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Abstract 
In this study, the third order polynomial regression (PR) 

and deep neural networks (DNN) were used to perform color 

characterization from CMYK to CIELAB color space, based on 

a dataset consisting of 2016 color samples which were produced 

using a Stratasys J750 3D color printer. Five output variables 

including CIE XYZ, the logarithm of CIE XYZ, CIELAB, spectra 

reflectance and the principal components of spectra were 

compared for the performance of printer color characterization. 

The 10-fold cross validation was used to evaluate the accuracy 

of the models developed using different approaches, and 

CIELAB color differences were calculated with D65 illuminant. 

In addition, the effect of different training data sizes on 

predictive accuracy was investigated. The results showed that 

the DNN method produced much smaller color differences than 

the PR method, but it is highly dependent on the amount of 

training data. In addition, the logarithm of CIE XYZ as the output 

provided higher accuracy than CIE XYZ. 

 

Introduction  
Technologies for full color 3D printing have been 

dramatically developed, including the PolyJet based on UV 

cured light from Stratasys, ColorJet Printing with powder binder 

from 3D Systems, UV-curable inkjet printing technology from 

Mimaki, MultiJet Fusion with powder fusion from Hewlett 

Packard, and LOM from Mcor [1]. It has been widely applied in 

various industrial applications due to its advantages in flexible 

design, low cost, and customization [2]. The accuracy and 

consistency of color reproduction in the 3D printing process is of 

vital importance for meeting modern aesthetic and practical 

needs.  

In the digital printing process, reliable color reproduction is 

always highly desired and printer color characterization to make 

connection between device color input to printer (RGB or 

CMYK) and output device independent color space (CIE XYZ 

or CIELAB) is an essential step [3]. For conventional color 

printer, various mathematical models have been developed and 

acknowledged to be effective, such as 3D look-up tables [4], 

least-squares based polynomial function [5], empirical 

techniques based on principal component analysis [6], the 

artificial neural network [7], etc. Most of those models focused 

on simple color transformations between RGB and CIE XYZ or 

CIELAB color spaces. With the development of machine 

learning methods, it has become possible and workable to 

perform printer color characterization from complex subtractive 

CMYK color system to CIELAB color space [8-10].  

Based on the FOGRA53 dataset consisting of 1617 color 

samples, Velastegui et al. compared the performance of four 

different machine learning approaches, Support-Vector 

Regression (SVR), Artificial Neural Network (ANN), Deep 

Neural Network (DNN), and Radial Basis Function (RBF) 

models, on color space transformation between CMYK and 

CIELAB color spaces [9]. It was found that all these four 

methods could achieve very high predictive accuracy, with 

99.5% of the color-difference values obtained less than 3 units. 

When it comes to practical printing, the DNN-based 

transformation method reached lower color differences than 

other methods, and the average color difference is 4.65 CIELAB 

units. 

For the applications in 3D color printing, Xiao et al. used a 

third-order polynomial regression to develop a printer color 

profile transforming between printer RGB and CIE XYZ color 

spaces, based on the digital Macbeth ColorCheckerDC chart 

consisting of 240 color patches [2]. By printing 14 skin color 

samples using a Z Corp Z510 color printer, the accuracy of the 

derived color characterization model was 4.50 CIELAB units. In 

addition, with the aim of improving color reproduction of dental 

prostheses, Liu et al. selected 96 color patches to develop a color 

profile for a 3D printer and the polynomial regression method 

with different orders were investigated on the performance of 

color characterization between CIE XYZ and printer RGB values 

[11]. With 18 tooth and gum shades printed to evaluate the 3D 

color reproduction system, it was found that the third-order 

polynomial regression yield smaller color differences than the 

quadratic polynomial, and the average color difference achieved 

was 6.54 CIELAB units. 

Although the color management methods in graphic art 

industry have been applied in 3D color printing, as far as we 

know, the existing research on comparing the performance of 

different color characterization methods for 3D color printers is 

limited, and currently it still lacks a standard numerical model 

for predicting the color of 3D printed objects.  

With all above issues into consideration, this study was 

conducted to comprehensively evaluate color characterization 

models for 3D printer. More specifically, the polynomial 

regression (PR) and deep neural networks (DNN) were utilized 

to perform printer color characterization, and the effect of the 

output variables and the amount of training data on color 

characterization accuracy were investigated in terms of CIELAB 

color differences.  

Methodology 

Dataset  
The dataset was generated using a Stratasys J750 3D printer 

with different CMYK densities. It consists of 2016 color samples 

with each sample represented in CMYK color space and spectral 

reflectance data ranging from 400 nm to 700 nm with intervals 

of 10 nm. A X-Rite i1PRO3 spectrophotometer was employed to 

take color measurement. The corresponding CIE XYZ and 

CIELAB values were calculated from the spectral reflectance 

with the CIE1931 standard observer and CIE D65 illuminant. 

