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Abstract 
Iridescent objects and animals are quite mesmerizing to 

look at, since they feature multiple intense colors, whose 
distribution can vary quite dramatically as a function of viewing 
angle. These properties make them a particularly interesting and 
unique stimulus to experimentally investigate the factors that 
contribute to single color impressions of multi-colored objects. 
Our stimuli were 3D printed shapes of varying complexity that 
were coated with three different types of iridescent paint. For 
each shape-color combination, participants performed single- 
and multi-color matches for different views of the stationary 
object, as well as single color matches for a corresponding 
rotating stimulus. In the multi-color matching task, participants 
subsequently rated the size of the surface area on the object that 
was covered by the match-identified color. Results show that 
single-color appearance of iridescent objects varied with shape 
complexity, view, and object motion. Moreover, hue similarity of 
color settings in the multi-color match task best predicted single-
color appearance, however this predictor was weaker for 
predicting single color matches in the motion condition. Taken 
together our findings suggest that the single-color appearance 
of iridescent objects may be modulated by chromatic factors, 
spatial-relations and the characteristic dynamics of color 
changes that are typical for this type of material.    

1 Introduction   
Iridescence refers to the phenomenon that the color of an 

object changes with viewing angle. It can occur for example, on 
bird feathers, fish scales or beetles and is believed to have some 
important biological functions [1][2][3]. Also, many non-living 
things like soap bubbles, oily films on water, or mother of pearl 
have iridescent qualities. Iridescence is an appealing optical 
phenomenon that can have multiple physical causes and to 
understand, model and produce iridescent materials is an active 
area of research [4][5][6][7][8].  

Describing the color appearance of an iridescent object is 
challenging with a single-color term, for the above reason (also 
see a nice early treatment of this in [9]). Consider, for example, 
the iridescent objects in Fig.1A. Each column shows one type of 
iridescent paint that each features about 2-3 prominent colors. 
How would one go about deciding the dominant color for each 
one of these? Is the object in Fig1. A.1 purple with some green 
or vice versa? How about the object in Fig.1 A.4? What does this 
decision depend on? The saturation or salience of a color? The 
hue similarity of colors? Or more geometrical aspects e.g., how 
much area on the object is taken up by a color, or whether a color 
is located towards the object boundary or the center? A decision 
based on geometrical factors is likely to get complicated, because 
as the shape of the objects gets more undulated (rows), the spatial 
distribution of colors on the object becomes more complex, since 
the ‘occurrence’ of a given shade of color is dependent on the 
angle between surface normal and line of sight. While our 
thought experiment highlights the challenges that one might face 
when color categorizing iridescent objects, it is precisely these 
properties that make them a particularly interesting class of 
stimuli to study color appearance and categorization of 

multicolored objects per se, because they allow us to test several 
specific geometric and colorimetric hypotheses in single object 
color perception.   

Even for non-iridescent stimuli, forming a single-color 
impression of multicolored objects is a potentially complicated 
process, as the color impression not only requires invariant 
estimates of hue, saturation, and brightness of the object’s color, 
as would be the case for uniformly colored objects (e.g., as in 
[10]), but also requires some type of additional process that 
integrates multiple colors into a single-color impression.  

Figure 1. Stimuli. Photos of the three shapes (rows) coated each with three 
types of goniochromatic paints (provided by SCHLENK Metallic Pigments 
GmbH). See [11] for photography details. Shapes were approximately 14 
cm in diameter which corresponds to about 16.5 deg visual angle. Viewing 
angles were chosen to maximize appearance variation. Panel A shows 
stimuli organized according to shape complexity (rows) from lowest (shape 
1) to highest (shape 3). Panel B shows shape 2 in each paint, at three 
possible views, as an example to illustrate the marked changes in 
appearance that can occur across viewing positions. These changes are 
most pronounced at intermediate levels of shape complexity. Note that the 
views chosen differed slightly between the differently painted objects. This 
was because the insertion point for the metal stand was not identical 
between same-shaped objects. This variation is not relevant to any of our 
results or the overall conclusion. 

