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Abstract
In material appearance we are interested in objectively

measuring a physical aspect of a material, such as reflectance,
and also in understanding how we see that material. In per-
ceptual experiments we typically display simple stimuli to an
observer, record their response, and then try to build a theory
of why the observer responded in a given way. Often the lat-
ter model is implemented as a computer algorithm, and many of
these are, for example, now implemented in camera pipelines for
smartphones. However, the stimuli that are shown to observers
are necessarily either very simple, such as rectangular patches
of colour, or small in number. This raises the question as to
whether the recorded responses to simple stimuli actually shed
light on how we perceive scenes in the real world.

In this paper, we look at a specific example of perceptual
stimuli: Mondrian images, and investigate the extent to which, in
the sense of their autocorrelation matrix, they represent the real
world. We show that by modelling paths of pixels through an im-
age using a statistical model that captures the statistics of real
Mondrians, the autocorrelation matrix of Mondrians is Toeplitz,
and moreover this Toeplitz structure is also found in real images.
Although Mondrian images do not contain typical visual cues,
our path model can be tuned to replicate the statistics of real
images in the autocorrelation sense. The practical utility of this
method is that paths through images and their autocorrelation
statistics are a key tool for developing algorithms to predict the
perceptual response to complex scenes. For example, this ap-
proach is at the foundation of retinex image processing. Experi-
ments validate our method.

Introduction
The autocorrelation matrix describes the correlation be-

tween all pairs of elements of a vector or vectors that represent
the same stimuli. In the domain of imaging, it is widely used
to describe the spectral statistics of surface reflectance and illu-
mination spectra [1] and is central to colour characterisation and
calibration [2, 3, 4]. Autocorrelation matrices are also used in the
context of lightness perception algorithms [5], where the vectors
that we autocorrelate describe paths of pixel values through im-
ages [6]. Famously, path-based computation is at the foundation
of the retinex theory of lightness perception [6, 7, 8]. Retinex
postulates that the human visual system (HVS) does not per-
ceive a scene directly as an array of radiance (or luminance)
patches from which an array of lightness values is interpreted
psychophysically. Instead, it is thought that the HVS is able to
determine a reflectance map of the scene, from which the array of
lightness values is interpreted. For example, this means that areas
such as shadow regions, which receive less illumination from the
light source, would not be perceived as darkly as the luminance
values would suggest. The paths relate pixels in non-proximate
regions of an image.

It is the latter application that is of particular interest in this
paper. Our goal is to examine the extent that paths in Mondrian-
type images can lead to autocorrelation structures that account

for the path autocorrelations in real images. In doing so, we pro-
vide a possible bridge linking simple (and necessarily austere)
psychophysical experiments (where a limited number of simple
images are used) and the real world, which has an unbounded
number of possible images [9, 10, 11].

We begin by discussing the formal definition of autocor-
relation and we then determine the autocorrelation matrix for a
large real image dataset. Subsequently, we develop a statistical
model for paths through Mondrian images and examine the ex-
tent to which our model generates an autocorrelation matrix that
matches the statistics of paths in the real world. It turns out that
our Mondrian path model by definition must result in a Toeplitz
autocorrelation structure. We go on to show that we can tune our
Mondrian model using a patch-length parameter, which, along
with arguments concerning how autocorrelations are used in re-
gression [5], provides excellent correspondence to the autocorre-
lation matrix for paths drawn from real images.

Autocorrelation matrix
The autocorrelation matrix for a random 1× p row vector

s =
[
s1 s2 · · · sp

]
is a p× p matrix that describes the correlation

between all pairs of elements of the vector. It can be written

s⊤s =


s2

1 s1 s2 · · · s1 sp
s2 s1 s2

2 · · · s2 sp
...

...
. . .

...
sp s1 sp s2 · · · s2

p

 , (1)

where ⊤ denotes the transpose operator. This differs from the
auto-covariance matrix in that the expectation values are not de-
fined relative to the mean. (Note we adopt the convention that,
given two vectors v and w, the dot product between the vectors
is written as vw. The dot-product of v with itself is written as
v2 ≡ vv since the dot-product of a vector with itself is the squared
magnitude of the vector).