Figure 1 shows the distributions of the 2016 color samples in 

𝑎∗𝑏∗ and 𝐿∗𝐶∗ plane, which refers to the colors that the 3D 

printer can produce. In addition, the color distributions generate 

a color gamut of the 3D printer, with colors ranging from -84.90 

to 74.49 for the 𝑎∗ redness-greenness value, 5.77 to 93.53 for the 
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𝐿∗ lightness, and -48.20 to 113.17 for the 𝑏∗ yellowness-blueness

scale. 

Figure 1. Color distributions of the 2016 printed samples in 𝑎∗𝑏∗ and 

𝐿∗𝐶∗plane 

Color Characterization 
A forward color characterization process was performed to 

transform from the printer input vectors 𝑃 to the output vectors 
𝐶, and the relationship is expressed as Equation (1), where 𝑀 

indicates the color characterization model developed.  

𝐶 =  𝑀𝑃 (1) 

Input and Output Vectors 
The 3D printer's CMYK combinations served as the input 

vectors. Regarding the device-independent color space as the 

output, the spectral reflectance data (𝑟), CIE XYZ tristimulus 

values and CIELAB values were considered. To compare the 

performance of different output variables, five types of data were 

employed for printer color characterization: 

• CIE XYZ,

• log(XYZ): the logarithm to CIE XYZ,

• CIELAB,

• 𝑟: spectral reflectance data,

• PCA(𝑟): principal components of spectral data.

CIE XYZ and CIELAB color spaces have been widely used

for color characterization in most studies. The logarithm of CIE 

XYZ was selected because it was found that the logarithmic 

function applied to CIE XYZ values yielded better performance 

for 2D printer color reproduction. In addition, the use of spectral 

reflectance data as the output is beneficial for spectral 

reconstruction from device-dependent color space, which is 

critical for practical applications since spectral data contain 

essential information that cannot be obtained from CIE XYZ and 

CIELAB values. By applying Principal Component Analysis 

(PCA), it is possible to reduce the dimension of the spectral data 

and derive the basis function that are sufficient to describe the 

spectral reflectance [12]. Marimont and Wandell [13] stated that 

the principal components are usually 5-10 for providing an 

accurate estimation for natural objects. In the present study, the 

principal components of the spectral reflectance of the 2016 

color samples were finally determined as 6. 

Polynomial Regression 
The 3rd-order polynomial regression was applied to the 

input CMYK vectors, making it expanded from  𝑛 × 4 to 𝑛 × 35 

dimensions, given the number of the training data is 𝑛. By 

performing matrix operations in MATLAB, the color 

characterization model 𝑀 was determined based on the Equation 

(1). A 35 × 3 matrix was derived for the output variables of CIE 

XYZ and CIELAB values which were in 𝑛 × 3 dimensions. 

When the spectral data 𝑟 and PCA(𝑟) were served as the output 

values, the corresponding color characterization matrix 

determined was in 35 × 31 and 35 × 6 dimensions, respectively.  

Deep Neural Networks 
The architecture of the deep neural networks used in this 

study contained multiple hidden layers to distribute different 

neurons and process the information sequentially layer by layer. 

The first input layer was the predictor variables CMYK, then 

followed by four fully connected layers (Fc) with a swisher layer 

in between, and the final regression layer was the output 

predictions, such as CIE XYZ, CIELAB, spectral reflectance.  

The numbers of the neurons in the four fully connected 

layers were given in Table 1. For the CIEXYZ and CIELAB-

based color characterization, the numbers of the neurons in the 

four Fc layers were 21-77-21-3, respectively. For the spectra-

based color characterization, the numbers in the four Fc layers 

were defined as 22-66-33-31, considering the higher dimensions 

of the spectral data. The parameters were the same for the 

principal components of spectral data (PCA(𝑟)), except for the 

number in the last layer which was 6, consistent to the 

dimensions of the output. Typically, there is no universal method 

for determining the optimal number of neurons in each layer of 

a neural network.  

The networks transforming from the input to the output 

variables were trained in MATLAB with the optimization 

method of Adam. Five attempts were made with the maximum 

epochs number of 2000 and the learning rate of 0.01. Based on 

the optimal results of the 5 attempts, another neural network was 

trained to achieve better results, with the maximum epoch 

number of 4000 and the learning rate of 0.01 for CIELAB 

predictions and 20000 and 0.001 for spectral estimation, 

respectively.  