One such process could be photometric averaging. Using 
random dot stimuli consisting of two shades of color with the 
same hue and brightness, but different saturation, [12] tested this 
idea and found that the visual system does not rely on a 
photometric average color to form a single-color impression of a 
multi-colored stimulus. Rather, it integrates the color 
appearances (perceived hue, saturation, brightness) of individual 
colors to form a single-color impression. Moreover, the single-
color impression was shifted to the more saturated color. In a 
similar experiment, [13] found that the greater the range of colors 
in a mosaic pattern the more participants’ color matches deviated 
from the photometric average of a given stimulus, showing that 
the element with the highest saturation strongly influenced the 
single-color impression and that photometric averaging is less 
likely to occur for dissimilar hues. These studies provide insights 
into when photometric averaging might come into play when 
forming single color estimates of multi-colored stimuli. 
However, it is not clear how well these results that were obtained 
with simple random dot and checker patterns will generalize to 
more natural objects that often exhibit larger patches of varying 

https://doi.org/10.2352/lim.2023.4.1.29
©2023 Society for Imaging Science and Technology

 

122 Society for Imaging Science and Technolgy



 

 

color or that have smooth transitions between different color 
patches.  

[14] used such natural stimuli, asking participants to 
classify fall leaves as red or green.  The leaves were shown as 
photographs and exhibited red and green patches to various 
amounts. The authors found that participants’ responses could be 
well predicted by the image-based average hue angle of a given 
leaf (regardless of saturation and brightness), with the individual 
participant’s unique yellow hue angle serving as a boundary 
between red and green, and they concluded that participants 
based their decision on an extraction of an average hue. The 
authors also tested image manipulations that changed the shape 
of the chromatic distribution of the leaves, while leaving the 
mean color intact. If participants relied on an average hue angle 
to determine the single-color impression of a leaf, then one 
would assume that their categorizations should remain the same, 
which was mostly the case, but for some leaves, there were 
changes in categorization consistent across participants. While 
the authors hold on to their general interpretation, namely, that 
participants extract an average hue angle and compare it to their 
internal decision boundary of unique yellow to form their 
decision, they also acknowledge that for those cases where the 
classification changed for flipped stimuli, there must be 
additional factors, that could influence the decision in addition 
to the average hue. Potential explanations for the change in 
categorization for stimuli near the unique yellow decision 
boundary might have been subtle changes in apparent saturation, 
or changes in the spatial distribution of red and green colors 
brought on by the pixel value flip. In fact, inspecting their Fig. 
12 [14] it seems like the color that the leaf was more often 
categorized as, was also the color that occupied more of the leaf’s 
surface.  

Taken together, results from the reviewed literature suggest 
that single color estimation of multicolored objects is a complex 
process that is modulated by several factors, including chromatic 
properties, e.g. saturation or hue similarity of colors, and 
geometric aspects, e.g. the amount and location of a color patch 
on a surface. However, research still needs to be done to fully 
map out and understand the complex interplay of these factors. 

In the experiments described below, we use the well-
established color matching paradigm by [10] together with a 
novel type of stimulus, namely manufactured, iridescent objects 
of varying shape complexity (Fig. 1A) to advance our knowledge 
on the formation of single-color impressions of multicolored 
objects. The iridescent paints feature color combinations with 
similar (Fig. 1A, column 2) and dissimilar hues (Fig. 1A, column 
1), as well as combinations with more and less saturated hues 
(Fig. 1A, column 3, for a less saturated example), which allows 
us to test to what extent hue similarity and saturation predict the 
overall color appearance of these objects. Moreover, the complex 
relationship between the occurrence of a color, object geometry 
and viewing angle not only lets us investigate whether the total 
area, or coverage, of a color on the object predicts overall color 
appearance but also more specific questions, i.e., to what extent 
the location of a color patch modulates appearance, e.g., whether 
a color patch occupies central or near-contour regions on the 
object. Finally, color changes on iridescent objects are especially 
dramatic as the object moves, or as we move with respect to the 
object. This feature opens unprecedented possibilities to 
investigate how object motion and associated changes in 
appearance over time modulate single color impressions. Details 
of how we test each of these questions are described next.  

2 Methods 

Participants, Stimuli & Apparatus 
Seven voluntary participants (undergraduate students, f:4, 

age range: 21-24; m:4; age range 23-24) with normal or 
corrected-to-normal vision participated in the experiments, and 
were reimbursed for their efforts. All experiments were approved 
by the local ethics review board and conducted in accordance 
with the Declaration of Helsinki.  

