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Abstract
In this paper, we present a novel technique that allows for

customized Gabor texture features by leveraging deep learning
neural networks. Our method involves using a Convolutional
Neural Network to refactor traditional, hand-designed filters on
specific datasets. The refactored filters can be used in an off-the-
shelf manner with the same computational cost but significantly
improved accuracy for material recognition. We demonstrate the
effectiveness of our approach by reporting a gain in discrimina-
tion accuracy on different material datasets. Our technique is
particularly appealing in situations where the use of the entire
CNN would be inadequate, such as analyzing non-square im-
ages or performing segmentation tasks. Overall, our approach
provides a powerful tool for improving the accuracy of material
recognition tasks while retaining the advantages of handcrafted
filters.

Introduction
Materials recognition involves identifying the type of ma-

terial a particular object is made of based on its appearance and
visual properties, such as color, reflectance, transparency, texture
and gloss [12]. In this context texture features can be extremely
useful for recognizing materials that have distinctive textural pat-
terns, such as wood, fabric, textiles, natural stone, concrete and
metal – to cite some. By contrast, texture analysis can be less
effective with those materials (e.g. glass or plastic) for which
other visual properties come into play, such as specularity, trans-
parency and gloss. We are therefore aware that texture features
alone can be effective only for materials that have distinctive
textured appearance, but may be less effective for materials that
have more subtle or complex properties requiring Bidirectional-
Reflectance-Distribution-Function (BRDF) measurements. Even
so, we must recognize that there are application contexts in which
only traditional RGB imaging techniques can be deployed.

Various techniques exist for extracting texture features
from images, including Gabor filters, local binary patterns, and
wavelet transforms (see [8, 9, 16, 13, 5] for recent surveys). In
the classic computer vision pipeline these features are typically
fed to some suitable machine learning algorithm – e.g. SVM,
Random Forest, etc. – to carry out material recognition. Convo-
lutional Neural Networks (CNNs), on the other side, have shown
very good performance in material recognition – and generally
better performance than conventional approaches – particularly
when large amounts of data are available [3, 10]. There are, how-
ever several situations in which classic computer vision could be
preferred, for example when:

• Real-time performance is critical and/or hardware re-

sources are inadequate;
• There are limited data for training;
• The task requires explainability and interpretability of the

material recognition process, the so-called Explainable Ar-
tificial Intelligence (XAI).

Another limitation of many CNN-based solutions for tex-
ture and material recognition is that they are bound to operate on
images of fixed shape and size, which results in two orders of
problems. First, the difficulty to analyse free-form images; sec-
ond, the fact that the resizing needed to make the input image fit
the field of view of the newtork may wipe out important textural
information. The latter, in particular, is critical when it comes to
classifying textures that look very similar to one another (surface
grading is one typical application).

In this paper we present a novel technique that allows
for customized hand-crafted texture features by leveraging deep
learning neural networks. Concretely, we propose a method that
utilizes a convolutional network to optimize banks of linear fil-
ters. By initializing the first convolutional layer of the network
with classic filter banks and training it on generic texture images,
the network modifies the filter weights for optimal performance.
As a case study we consider a classic Gabor filter bank and its
CNN-refactored version for texture classification. Experiment-
ing on seven independent datasets of texture images we show
that our approach generates optimized filters which outperform
the original ones (accuracy gain between 1.90 and 7.98 pp) at no
additional computational cost.

Method
Gabor filters represent a widely used tool for feature extrac-

tion, especially for texture and material images. There are several
explanations of their popularity, one is that Gabor filters mimic
the behaviour of simple cells in the primary visual cortex [18],
and they have been found to achieve optimal joint resolution in
the space and frequency domain [11]. Gabor filters are defined as
two-dimensional sinusoidal functions modulated by a Gaussian
envelope:

G(x,y) = exp
(
−x′2 + γ2y′2

2σ2

)
exp

(
2πix′

λ

)
, (1)

where x′ = xcosθ +ysinθ and y′ =−xsinθ +ycosθ . In the ex-
periments we used a bank of Gabor filters in the spatial domain
with three wavelengths (λ ∈ {k,k/

√
2,k/2}) and four orienta-

tions (θ ∈ {0,π/4,π/2,3π/4) all discretized and truncated to a
grid of k×k pixels. We set the spread σ of the Gaussian window
to (k − 1)/5 and the shape ratio γ to one (i.e.: circular filters).
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Figure 1. The original bank of Gabor filters before refactoring.

Real and imaginary part were considered separately, giving a to-
tal of 3×4×2 = 24 filters.

For the grid size we determined that k = 11 px was a good
trade-off between filter resolution and computational cost. Pre-
liminary tests indeed confirmed that this value was a reason-
able choice for most datasets of texture images. Furthermore,
k = 11 px is common size for filters in the first layer of con-
volutional neural networks. This plays an important role in our
strategy, as we shall discuss in the next section (see Figure 1).

Filter refactoring using CNN
We propose here, a method for the computation of tex-

ture features based on the refactoring of linear Gabor filters.
The method uses a Convolutional Neural Network especially de-
signed by the authors for texture classification. The network pa-
rameters are randomly initialized, except for those in the first
convolutional layer: these start the training as a bank of Gabor
filters, and become the new specialized feature extractors once
the training is completed.

The CNN was designed to process variable size images with
a stationary distribution of local features, like those typically
used in texture and material recognition. It is a fully convolu-
tional network up to the very last layers. A sequence of ten con-
volutions computes local features. These are processed as a set of
local descriptors, and combined into a single global feature vec-
tor by a pooling layer. A final softmax yields the class posterior
probabilities. All convolutions except the last one are followed
by the ReLU activation function and a batch normalization layer.
The architecture of the neural network is summarized in Table 1.