Table 1 The number of the neurons in the four fully connected 

layers 

Output variables Number of neurons 

CIE XYZ 21-77-21-3

log(XYZ) 21-77-21-3

CIELAB 21-77-21-3

𝑟 22-66-33-31

PCA(𝑟) 22-66-33-6

Model Performance Validation 
The process of color characterization is illustrated in Figure 

2. The 10-fold cross validation was applied to evaluate the

accuracy of the color characterization models developed using

different approaches, which means that the fitting procedure was

performed 10 times with each fit consisting of 90% (1814 color

samples) of the total dataset and the remaining 10% (202 color

samples) used for validation. For each implementation of the

color characterization, the 1814 training data were randomly

selected from the entire dataset, so the training data were not

exactly same for the 10 repetitions.

Additionally, in order to explore the effect of the amount of 

training data on color characterization accuracy, particularly for 

the method of deep neural networks, different percentages of the 

entire dataset, ranging from 5% to 95% (101-1915 samples), 

were randomly selected as the training data, and the remaining 

color samples were considered as the testing data. The validation 

procedure was performed 10 times for each training dataset to 

achieve reliable results, when the percentage equaled to 90%, it 

was the case of 10-fold cross validation. 
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The accuracy of each color characterization model was 

quantified by calculating the CIELAB color-difference values 

between the predictions and the measurements of the 202 testing 

data under D65 illuminant. Moreover, to assess the accuracy of 

the spectral data estimated by each model, the root-mean-square 

error (𝑅𝑀𝑆𝐸) was calculated with the raw measured spectral 

reflectance.  

Figure 2. Process of color characterization using different approaches and 

the validation procedure 

Results and Discussion 

Evaluation of the Color Characterization Models 
The printer color characterization was implemented using 

different approaches, and each model was evaluated using the 

10-fold cross validation. The average CIELAB color differences 

of ten repetitions were given in Table 2 and Figure 3, with the 

mean, median, maximum and the standard deviation presented. 

Regarding the results achieved using the 3rd polynomial 

regression, the best accuracy was produced using CIELAB as the 

output, with the average color difference of 4.69 units, followed 

by the logarithm of CIE XYZ (5.74 units). For the results of the 

other three types of output variables, the average color 

differences reached were larger than 11 CIELAB units. As for 

the results produced using the deep neutral network, the smallest 

color difference achieved was 1.49 units for the model using the 

logarithm of CIE XYZ as the output. All the average color 

differences attained using the DNN method were smaller than 

2.69 CIELAB units.  

Table 2 The mean, median and maximum CIELAB color 

differences and standard deviations achieved using different 

approaches 

Method Output Mean Median Max SD 

3rd PR 

Lab 4.69 3.95 22.72 2.99 

XYZ 12.44 10.26 60.46 9.62 

log(XYZ) 5.74 4.94 20.63 3.71 

𝑟 11.74 9.86 45.16 8.25 

PCA(𝑟) 12.05 9.75 46.34 8.35 

DNN 

Lab 1.59 1.27 9.25 1.03 

XYZ 2.69 2.13 18.53 2.81 

log(XYZ) 1.49 1.26 5.52 0.97 

𝑟 2.34 1.93 11.19 1.37 

PCA(𝑟) 1.84 1.62 7.82 1.06 

It can be clearly seen from Figure 3 that the method of deep 

neural networks gave much better performance than the 3rd 

polynomial regression, producing significant smaller CIELAB 

color differences for the five output variables. Even the 

maximum value (5.52 units) achieved using the logarithm of CIE 

XYZ values was close to the best result (5.74 units) obtained 

using the 3rd polynomial regression. In comparison, the method 

of the 3rd polynomial regression gave greater color differences, 

particularly for the cases of using CIE XYZ, spectral data (r) and 

principal components of spectral data (PCA(r)) as the output, and 

the maximum values achieved were approximately larger than 

20 CIELAB units which are not acceptable in color reproduction. 

Figure 3. CIELAB color differences of 10-fold cross validation for each 

model under D65 illuminant 

Considering the color-difference perceptibility and 

acceptability in industrial applications [14], the color differences 

of the testing data were classified into three groups: ∆E ≤ 3, 3 <
∆E ≤ 6, and ∆E > 6, which were correspondingly defined as 

“Hardly perceptible”, “Perceptual, but acceptable” and “Not 

acceptable” [9]. Figure 4 illustrates the CIELAB color difference 

distributions in the three ∆E groups. It shows that over nearly 

70% of color differences predicted using the deep neural 

networks method were less than or equal to 3 CIELAB units. In 

contrast, only a minority (less than 35%) of the CIELAB color 

differences estimated using the 3rd polynomial regression 

method were in this group. When CIE XYZ, spectra and the 

principal components of spectra were used as the output, over 

70% of CIELAB color differences were larger than 6 units. 

Figure 4. Examples of spectral estimation using the DNN method. 