Three different shapes of three levels of complexity each 
[15][16] were 3D printed. To generate the goniochromatic color 
stimuli, the objects were coated with different, silica flake-based 
effect pigments (produced by Schlenk Metallic Pigments GmbH, 
see [6] for details, and Fig. 1A). These shape-color combinations 
created a unique color appearance for each stimulus that could 
vary profoundly as a function of viewing angle (Fig. 1B). Objects 
were illuminated by standard office neon tube lighting and were 
mounted on a metal stand that was 16 cm in height and placed 
inside a large white box (78 x 59 x 53 cm), with an opening at 
the top, a viewing slit (15 x 3.5 cm) for the participant at one side 
and a door for the experimenter (for easy exchange of the stimuli) 
at the opposite side. Stimuli were either placed on a pedestal or 
a rotating disc (counterclockwise rotation at 2rpm), both 6 cm in 
height and approximately 48 cm away from the viewing slit. 
Participants performed appearance tasks on a calibrated 
computer monitor (ColorEdge CG223W; EIZO Corporation; 
Hakusan, Japan) that was positioned next to the white box, so 
that participants could easily change their gaze between stimulus 
and monitor. The computer running the experiment was a Dell 
Precision 390 Desktop (Dell, Inc.; Round Rock, Texas, USA) 
using Windows 7 Professional (64-bit) as operating system with 
Service Pack 1 (Microsoft Corporation; Redmond, Washington, 
USA) with a NVidia Quadro 2000 graphics card (Nvidia 
Corporation; Santa Clara, California, USA). Experimental 
programs were written in MATLAB (R2007b) using 
Psychtoolbox (SVN Revision 4881, cloned from Github) 
[17][18][19]. 

Procedure 
The experiment was divided into a static and a motion 

block.  Participants completed three tasks in the first and one task 
in the second block. In the static block, on every trial, the 
experimenter placed a randomly chosen (via computer program) 
stimulus on the pedestal in the presentation box. Note, that 
objects of the same paint were never shown on consecutive trials. 
Participants were instructed to not look through the viewing slit 
during the placement to prevent them from seeing the object in 
motion and at different viewing angles. The first task on a given 
trial was to choose a single color to describe the object, by 
adjusting the hue, saturation and lightness of a circular test patch 
presented on the monitor (single match task). To do this, the 
participant used a computer mouse to navigate through the DKL 
color space. Participants could lock the color by clicking space 
and they pressed “F” and “Enter” on a keyboard to confirm their 
answer. For the second task on a given trial, participants could 
color-adjust two or three circular patches to indicate multiple 
colors that they perceived to be most prominent on the object 
(multi-match task). Participants indicated, for example, ‘2’, if 
they perceived only two prominent colors. In that case they 
would only be presented with two disks for the color adjustment 
task. Following this, in the third task, participants saw the results 
of color adjustments of task 2 and, by moving sliders, indicated 
the relative area on the object that was covered by each of the 
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colors. The sliders were not yoked so it was technically possible 
to give answers that do not add up to 100%. During a trial, 
participants were allowed to look at the object as often and as 
long as they wanted. When they were finished, they told the 
experimenter who then put the next object in the box. Overall, 
participants completed 27 trials (3 colors x 3 shapes x 3 views) 
in the first block. 

In the second block all nine stimuli were placed in random 
order on the rotating disc and participants had to perform the 
single-color adjustment task (motion match). Participants were 
instructed to watch at least one full rotation of the object (which 
took about 30 seconds). 

Analysis 
Color settings were recorded in CIELab coordinates. For 

the analyses, we focus on the hue of the setting, i.e., the a* and 
b* coordinates, or the corresponding hue angle of the color 
settings. To determine whether the hue angle of the single-color 
settings in the static condition varied as a function of paint, shape 
and view, we conducted a three-way ANOVA, and a 
corresponding two-way (shape x paint) ANOVA for the motion 
condition. We opted for a linear ANOVA because the range of 
hue angle settings did not cross between the lower and upper 
right quadrants in CIELab space. To assess the hypothesized 
potential modulatory influence of object motion on single color 
appearance, we then performed a regression analysis measuring 
the extent to which hue angles in the motion conditions could be 
predicted from hue angles in the static conditions, and whether 
hue angles tended to shift more towards values that were present 
near the contour regions of the object. Next, in order to identify 
what determines single color appearance specifically, we used 
regressions to predict the hue angle of single-color settings in the 
static and motion conditions from the hue angle of the setting 
that had the maximum saturation, the most similar hue, and the 
highest coverage, as indicated by the observer. 

