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Abstract

Material appearance perception depends both on the physi-
cal interaction between light and material, and on how our visual
system processes the information reaching our eyes. Currently,
there is a disconnect between the physical properties underlying
material appearance models used in simulations, and perceptual
properties that humans rely on when interpreting visual depic-
tions of material appearance. Our goal is to bridge this gap, cre-
ating high-level, intuitive descriptors of visual appearance that
are linked to the underlying physical properties of the material.
This can in turn benefit final applications such as material ap-
pearance editing, acquisition, gamut mapping, or compression.
Here, we review two approaches proposing representations of
appearance that are better aligned with human perception: one
based on the use of intuitive attributes, and another exploring the
use of natural language descriptions of material appearance. All
our data and models are publicly available.

Introduction

Our perception of material appearance depends on the phys-
ical interaction between light and material, but also on the final
image that reaches our retina and the processing that the human
visual system does of it. The former can be accurately simulated
for a wide variety of materials by means of light transport algo-
rithms, which work with physical magnitudes. However, when
humans need to interact with the resulting material depictions —
for instance, to edit or to specify a certain appearance—, these
physical parameters and simulations can fall short, because hu-
mans do not interpret visual information in terms of physical
magnitudes. An example of this is the depiction of materials in
art by the Dutch and Flemish masters of the 17th century: They
were experts at faithfully representing complex material appear-
ances such as satin or velvet, yet they were not doing so in a
physically-accurate manner (see Fig. 1).

Two ideas emerge from this that motivate our work: First,
there is a disconnect between the physical properties underlying
material appearance models used in simulations, and perceptual
properties that humans rely on when interpreting visual depic-
tions of material appearance. Second, there are alternative rep-
resentations of appearance that can be better correlated with the
way humans perceive it. Our goal is to bridge the gap, creat-
ing high-level, intuitive descriptors of visual appearance that are
linked to the underlying physical properties of the material. This
can in turn benefit final applications such as material appearance
editing, acquisition, gamut mapping, or compression.

A critical aspect in material appearance modeling is that
the perceived appearance does not only depend on the material’s
properties. We define material appearance as “the visual impres-
sion we have of a material” [1], and it is also influenced by extrin-
sic factors, including the geometry of the object, the illumination
conditions, or the viewpoint, as well as human perception [2, 3].
Multiple studies have been conducted to analyze the role of these
factors on appearance perception [4, 5].

Figure 1: Andries Stilte as a Standard Bearer, by Johannes Cor-
nelisz Verspronck (1640). The complexity of material appear-
ance perception is illustrated by this painting, where the highly
realistic appearance of the materials depicted in it disappears
when looking at close-up regions. Image courtesy of Diego
Gutierrez.

Motivated by the influence of extrinsic factors, and by the
ability of our visual system to achieve perceptual constancy, we
do not restrict ourselves to working in material space (e.g., BRDF
space), but rather favor working in image space, in which rep-
resentations of the material (images) are closer to the proximal
stimuli reaching our visual system. Besides, and as an effec-
tive means to extract relevant features and model the complex,
non-linear interactions between them that ultimately lead to our
perception of appearance, we often resort to learning approaches
that are trained on human judgements of appearance. An ex-
ample of this is our work on building a similarity measure of
material appearance [6]. In it, we first build a large dataset of im-
ages depicting materials, each one seen from different geometries
and illuminations, and gather similarity judgements for them (in
the form of triplets, with a 2AFC paradigm). We then train a
model based on a deep learning architecture, which learns a fea-
ture space for materials that correlates with such perceived ap-
pearance similarity!. The key idea here is precisely that we com-
bine the information about the physical properties of the material
contained in the images, since we have the same material under
different geometries and lighting conditions, with the subjective
data on appearance similarity. A traditional image similarity met-
ric would not be able to generalize across shape or illumination,
while a BRDF-based metric would be unable to predict human
similarity judgements.