Architecture of the convolutional neural network. All convo-
lutional layers are followed by a ReLU activation function and
batch normalization.

Operation Image size

Input color image 192×192×3
Grayscale conversion 192×192×1
11×11 Convolution (stride 8) 24×24×24
3×3 Convolution (stride 1) 24×24×64
3×3 Convolution (stride 2) 12×12×64
3×3 Convolution (stride 1) 12×12×128
3×3 Convolution (stride 2) 6×6×128
3×3 Convolution (stride 1) 6×6×256
3×3 Convolution (stride 2) 3×3×256
1×1 Convolution (stride 1) 3×3×512
1×1 Convolution (stride 1) 3×3×512
1×1 Convolution (stride 1) 3×3×250
3×3 Average pooling 250
Softmax 250

The first convolutional layer is the most important. As de-
tailed in the previous section it uses a bank of 24 filters of di-
mension 11 px × 11 px. Its weights are initialized as a bank of
Gaussian filters, and they will evolve into the final feature extrac-
tors. The rest of the network makes use of the linear features to
classify texture images.

The network was trained with the Adam optimization
method on the ALOT dataset [1], which includes 25000 images
in 250 different classes of texture. Random cropping and rotation
was used to augment the training set. At the end of the training
the refactored Gabor filters were retrieved from the first convolu-
tional layer. The result is shown in Figure 2.

As can be seen most filters maintained their overall original
“shape”; observe, however, that non-zero weights now extend to
all the filter support (compare Fig. 1 and 2). In some cases, en-
tirely new patterns emerged. These filters can be used as simple
and cheap feature extractors, useful for those applications that
cannot afford to use CNNs. For each filter we computed the
mean and standard deviation of the magnitude of the transformed
images and formed a 48 dimensional feature vector.

Experimental results
To assess the quality of the refactored filters we designed

a set of experiments in which a linear Support Vector Classifier
(SVC) classifies material and texture images taken from several
datasets. More in detail, we used the following eight datasets
of texture or material images (see also Tab. 2 and Fig. 3 for
a recap): Amsterdam Library of Textures (ALOT) [1], that we
use for filter refactoring, and Columbia-Utrecht Reflectance and
Texture Database (CUReT) [19], KTH-TIPS [14], KTH-TIPS2b
[6], New BarkTex [17], Plant leaves [7], Salzburg Texture Image
Database (STex) [15], and USPTex [2], that are used for testing.

Each dataset was randomly split in a training and a test set of
equal size, and this process was repeated 100 times to ensure an
accurate estimate of the classification error made by the Support
Vector Classifier (SVC). For each split the SVC hyperparameters
were determined by grid search and five-fold cross validation on
the training set.

Table 3 compares the classification accuracy obtained by us-
ing the original Gabor filters and their refactored version. For all
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Figure 2. The bank of refactored Gabor filters.

datasets, the refactored filters clearly outperformed the original
ones, obtaining better accuracy in all the cases. The improve-
ment in accuracy ranged from a minimum of 1.23 pp (NewBark-
Tex) to a maximum of almost 8 pp (PlantLeaves). The average
improvement across all the datasets was about 2.85 pp.

Conclusions
Materials recognition is a computer vision task in which tex-

ture analysis plays a fundamental role. In this work we have pre-
sented a technique that allows for customized handcrafted tex-
ture features by leveraging deep learning neural networks. As a
case study we have shown how traditional Gabor filters can be
refactored to generate a bank of linear filters with better classifi-
cation accuracy and the same computational cost as the original
ones. The initial Gabor filters were modified by the network us-
ing ALOT as the training dataset and tested on seven independent
datasets using a simple linear SVC as the classification method.
We chose Gabor filters as our proof-of-concept since they are one
of the most popular approaches for texture description, and also
because of their close relationship with the early visual systems
of mammals [18]. Our method, however, extends seamlessly to
other banks of linear filters.

There is, in our opinion, still room for improvement in the
overall performance, e.g., using a different classifier or, further
refining the filters on a small set of samples from the specific do-
main of application. However, what we wanted to show was that,
not only can hand-crafted features be used to improve the perfor-
mance of networks, for example, through feature injection [4],
but that the reverse is also true: by using CNN networks not just

Datasets used in the experiments: summary table.

Dataset Classes Samples per class Image size

ALOT 250 100 1536 × 1024
CUReT 61 93 200 × 200
KTH-TIPS 10 81 200 × 200
KTH-TIPSb 11 432 200 × 200
NewBarkTex 6 273 64 × 64
PlantLeaves 20 60 128 × 128
STex 476 16 128 × 128
USPTex 191 12 128 × 128

Classification accuracy (%): original vs. refactored filters.

Dataset Original Refactored Improvemet

CUReT 89.23 92.51 +3.28
KTH-TIPS 90.35 91.84 +1.49
KTH-TIPS2b 88.16 89.51 +1.35
NewBarkTex 87.44 88.67 +1.23
PlantLeaves 73.23 81.21 +7.98
STex 72.40 78.00 +5.60
USPTex 82.96 84.86 +1.90

as simple black boxes it is possible to improve the performance
of hand-crafted features. The present investigation was limited
to the analysis of grey scale textures; in future studies we plan to
extend the method to colour textures.
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Figure 3. Samples of the texture images used in the experiments.
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