3 Results & Discussion 

Influences of paint, shape and view on single 
color matches 

Fig. 2 depicts participants’ color settings in CIE L*a*b* 
space for view 1, paint 1, each shape (rows), and each task 
(column), as well as corresponding bar plots for single- multi- & 
motion conditions, where the perceived area of a given color on 
the object is indicated by the size of the bar segment.   

Overall and qualitatively, we can see that observers’ color 
settings varied not only with the type of iridescent paint but also 
across shapes (i.e., shape complexity), and views (see Fig. 3). 
The three-way (paint x shape x view) ANOVA yielded a 
significant main effect of paint F(2, 162)=3.61 p<0.05, and a 
significant interaction of shape and view F(4, 162)=2.45 p<0.05. 
Following up the interaction with 3 one-way ANOVAs (one for 
each shape) we found, however, no significant effects of view, 
which makes this interaction challenging to interpret. A potential 
modulation of color setting by shape and view would be 
interesting. In Fig. 1 we see that the same kinds of colors exist 
on each shape and for each of the views, however, the amount 
and distribution of colored areas on the object’s surface vary. 
This change in color ‘layout’ or geometry could influence how 
we judge an object’s overall color. In future experiments we will 
investigate potential geometric effects in more detail. 

Interestingly, the modulatory effect of shape in combination 
with view to single color judgments disappears as the object 

rotates: in the motion condition, a two-way (paint x shape) 
ANOVA yields only a main effect of paint (F(2, 54)=12.87, 
p<0.05). This suggests that motion may have some ‘overriding’ 
effects. 

Figure 2. Color settings as a function of shape complexity in single and 
multi-match tasks for view 1 and paint 1. Left: color settings of observers in 
all tasks are plotted in CIELab. Right: color settings are shown as lists of 
horizontal bars for each observer, where the length of the bar segment for 
the multi-setting task indicates the amount of coverage. For plotting, color 
values were converted from CIELab to RGB. Figures for paints 2 & 3 can 
be found at https://doi.org/10.1101/2023.04.12.535824. 

The rotating stimuli looked quite mesmerizing, with some 
of the colors swirling like large, saturated highlights across the 
surface. Perhaps these effects captured the participants’ overall 
attention, or modulated their overall parsing of the stimuli, e.g., 
some kind of scission [20] separating the colors into base, i.e. 
belonging to the object (e.g. stationary, or slow moving parts) 
and highlight i.e., not belonging to the object (e.g. changing, or 
fast moving colors). We will further assess the changes in 
appearance in the motion condition below.  

Figure 3. Color settings as a function of paint, shape and view for single 
and multi-match tasks. Shown are color settings for views 2 and 3. Data are 
plotted as bars as in Fig.2. Overall, 3-color matches were more frequent for 
paints 1 (39 vs 24) and 3 (47 vs 16) but less frequent for paint 2 (29 vs. 34). 
This difference is likely due to the different degrees of hue similarity in each 
paint. Participant labels (P1-7) as in Fig.2. 

The variability in hue angle setting (of single match tasks) 
between observers was overall lowest for paint 2 (23.3) and 
about equal for paints 1 and 3 (53 & 50.72, respectively (Fig 4.). 
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This is not surprising, since the hues present in paint 2 were 
located much closer in CIELab space than those for paints 1 and 
3 (see also Fig. 1). A sign test comparing variability differences 
between static and motion conditions yielded a significant result 
z=2.5, p=.0123 (two tailed). Variability tended to decrease in the 
motion condition for the majority (8 out of 9) of paint-shape 
combinations, averaged across views. This reduction in 
variability would suggest that motion somehow yields visual 
information that is utilized in a more similar fashion across 
observers. 

Modulatory effects of motion in single color 
matches  

We see in Fig. 2, that single color settings for the same 
observer tended to change somewhat between static and motion 
conditions. Results of the regression analysis between hue angle 
settings of static and motion conditions are depicted in Fig. 5. 
Hue angle in the static condition was not a perfect predictor of 
hue angle in the motion condition (R²=.17, R²=.32, R²=.03, for 
views 1, 2, and 3 respectively). Why might this be? For the 
simplest shape in Fig. 1, we see that central and peripheral 
regions on the object have distinct color appearances.  