The rest of this paper reviews two efforts towards building
high-level, intuitive representations of material appearance. Both

'Full dataset and model available at: http://webdiis.unizar.
es/~mlagunas/publication/material-similarity/



are data-driven approaches in which perceptually-meaningful la-
tent spaces are learnt from a combination of carefully-crafted im-
age datasets with corresponding human subjective data. The first
work explores the use of high-level attributes to specify and edit
material appearance in a predictable, intuitive manner. The sec-
ond focuses on natural language descriptions of (fabric) materi-
als, and leverages a specialized dataset of images and descrip-
tions to fine-tune large vision-language models, creating a mean-
ingful latent space for fabric appearance that enables applications
such as fine-grained material retrieval and automatic captioning.

Editing Appearance via High-level Attributes

Material appearance models have become very success-
ful at conveying extremely photorealistic appearance at man-
ageable rendering costs. Whether these models are analytical,
procedurally-generated, or data-driven, they all share a common
limitation: the difficulty of editing a given material appearance
to generate desired variations of it. Among these types of repre-
sentations, data-driven ones such as BTFs or measured BRDFs,
usually resulting from sophisticated capture setups, are notori-
ously difficult to manipulate and control. This is mainly due
to the high-dimensional and non-linear nature of their parame-
ter spaces, unaligned with perceptual dimensions of appearance.
‘We thus focus here on this type of materials, and specifically on
measured BRDFs.

Numerous works have tried to facilitate material appearance
editing, from the seminal work of Pellacini et al. [7] building a
perceptually-meaningful space for gloss, to appearance models
designed for optimal balance between simplicity, robustness and
artistic control [8]. For the particular case of data-driven models,
the work of Matusik et al. [9] was particularly influential, both to
our and other works: they applied dimensionality reduction tech-
niques, defined perceptual traits over the low-dimensional space,
classified materials according to these traits (in a binary man-
ner, whether a material possessed a trait or not), and used this
to define navigation directions along the resulting space. When
attempting to build frameworks for intuitive editing of appear-
ance, two main questions arise: First, which dimensions (or pa-
rameters, or attributes) defining appearance should be exposed
to the user. Second, how are these dimensions aligned (or how
can we align them) with the underlying physically-based model,
amenable to rendering pipelines. Our work aims to answer both.

Finding a set of attributes or parameters that provide an in-
tuitive representation of material appearance is a long-standing
problem, for which no definite solution or methodology ex-
ist [10], and naming can further depend on the field [2]. The set
of attributes must be reduced enough to be manageable, but com-
prehensive enough to allow for rich appearance edits, even for in-
experienced users. In our case, we compiled an extensive list of
attributes used in the literature from both industry and academia,
and reduced it to fourteen attributes by means of a user study
involving 60 stimuli and 26 participants (see original paper for
details [11]). These attributes, covering both high- and mid-level
features, are: plastic-like, rubber-like, metallic-like, fabric-like,
ceramic-like, soft, hard, matte, glossy, bright, rough, tint of re-
flections, strength of reflections, and sharpness of reflections.

Having established a set of attributes, the next step is to as-
sociate it to the underlying model of material appearance. Signif-
icant reduction of the high dimensionality of measured BRDFs
is attained through PCA decomposition after log-relative linear
mapping of the reflectance data; we retain the first five princi-
pal components, which are loosely related to characteristics of
material appearance [12]. We then seek to learn a mapping be-