If there are multiple data values associated with the vec-
tor components, a composite n× p vector S can be constructed,
where n is the number of data values [12]. In this case the auto-
correlation matrix becomes

S⊤S =
1
n
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∑
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n
∑
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s2

kp


. (2)

In the context of spectral reflectance and illumination, autocorre-
lation matrices are commonly encountered where the data values
in the vectors represent data from n different spectral reflectance
or illumination curves at p specific wavelengths [1], where p is
typically 31, representing sampling points from 400 to 700 nm
with a 10 nm step. In this paper we are interested in paths of
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Figure 1. Autocorrelation matrix for the ImageNet “test” dataset [13] on a

151 × 151 pixel grid plotted in 3d (upper figure) and 2d (lower figure).

pixel values through images and so each of the n vectors repre-
sent strips of pixels of length p [5].

Real world scenes
Fig. 1 shows an autocorrelation matrix calculated for the

ImageNet “test” dataset of 100,000 images [13]. The images
were processed by first removing the encoding gamma curve be-
fore converting to the CIE XYZ colour space with luminance
Y normalised to the range [0,1], which can be approximately
correlated with albedo value. A large number of paths were se-
lected through each image and each path was p = 151 pixels in
length. Both forward and reverse directions were included. The
paths chosen were straight lines at uniformly random orienta-
tions. These vectors were then used to calculate the autocorrela-
tion matrix via Eq. (2).

The autocorrelation matrix is seen to have an approximately
Toeplitz structure. An autocorrelation matrix with a perfect
Toeplitz structure is shift invariant [14], which means that all ma-
trix elements remain unchanged as the position is shifted in the
direction of the main diagonal. Here this can be understood to
indicate that randomness exists on the average. In other words,
there is absence of a periodically repeating pattern over long
length scales. The off-diagonal elements describe the tendency
for like pixel values to cluster together over short length scales.
Small datasets or datasets that represent very specific scene cat-
egories can show behaviour that deviates away from the perfect

Toeplitz structure. This can also happen towards the image bor-
ders where illumination patterns may dominate on the average.

An interesting analogy can be made with the high-
temperature disordered state in substitutionally-disordered al-
loys [15], which form a regular lattice structure. At high tem-
perature, there is randomness on the average so that long-range
order (LRO) is absent. Nevertheless, short-range order (SRO)
will be present, which is the tendency for like or unlike atoms
to surround each other over short length scales without affecting
the overall symmetry. However, when the temperature is low-
ered, a phase transition to a LRO state can occur in which the
constituent atoms form a pattern that periodically repeats over
long length scales.

We now go on to investigate the extent to which autocorre-
lation matrices for real world scenes can be modelled by paths
followed in a Mondrian world.

Mondrian world
Inspired by the abstract grid-based paintings of the Dutch

artist Piet Mondrian that first appeared in the early 1920s, Mon-
drian images consist of random arrangements of rectangular
patches of various sizes [6] and are widely used in visual ex-
periments [16, 17, 18, 19, 20].

Figure 2 shows a randomly generated Mondrian image.
This was constructed by using a similar approach to that of
Ref. [21] where any given patch on the 2d Mondrian grid has
a specific width and height, which were randomly drawn from
a uniform probability distribution with minimum and maximum
width and height limits. The central coordinates of each of the
patches were also randomly drawn from a uniform probability
distribution and patches generated in this way were superim-
posed until all pixels on the grid were filled. Parts of patches that
fell outside the grid boundary were cropped. Note that only the
maximum patch width and height can ultimately be controlled
when this construction method is used. Each patch was assigned
a random albedo with values drawn from a uniform probability
distribution in the range [0,1].

Figure 2. Mondrian image randomly generated from a uniform probability

distribution with maximum and minimum patch widths and heights taken to

be 71 pixels and 11 pixels, respectively. Arbitrary colours have been used

to denote the albedo values.

Figure 3 shows the autocorrelation matrix calculated using
Eq. (2) for a large number of paths of length p = 151 pixels taken
through a very large number of Mondrian images of dimension
p× p. The parameters chosen were the same as those used to
produce Fig. 2. The autocorrelation matrix is seen to have a
perfect Toeplitz structure with minimum autocorrelation reached
when the separation from the main diagonal reaches the maxi-
mum patch width and height, which were both taken to be 71
pixels in this example.
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Figure 3. Autocorrelation matrix for a 151 × 151 pixel grid calculated by

taking paths of length p = 151 pixels through a very large number of 2d

Mondrian images. A uniform probability distribution was used for the albedo

values with maximum and minimum patch widths and heights taken to be

71 pixels and 11 pixels, respectively.