This relation (center-edge color) gets more complicated as 
the shape gets more complex. When we rotated our iridescent 
objects, the central region tended to look more dynamic, almost 
like a colored highlight sliding across the object. If this was also 
what observers perceived, we expected their color matches to 
shift more towards the color that was present near the object 
boundary.  

Figure 4. Mean observer variability in hue angle. Plotted is variability in hue 
angle as a function of shape (S1-3), paint (C1-3), view (V1-3) and task (S 
single, M multi, D motion). Darker colors imply less variability. Overall 
variability was lowest for paint 2.  

However, we also expected this effect to vary with shape 
complexity and paint. To assess this, we performed k-means 
clustering on hue angles for single color settings, forcing the 
number of clusters to n=2, and counted the number of items in 
each cluster. We used the hue of the centroids obtained from 
settings of the simplest, sphere-like shape to label a cluster as 
‘center’ or ‘edge’, e.g. for paint 1 purple is the center and green 
is the edge.  And finally compare the counts in center and edge 
centroids across static and motion conditions. Fig. 6 shows that 
only for paint 1, the shift in hue angle occurred in the expected 
direction. For paint 2, the shift occurred in the opposite direction 
and for paint 3, motion did not modulate the number of settings 
corresponding to center and edge colors. A three-way ANOVA 
(paint x shape x rotating (yes, no)) supports these observations, 
yielding a significant main effect of paint F(2, 234)=12.56, p < 
0.05 and a significant interaction of paint and rotating F(2, 
234)=4.5, p < 0.05. Following up the interaction, we see that only 
for paint 1 and 2 hue angle settings tended to differ, which 
suggest that motion modulation depends on the similarity of hues 
present on an iridescent object (paints 1 and 2 exhibit colors that 
are more dissimilar in hue).   

Overall, while these effects of object motion on perceived 
color may be somewhat surprising, for other kinds of perceived 
surface material properties, like glossiness, its modulatory 
effects are well established [21]. 

Figure 5. Predicting hue angle settings in the motion condition from hue 
angles in static condition. Shown are the scatter plots between the static 
single setting conditions (each view) and the motion condition, and 
corresponding regression lines. R² denote the squared circular correlation 
coefficients. 

Figure 6. Center-to-edge shift of perceived hue between single static and 
motion condition. Y axis plots the relative frequency of settings being 
classified as center or edge color using k-means clustering. Panels 1-3 
show results for corresponding paints. Results for the static condition 
combine data from all three views. 

Multicolor matches  
The multi-color setting condition provided data for testing 

specific hypotheses of what perceived stimulus characteristics 
determine single color appearance. Observers were given the 
option of matching up to three prominent colors that they saw on 
the object, and to indicate how much the object was covered by 
the color they indicated. To identify what determines single color 
appearance we computed three candidate cues outlined in the 
introduction and predicted the hue angle of the single patch 
setting from the hue angle of the multi-color setting that had the 
maximum saturation, the most similar hue, and the highest 
coverage. Note, that it was not known a priori that one of the 
multi match settings would be similar in hue to the single match. 
Observers could also have formed and matched an average hue 
for their single match setting (also tested below). In that case hue 
similarity would be a poor predictor. However, Fig. 7 (filled 
bars) shows that overall, hue similarity was the best predictor. 
Yet, its strength varied across shape complexity and paints: on 
average it tended to be strongest for paint 1 (mean R²: .79) and 
weakest for paint 3 (mean R²: .2), strongest for shape 2 (mean 
R²: .67) and weakest for shape 1 (mean R²: .38). Similarly, the 
prediction strengths of max saturation, coverage, average hue 
and average hue weighted by coverage also varied across shape 
and paints. Yet overall, their prediction tended to be much 
weaker compared to hue similarity. In fact, for 6 out of the 9 
shape x paint combinations, the hue similarity was the only 
significant predictor (i.e., 95% confidence interval of weight did 
not include 0).  Only in two cases, maximum coverage and in just 
one case, highest saturation also contributed.  Yet, in all cases, 
the weight of hue similarity was always at least 3x as large, 
sometimes being 6x as large. Finally, to test whether the relative 
contributions of these three predictors change when observers 
judge a rotating object, we performed the same regression 
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