tween the attributes that a given material exhibits, and the under-
lying coefficients in the aforementioned PCA basis; this requires
both training data, and a model for such mapping. Training data
is collected in the form of Likert-scale ratings per attribute per
material sample (400 materials), in a large-scale crowdsourced
experiment with 400 participants and a total of 56,000 ratings.
As a model we use radial basis function networks with one hid-
den layer: for each attribute we train one network, mapping the
five dimensions of the PCA representation to the corresponding
value of the attribute. Editing the value of an attribute to mod-
ify a given BRDF, which is our ultimate goal, therefore requires
the inverse of this mapping. The solution to this inverse problem
is not unique, and we therefore formulate it as a minimization,
which we solve via gradient descent. This enables editing the
appearance of measured BRDFs by means of high-level, intu-
itive attributes, as shown in Fig. 2 for several examples. More
details can be found in the original paper [11], and the code and
training dataset are publicly available?.
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Figure 2: Editing measured BRDFs by varying the values of our
high-level attributes. Each row shows a measured BRDF from
the MERL database [9] (framed in light red), and the results ob-
tained when linearly increasing or decreasing the value of the
specified attribute in our space. The last row depicts the path fol-
lowed in the 5D PCA space (we show the most representative 2D
slice) when computing each of the other rows. Image from [11].
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Our work enables not only editing, but also other applica-
tions such as attribute-specific similarity computation, or BRDF
gamut mapping [13]. Follow up works have resorted to deep
learning-based models to learn appearance representations, rang-
ing from generative models that enable a certain degree of editing
and morphing [14, 15], to models that focus on reliably predict-
ing gloss and other attributes across varying geometries and illu-
minations [16]. Further, the construction of low-dimensional la-
tent spaces of material appearance has been demonstrated both in
supervised [17] and unsupervised learning setups [18, 19]. While
these approaches are extremely promising, their degree of con-
trol, robustness and ability to generalize deserves further explo-
ration. Finally, a recent work [20] has focused on creating a per-
ceptual embedding for editing using NMDS and crowdsourced
subjective data; different to our work, they determine the per-
ceptual traits a posteriori, based on the collected similarity data.
Their approach is demonstrated on metal-related materials, and
extension to other categories remains as promising future work.

Describing Appearance using Natural Lan-
guage

Natural language is a high-level, intuitive, accessible and
common means of communicating information. Being able to
reliably and precisely use natural language as a descriptor for
applications such as generation, editing or retrieval of material
appearance would immensely facilitate these applications. Not
only would it help reduce their initial learning curve and make
them more accessible to users from different backgrounds, but
could also potentially help build a unified, universal space for
representing appearance.

In opposition to its intuitiveness and “ease of use”, using
natural language as a descriptor of appearance poses numerous
questions. First, we need to know whether there is a common
lexicon and structure, shared by most people, when describing
material appearance using natural language. If variability were
too high, using natural language as a robust, universal means to
reliably describe appearance could be unfeasible. Second, it is
unclear whether natural language alone would be effective for
precisely communicating material appearance: Can natural lan-
guage descriptions discriminate between two material samples
of similar appearance, and to what extent? These are open ques-
tions for the community, and we have taken initial steps towards
answering them.

At the same time, and provided we had positive answers
to the previous questions, we need models capable of taking
natural language as one of their inputs. We have recently wit-
nessed an impressive leap forward in natural language process-
ing models, and in particular in what large vision-language mod-
els can achieve by linking visual content to text. Models such
as CLIP [21] or BLIP [22] are capable of creating latent spaces
where the representations of images and their natural language
descriptions are close together (BLIP further includes a genera-
tive stage for image captioning), effectively linking them. They
are, however, supervised models trained on hundreds of millions
of image-text pairs. Therefore, questions arise as to whether we
can directly use them for material appearance concepts; and, if
not, whether we can adapt them, e.g., through fine-tuning, for
their use in material appearance-related areas.

Our work in this area seeks to answer both sets of ques-
tions: those related to the existence of a shared understanding of
language as it relates to material (fabric) appearance, and those
related to the use of large vision-language models for tasks re-
quiring fine-grained representations of appearance. Since the

space of material appearance is extremely vast, to keep the task
tractable, we focus on fabric materials. This allows us to val-
idate our methodology in a reasonably constrained yet suffi-
ciently expressive subset: fabrics exhibit a large variability in
reflectance, colors, structure, or patterns, while being an ubiqui-
tous and widely familiar material class.