Mondrian parameterisation
As mentioned above, it is not possible to guarantee a mini-

mum patch width or height due to the construction method used
to produce the Mondrian images, which involves the superposi-
tion of patches centred at random locations. Nevertheless, after
determining the autocorrelation matrix over a range of minimum
and maximum patch widths and heights, we found that the shape
of the Toeplitz structure and the value at which it falls to its min-
imum autocorrelation is largely governed by the largest patch
diagonal. This leads to the idea that we can effectively param-
eterise the Mondrian world by using only one dimension.

In 1d, an alternative Mondrian construction method can be
used that does not involve the superposition of patches and there-
fore gives us full control over the probability distribution. The
way forward is to introduce direct correlation between adjacent
pixels via a “step” parameter α with 0 ≤ α ≤ 1 [5]. For a given
value si located at position i in a path, α describes the probabil-
ity that the adjacent pixel takes on the same value, si+1 = si. The
probability of a “jump” is then 1−α , in which case si+1 takes
a value in the range [a,b] instead, according to a specified prob-
ability distribution. Figure 4 shows the cross-section of such a
randomly generated 1d Mondrian image with α = 0.9.

For general pixels i, j, the matrix elements of the autocorre-
lation matrix can now be analytically expressed as follows,

[
S⊤S
]

i j
=
∫ b

a
p(s)si ds

(
α
| j−i|si +

(
1−α

| j−i|
)∫ b

a
p(s)s j ds

)
,

(3)

where p(s) is the probability density function for the albedo val-
ues. Note that α | j−i| = 1 if α = 0 and j = i.

In the case of a uniform probability distribution where the
pixel albedo values are continuous random variables that are uni-
formly assigned in the range [a,b], the probability density func-
tion is given by p(s) = 1/(b−a). Substituting into Eq. (3) yields
the following expression for the autocorrelation matrix elements,[

S⊤S
]

i j
=

a2 +ab+b2

3
α
| j−i|+

(a+b)2

4

(
1−α

| j−i|
)
. (4)

Necessarily, if we generate a very large number n of random
paths through a Mondrian image according to the prescription

described above and then apply Eq. (2), we find that the result
converges towards this closed-form solution as n increases. For
example, for α = 0.9 the mean-squared error falls to 8.1×10−7

when n = 100,000. Encouragingly, the Toeplitz structure is ap-
proximately unveiled given a small number of paths. The paths
available in, say, just 10 randomly generated 2d Mondrians suf-
fices to reveal the closed-form Toeplitz structure.

Importantly, Eq. (4), by definition, is exactly a Toeplitz ma-
trix. That is, our prescription for paths through a Mondrian must
result in a path autocorrelation that is Toeplitz.

Expected step length
Although the above construction method does not enable a

minimum or maximum step length to be specified directly, it is
possible to derive an expression for the average or expected step
length ⟨np⟩ in terms of α .

Consider a pixel i with a randomly generated value. The
probability that pixel i is not extended to a longer step is 1−α , in
which case np = 1. The probability that the pixel is only extended
by one pixel is α(1−α), in which case np = 2. Continuing this
argument, if pixel j is located n pixels away from i, the proba-
bility that pixel i is extended to a step with total length np = k is
αk−1(1−α) if k < n and αk−1 if k = n. Therefore

⟨np⟩=

(
(1−α)

n−1

∑
k=1

kα
k−1

)
+nα

n−1 =
1−αn

1−α
. (5)

Finite step lengths are obtained provided that 0≤α < 1, in which
case taking the limit n → ∞ yields the result

⟨np⟩=
1

1−α
. (6)

The example 1d Mondrian plotted in Fig. 4 with α = 0.9 corre-
sponds to an average step length ⟨np⟩ = 10.
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Figure 4. Cross-section of a 1d Mondrian vector of length p = 151 pixels

randomly generated from a uniform probability distribution with albedo pixel

values in the range [0,1]. Here α = 0.9 and ⟨np⟩ = 10.

Discussion
It is instructive to first analyse the special case where all 1d

Mondrian vectors are equally likely to occur. This means that a
uniform probability distribution must be used with α set to zero
so that correlation between pixels is absent. In this case Eq. (4)
reduces to[

S⊤S
]

i j
=

1
3

δi j +
1
4
(
1−δi j

)
, (7)

where all pixel values along a path have been normalized to the
range [0,1]. As shown in Fig. 5, maximum autocorrelation is
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Figure 5. Autocorrelation matrix assuming Maximum Ignorance with Pos-

itivity [2]. Maximum autocorrelation is seen along the main diagonal with a

value 1/3 and minimum autocorrelation everywhere else with a value 1/4.

seen along the main diagonal and minimum autocorrelation is
seen everywhere else. In fact, this corresponds to the so-called
Maximum Ignorance with Positivity assumption [2] that was
made in connection with camera characterisation (colour correc-
tion), where the vectors are all possible spectral colour signals
with positive power.

