuable tools for nonlinear ray tracing.

Unfortunately, a number of problems plague the literature
examining applications of symplectic numerical techniques in
optics. Often, notation tends to vary between authors, making
the assimilation of results from disparate papers difficult. More-
over, these papers are usually mathematically dense, demanding
some familiarity with group theory and differential geometry of
the reader in order to be fully understood [1, 2].

This publication, by comparison, seeks to minimise the use
of mathematics that may be unfamiliar to optical engineers by fo-
cusing on the tangible benefits of symplectic integration schemes
rather than placing any undue emphasis on their more abstract
characteristics. To this end, the mathematical preliminaries nec-
essary for the construction of symplectic numerical techniques
are provided before comparing their accuracy with a number of
common nonsymplectic numerical methods. To the best of the
author’s knowledge, the first instance of benchmarking for sym-
plectic algorithms when applied to ray tracing problems is also
presented. The paper then concludes by suggesting applications
for symplectic methods in optics and computer imaging.

An overview of Hamiltonian optics
Numerous treatments of Hamiltonian optics begin by deriv-

ing an optical Lagrangian as a consequence of Fermat’s principle
before performing a Legendre transform on this Lagrangian to
obtain the associated optical Hamiltonian [14, 29, 30]. Here, we
dispense with this procedure entirely, instead deriving the optical
Hamiltonian directly from the eikonal equation [26]
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where n(x,y,z) is the refractive index, and S is the optical path
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thereby providing us with definitions for the optical momenta
px, py and pz, so called due to their similarity to momentum in
mechanics. Likewise, we find
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By defining dt = ds
n , we reduce (1) from a partial differential

equation to a system of ordinary differential equations
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However, to avoid confusion, some caution is warranted.
Although the parameter t is analogous to time in a dynamical
system and is even referred to as time in existing literature [21,
27], it does not represent physical time. Nevertheless, by making
this change of variables, the optical momenta simply become the
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Figure 1. Differences between symplectic and nonsymplectic methods. By using the momentum calculated during the same iteration to update the ray’s

position, symplectic methods typically return more accurate results.

direction cosines for their respective axes. Moreover, by letting
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we obtain Hamilton’s equations. Solving the system in (5) then
yields the requisite optical Hamiltonian

H =
1
2

(
p2

x + p2
y + p2

z −n2(x,y,z)
)
. (6)

Constructing a symplectic numerical method
The merits of Hamilton’s formulation of geometric optics

become more apparent by examining the dissimilarities in the
behaviour of symplectic and nonsymplectic numerical methods.
Figure 1 illustrates how a ray’s position and optical momentum
calculated during each iteration are handled differently by each
method. A nonsymplectic method will update a ray’s optical mo-
mentum and position using data obtained exclusively from the
previous iteration, while a symplectic method initially calculates
the ray’s optical momentum, then, with this updated momentum,
it obtains the ray’s position during the same iteration. Hence,
the error of a symplectic method remains bounded for a greater
number of iterations when compared with an equivalent nonsym-
plectic method [6, 10, 11].

The application of symplectic methods to ray tracing in
GRIN media is made possible by the fact that (6) is of the form
H = P(px, py, pz)+N(x,y,z), making it separable. This allows

the terms dependent on the ray’s position and optical momentum
to be treated independently. Symplectic numerical methods for
separable Hamiltonians are constructed via splitting, giving two
separate iterative schemes to calculate the position and optical
momentum of a given ray. First, however, we rewrite Hamilton’s
equations in matrix form
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= {z,H}, (7)

where z = (p,q), p = (px, py, pz)
T , q = (x,y,z)T and
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is the Liouville operator [5]. It is now possible to express (7) as
an ordinary differential equation ż = DHz, whose solution is

z(t) = z(0)exp(tDH). (9)

Recalling that (6) is separable, if we further define
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(10)

we observe DH = DP +DN . Expansion of the exponential yields

exp
[
t(DP+DN)

]
=

m

∏
i=1

exp(tciDP)exp(tdiDN)+O(tm+1), (11)

36 Society for Imaging Science and Technolgy



where ∑
m
i=1 ci = ∑

m
i=1 di = 1 and m is the order of the symplectic

method. From the definition of the matrix exponential, we write
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To eliminate the possibility of confusion with the imaginary unit,
k replaces i as the index in (12). Performing a Taylor expansion
with m = 1 then yields dk = ck = 1, i.e.(

exp(tckDP)
exp(tdkDN)

)
≈
(

I + tDP
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)
(13)

Finally, multiplying the expansions in (13) by zn = (pn,qn), we
obtain the symplectic Euler method [11]

pin+1 = pin −∆t
∂N
∂qi

(qin),

qin+1 = qin +∆t
∂P
∂ pi

(pin+1),

(14)

where ∆t is the step size between successive iterations. Similarly,
higher-order symplectic methods can be constructed using frac-
tional step sizes and by choosing appropriate values for ci and di.
However, finding the optimal values for these coefficients is often
a tedious exercise in and of itself [7, 18, 31].