We make three main contributions towards this goal. First,
we collect a dataset® linking 3,000 photorealistic images of fab-
ric materials to 15,000+ free-text natural language descriptions of
such fabrics, provided by participants in a user study who were
native English speakers and were familiar with fashion or design
(Fig. 4 includes some sample descriptions provided by humans).
Second, we analyze the descriptions provided and find that: (i)
there is a common lexicon (ca. 500 words are enough to cover
95% of the 15,000+ descriptions gathered), (ii) there are com-
mon attributes (we identify eleven traits or attributes that emerge
from the descriptions), (iii) there is a common structure followed
by users when describing appearance, and (iv) there is high sim-
ilarity between descriptions of the same fabric given by different
users. These insights provide a foundation for our third contribu-
tion, in which we explore the use of large vision-language models
for applications such as: fine-grained text-based retrieval, image-
based search, and description generation of fabric images (see
Figs. 3 and 4). We show how fine-tuning these models with a low
amount of high-quality, specialized data provides a significant
improvement over the native versions of these models, trained
only on their original datasets. We refer the reader to the origi-
nal publication [23] for more details on each contribution. Our
work suggests that natural language descriptions may indeed be
sufficient to convey material appearance in a fine-grained man-
ner, and that learning-based models can link such descriptions to
robust latent representations of appearance, which can in turn be
used for a variety of applications.

Top-3 retrieval results

Input query

A gingham fabric

An Asian looking fabric

A dirty fabric

A faux leather fabric with
circle indented holes

Figure 3: Examples of text-based retrieval results obtained with
our model (the CLIP model, fine-tuned with our specialized
dataset). We show input text queries, including domain-specific
concepts, and the top-3 retrieval results. Image from [23].

Future Directions
Numerous challenges and interesting avenues of work lie
ahead; to name a few: the search for a unified, general treat-

3The dataset is publicly available at:
deschaintre.fr/text2fabric

https://valentin.



Human description

This fabric resembles canvas and is woven with black
and blue yarn giving it a dull gray appearance from
afar. It has a slightly rough texture and no sheen.
There are golden sunbursts that appear to made with
fabric paint.

This is blue cotton fabric. It is made up of yellow
colored sunlight patterns. it appears to be soft and is
mostly used for cushions and table linen.

This is a medium weight fabric. The base color is a
coffee brown. The overall pattern is continual broken
zigzag lines of copper orange throughout.

This fabric is dark gray with zigzag designs through-
out the fabric in orange. Its texture is soft and
smooth. The material seems most likely to be
polyester. The orange zigzag features a little sparkle.

Ours

This fabric has a blue background with small yellow
suns all over it the sun is designed in repeating lines
of five - point stars the linen thread could be used to
make curtains or upholster

This fabric is a muted gold / pale yellow on a slate
blue it has an appearance of being woven, like a sun
with five - point star patterns similar to the stars
themselves

This fabric is black in color, with a pattern of metallic
gold zigzags these are arranged diagonally through-
out the material it looks tightly knit and soft to the
touch

This fabric is dark gray with a pattern consisting of
many jagged triangles throughout these triangular
shapes are gold the material appears shiny and
smooth, even satin it would make an elegant dress

Native BLIP

This is a print of gold flowers in an ocean blue
background, and placed over the black

The cover is made out of blue and yellow flowers

The navy blue chey print on this tie is made of silk
and has a thin pattern

A blue scarf with orange pattern on it

Figure 4: Examples of description generation results obtained with our model (the BLIP model, fine-tuned with our specialized dataset)
for two fabric samples (unseen during training). From left to right: Descriptions provided by humans, by our model, and by native
BLIP (trained on the original BLIP dataset, with no fine-tuning). Fine-tuning on a relatively small amount of specialized data clearly
improves the performance over the original model trained on a large amount of generic data (see text for details). Image from [23].

ment of different material types or categories, which is a long-
standing goal amidst a fragmented space of solutions; the use of
neural networks to represent BRDFs, which despite its recent-
ness is quickly gaining traction in the field; or the reliance on
large quantities of gathered data, that is a challenge of current
learning-based solutions, but for which recent results of unsuper-
vised learning approaches are promising. Last, but not least, we
need to continue in our quest to fully understand the behavior and
operation of the human visual system.
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