As the Mondrian step parameter α is increased, the autocor-
relation matrix gains a Toeplitz structure analogous to that seen
in Fig. 3 for the 2d case. Increasing α or the expected step length
⟨np⟩ increases the separation at which the autocorrelation drops
to its minimum value of 1/4 with distance away from the main di-
agonal. Note that in the context of camera characterisation, this
Toeplitz structure was arbitrarily modelled in Ref. [3] by using a
Cauchy function.

However, the ImageNet dataset used to produce the real
world autocorrelation matrix illustrated in Fig. 1 contains lin-
earised pixel values in the full range [0,1] but has lower minimum
and maximum autocorrelation. This can be attributed to the fact
that if a uniform probability distribution is used, the mean pixel
value is given by µ = (a+b)/2, which is unlikely to correspond
to the real world since natural scenes do not necessarily have
an average albedo or relative luminance that is midway between
the upper and lower limits. In fact, standard exposure strategy
in photography assumes that the average luminance for typical
scenes is approximately 18% of the maximum [22].

To proceed, let us allow the autocorrelation to be linearly
altered in the following manner: S⊤S → mS⊤S+ c. We wish to
take our Mondrian autocorrelation matrix and fit it to the real-
world ImageNet dataset autocorrelation matrix shown in Fig. (1).
We use linear regression to solve

A11 1
A12 1

...
...

App 1


[

m
c

]
=


B11
B12

...
Bpp

 , (8)

where {Ai j} and {Bi j} are the columns of the p× p Mondrian
autocorrelation matrix and the p× p ImageNet autocorrelation
matrix, respectively, concatenated as single vectors. Since A de-
pends on the step parameter α via Eq. (4), the α value that yields
the minimum mean-squared error (MSE) between A and B pro-
vides the optimum fit.

We obtained the following optimised values: step parameter
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Figure 6. Cross-section of the autocorrelation matrix for the ImageNet

dataset [13] shown in Fig. 1 and the fitted Mondrian autocorrelation matrix.

Here the step parameter α = 0.9717. The scale and offset are 0.4497 and

-0.0338, respectively.

α = 0.9717, scale m = 0.4497, and offset c = -0.0338, which cor-
respond to a minimum mean-squared error MSE = 9.7× 10−7.
This α value corresponds to an average step length ⟨np⟩ = 35.3
pixels. Fig. 6 shows a cross-section of the main diagonal of the
ImageNet and fitted Mondrian autocorrelation matrices. Since
the ImageNet matrix varies slightly along its main diagonal as it
is not perfectly Toeplitz, the slice along the main anti-diagonal
was chosen for illustrative purposes.

Of course, while the fit is pleasingly close, the reader might
wonder whether we can scale autocorrelations and add an off-
set. What does this mean? Well, it does make sense in the
context of regression. For example, Ref. [5] attempts to find an
operator that removes shading variations by regressing shading-
confounded image data to shading-free ground-truth data. By
appealing to Ref. [23], we state (without formal proof) that if
we additionally require paths of uniform pixel values (such as
a single-coloured image) to be mapped without error, then the
autocorrelations can be scaled in the manner we propose.

An alternate approach that we are investigating is to use a
skewed normal distribution truncated to the range [a,b], which
would, we believe, lead to us to be able to match the real world
image autocorrelation structure and provide the prescription to
generate the corresponding Mondrians that have the same auto-
correlation properties. Finally, we remark that our model could
be applied to replicate the autocorrelation statistics of different
classes of scenes, each of which may have a different average
albedo or relative luminance and different expected step length.

Conclusion
In this paper we calculated the autocorrelation matrices for

paths of pixels in images drawn from a very large real world
scene dataset and paths drawn from the Mondrian world and
found that they share a common Toeplitz structure. Furthermore,
we showed how we can generate Mondrians so that their auto-
correlations are in close approximation to those of the real world.
The importance of this lies in part in algorithms that are based on
signal autocorrelations. In the context of human vision, lightness
perception is often explored from an image-path viewpoint, and,
in one study [5], the optimal lightness operator is based entirely
on the autocorrelations. In conclusion, we have the surprising yet
powerful result that optimising the operator for Mondrians will
work equally well for images in the real world. More specula-
tively, we believe that our result helps to strengthen the argument
that small numbers of psychophysical image stimuli might de-
liver results that work in the real world in general.
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