One interesting finding is that the logarithm of CIE XYZ 

gave higher accuracy than CIE XYZ as the output of printer color 

characterization, reducing nearly 7 CIELAB units for the PR 

method and about 1 unit for the DNN method. This is possibly 

because of the similarity between a logarithmic function and a 

power law function which was applied to the calculation from 

CIE XYZ to CIELAB values. In this study, the prediction results 

of the models using CIELAB and the logarithm of CIE XYZ as 

the output were better the other three variables, and the CIELAB-

based model achieved the smallest color difference for the PR 

method, and the logarithm of CIE XYZ produced the best 

accuracy for the DNN method.  

Regarding the results based on the spectral data by using the 

3rd polynomial regression, it failed to achieve acceptable 

CMYK 

Testing Data 

CIELAB CIELAB 

 Training Data 

CMYK and Measurement 

Color Model 

 PR DNN 

CIE XYZ 

Spectra 
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performance, with an average color-difference value of 11.74 

CIELAB units. The same to the results produced using the 

principal components of spectral data, which resulted in over 

70% of color differences greater than 6 CIELAB units. In 

comparison, the method of deep neural networks gave a 

significantly better performance on spectral estimation, 

approximately 25% of color differences larger than 3 CIELAB 

units. 

To quantify the error in spectral estimation, the average 

RMSE values of the 202 testing data between the predicted and 

the measured spectral data were calculated, where the RMSE 

values obtained using the deep neural networks method were 

0.51% and 0.48% for the spectra 𝑟 and PCA(𝑟), respectively, 

which were smaller than the values of 2.06% and 2.18% 

achieved using the polynomial regression method. It is indicated 

that the 3rd polynomial regression method cannot accurately 

predict the spectral data from printer CMYK values. This is 

probably due to the high dimensions and complex features of the 

spectral reflectance. In such cases, the DNN method is preferred 

because it has better self-learning capabilities for complex 

patterns and provide higher accuracy 

Effect of Different Training Data Sizes 
The accuracy of color characterization is not only 

determined by the method utilized, but also relies on the quality 

and amount of the training data. In the present study, the effect 

of different training data sizes on performing color 

characterization was investigated by quantifying the CIELAB 

color differences. Figure 5 demonstrates the predictive accuracy 

by using different training data sizes of 101 (5%) to 1915 (95%) 

samples, and (a) is the results for the PR method, (b) is for the 

DNN method.  

Figure 5. The average CIELAB color differences achieved using different 

training data sizes for the PR (a) and the DNN method (b). 

From Figure 5(a), it showed that different training data sizes 

have little effect on the predicted results for the PR method. The 

largest color difference was produced when the size of the 

training data was 101 (5% of the entire dataset), and then the 

values decreased as the number of the training data increased to 

302 color samples (15%), which indicates that more training data 

resulted in improved performance. However, once the size of the 

training data exceeded 302, the color differences obtained using 

the PR method remained stable, approximately 13 CIELAB units 

for the outputs of CIEXYZ, spectra and PCA(𝑟) and 5 CIELAB 

units for CIELAB and the logarithm of CIE XYZ, regardless of 

further increases in the training data size.  

In comparison, the color differences calculated using the 

DNN method, as shown in Figure 5(b), decreased dramatically 

from about 20 to 3 CIELAB units as the number in the training 

dataset increased from 101 to 1310 (5%-65%). Afterwards, the 

color-difference values changed very little with increasing 

training data. It is evident that the results achieved using the 

DNN method were affected significantly by the training data 

size, and a larger training dataset including diverse and 

representative samples can provide a higher accuracy of color 

characterization.  

Although the DNN method provided accurate prediction 

results, it highly relied on the training data size. The optimal 

number of training data was at least 1310 (65% of the dataset) 

for achieving consistent smaller color differences in this study, 

which suggested that the amount of the training data is preferred 

to be greater than that of the testing data. In addition, the process 

of training a network was time-consuming, the larger the training 

data size, the more time it takes. Specifically, it took about 200 

minutes to complete a 10-fold cross validation based on a 

common laptop with the Intel® Core™ i5-1035G1 CPU 

processor. The time was reduced to approximately 40 minutes by 

using a high-performance desktop PC with the intel® XEON® 

Silver 4214 CPU processor. In contrast, the PR method only took 

less than 1 second to give the results of a 10-fold cross validation. 

Therefore, it is generally compromised between prediction 

accuracy and processing time. 

Conclusion 
Based on a large database consisting of 2016 color samples, 

the method of deep neural networks yielded color differences 

less than 3 CIELAB units in the color characterization for a 3D 

printer, outperforming the 3rd polynomial regression method 

which produced color differences of 4.69-12.44 CIELAB units. 

Among the five output variables, CIELAB and the logarithm of 

CIE XYZ exhibited obvious advantages than others, with smaller 

color differences produced. In addition, it was evident that the 

size of training data had significant effect on the DNN method. 

Its predictive accuracy was not supreme and robust until the 

number of training data reached exceed 1310 in this study. In 

contrast, the results achieved using the PR method dropped 

slightly and stayed almost the same as the amount of training data 

increased.  
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