Results of numerical experiments
The Lüneburg lens

The Lüneburg lens is a radially symmetric, spherical lens
capable of focusing incoming axially collimated rays to a single
point on the lens’ surface [16]. The majority of its applications
to-date have been in the radio spectrum, such as a focusing ele-
ment in radio telescopes and automotive radar [22, 23]. Recently,
however, it has also seen increased use with visible light, being
incoporated into silicon photonic devices [3, 32]. Its refractive
index is given by

n(x,y) =

√
2− x2 + y2

R2
0

, (15)

where R0 is the radius of the lens and 0≤ x2+y2 ≤R2
0. Its optical

Hamiltonian is therefore

HLüneburg =
1
2

(
p2

x + p2
y +
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R0

)
−1. (16)

Figure 2 depicts a ray trace through the Lüneburg lens, compar-
ing the accuracy of first-, second-, and fourth order symplectic
(symplectic Euler, velocity Verlet [10] and Ruth’s method [7])
and nonsymplectic (Euler’s method, RK2 and RK4) methods.
The inset examines the behaviour of each method in detail as
it approaches the focal point. The exact solution is also shown.
The velocity Verlet method outperforms all other methods, in-
dicating the use of a higher-order numerical integrator does not
guarantee greater accuracy. The symplectic Euler method vastly
outperforms its nonsymplectic counterpart, while differences in
accuracy between symplectic and nonsymplectic methods seem
to diminish with increasing order. Figure 3 further confirms these
findings, containing the error of each method for various step
sizes. Figure 4 presents the median computation time required

to complete a ray trace for each method. Simulations were car-
ried out using a Dell™ Inspiron 5570 computer with an Intel®
Core™ i7 CPU and 8 GB DDR4 RAM running on battery power.

At larger step sizes, the symplectic Euler method appears
noticeably faster than the standard Euler method, presumably as
it does not need to store data from the previous iteration in mem-
ory to perform each subsequent iteration, though this advantage
reduces with the step size. The second-order velocity Verlet and
RK2 methods follow a similar trend, with Ruth’s method being
slower than RK4 by more than half an order of magnitude. While
both fourth-order methods exhibiting a reduction in the required
computation time once ∆t is brought below 10−2, further inves-
tigation is required to ascertain whether or not this unexpected
trend persists with a greater number of trials.

Maxwell’s fish-eye lens
The Maxwell fish-eye lens was first described by James

Clerk Maxwell as a spherical lens capable of directing incident
rays along circular arcs [17]. The refractive index required to
produce such ray trajectories is described by

n(x,y) = n0

(
1+

x2 + y2

R2
0

)−1

, (17)

where R0 is the lens radius with 0 ≤ x2 + y2 ≤ R2
0 as before and

n0 is the refractive index at the surface of the lens. Thus, the
optical Hamiltonian for Maxwell’s fish-eye is
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1
2
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n2
0R2

0
(R0 + x2 + y2)2

)
. (18)

Figure 5 shows a ray trace for the Maxwell fish-eye lens with
n0 = 2, meaning that no refraction will take place at the lens sur-
face when it is immersed in air. Examining the inset, we see once
again that the velocity Verlet method focuses closest to the exact
solution, followed by RK2, RK4 and Ruth’s methods, with the
standard Euler method’s lack of accuracy also becoming more
apparent when applied to the Maxwell fish-eye.

In Figure 6, the error of each method appears to decrease
exponentially with a reduction in step size. The velocity Verlet
method is once again a notable exception to this trend, offering
a reduction in error of almost an order of magnitude when com-
pared with the RK2 method. For ∆t < 5×10−2, any differences
between RK4 and Ruth’s methods are virtually indistinguishable.

Considering the median computation times presented in
Figure 7, we see a substantial increase in the time required to ray
trace Maxwell’s fish-eye for all methods with ∆t < 10−4 when
compared with the Lüneburg lens. Again, the velocity Verlet
method renders Ruth’s method and RK4 redundant, being not
only more accurate than them both, but also appreciably faster.

Conclusion
This work emphasises the value of symplectic ray trac-

ing techniques in GRIN media, with the velocity Verlet method
showing particular promising due to its disproportionately low
error. Results presented here make a strong case for testing other
symplectic methods with Lüneburg and Maxwell fish-eye lenses
in addition to other GRIN optics for which analytical ray traces
do not exist. However, symplectic ray tracing methods will need
to account for chromatic effects before being capable of fully
characterising any GRIN element. While symplectic numerical
methods find an obvious application in optical design, they may
also reduce the computational cost of nonlinear GPU ray tracing
and other techniques used to render digital images.
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Figure 2. Numerical ray trace through a Lüneburg lens of radius R0 with

∆t = 0.10 and initial conditions: x0 =−0.75R0, y0 =
√

1− x2
0, px0 = 1, py0 = 0.
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Figure 3. Error in ray tracing the Lüneburg lens for a variety of step sizes.

The error is defined as the distance between the exact and numerical focus

along the lens perimeter expressed as a fraction of the lens circumference.
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Figure 4. Median computation time required by each method to ray trace

the Lüneburg lens. 50 trials were used to calculate each median time.
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Figure 5. Numerical ray trace through a Maxwell fish-eye lens with n0 = 2.

All other parameters and initial conditions are identical to those in Figure 2.
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Figure 6. Error in ray tracing Maxwell’s fish-eye lens for each method.

The error is defined as the distance between the exact and numerical focus

along the lens perimeter expressed as a fraction of the lens circumference.
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