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Abstract
The Munsell dataset holds a prominent position in the field

of color science. This dataset describes large color differences

covering a wide color gamut, making it highly valuable for the

development of color models. Currently, the widely used ver-

sion is the Munsell Renotation, which is the second version of

the dataset. In this paper, we analyze the third version, known

as the Munsell Re-renotation, identify significant errors within

it, and provide corrections for obvious typos. We propose a

novel method for detecting nonuniformities, utilizing the L1-

STRESS measure and the proLab uniform color space (UCS).

Our findings demonstrate that the revised version of the Mun-

sell Re-renotation dataset achieves significantly better consis-

tency with established UCSs compared to the original Munsell

Re-renotation data. Additionally, we discuss modifications of the

STRESS measure for data with unknown scales. Unlike previous

modifications, the proposed measure, ST RESSgroup, is identical

to the classic STRESS measure when the scales are the same.

Introduction
TV and smartphone manufacturers strive to achieve the

most accurate color reproduction. Evaluating the quality of the

displayed image is one of the most crucial tasks in the develop-

ment of visualization algorithms. The displayed image quality

assessment aims to define a measure of reproduction accuracy.

The distances in the utilized color space (CS) should correctly

reflect color differences (CDs) perceived by humans. In a uni-

form color space (UCS), Euclidean color distance exhibit linear

dependence on the perceived CD.

To develop a UCS, sets of color pairs and their correspond-

ing estimated differences are used. Such sets are known as

psychophysical datasets. However, employing these datasets is

challenging: the collected data come from different laborato-

ries. To combine data across laboratories, modifications [1] of

the ST RESS measure [2] are used.

Most existing UCSs have been derived from data within the

sRGB gamut [3] which represents a small range of colors. How-

ever, with the growing popularity of wide color gamut (WCG)

displays, there is a need to develop UCSs that can accurately

handle colors within this expanded range. UCSs like ICTCp [4]

and Jzazbz [5] have been specifically designed for WCG colors.

Nevertheless, there is a scarcity of reliable experimental data [6]

available to assess the uniformity of these UCSs, and such data

are not readily accessible to researchers.

Thus, all available datasets, particularly the Munsell dataset,

are highly valuable. Furthermore, the Munsell dataset currently

stands as the sole dataset encompassing WCG by describing

large CDs. Its extensive utilization [5, 7, 8, 9, 10, 11, 12] re-

inforces the need to validate the correctness and consistency

of the dataset. In this paper, we demonstrate the presence

of errors, including misprints, in the published Munsell “Re-

renotation” dataset. These substantial errors manifest as outliers,

adversely impacting the optimization of UCSs. Given the labor-

intensive nature of manually verifying all data in psychophysical

datasets, it is preferable to employ automatic verification meth-

ods. Here, we propose a semi-automatic method for detecting

errors in experimental CD data by optimizing a UCS model us-

ing a STRESS-based loss function.

Munsell color system
In 1905, A. Munsell, an American scientist and artist, intro-

duced the Munsell color system, which is physically represented

by the Munsell Book of Color (1929). The Munsell color system

defines a color body with an irregular shape in three dimensions:

Value (V ), Chroma (C), and Hue (h). Each dimension preserves

equal perceptual increments, meaning that adjacent colors on a

scale (with fixed values of the other dimensions) are perceived as

equally distant without any established relationship between the

units of the three axes. Consequently, the Munsell color dataset

consists of chains of equidistant colors, and the CDs in different

chains may have different scales.

Munsell Renotation (Re) dataset

Usually, the Munsell system is represented by “Munsell

Renotation” dataset (hereinafter referred to as Re). The Re

dataset was introduced in 1943 after the Optical Society of Amer-

ica (OSA) Colorimetry Committee revised the Munsell Book of

Color [13]. This revision involved meticulous verification of

hundreds of visual experiment results and interval equality es-

timations to ensure uniformity. Chroma loci were extrapolated

from the Munsell sample bounds to theoretical colorants [14],

and Hue loci were extended. The Re dataset can be accessed on

the Rochester Institute of Technology (RIT) website [15].

The Re dataset has been extensively used in various studies

[5, 8, 9, 11, 16, 17]. However, despite efforts to achieve per-

fect visual uniformity, deviations from uniformity still persist, as

noted by several authors [18, 19, 20].

Munsell Re-renotation (Re-Re) dataset

The development of “Munsell Re-renotation” (hereinafter

referred to as Re-Re) [21] in 1967 was prompted by the evi-

dence of local nonuniformities in Re. To improve the uniformity

of the Munsell system, extensive visual evaluations were con-

ducted, resulting in a dataset comprising 2946 colors with stan-

dardized colorimetric coordinates (x,y,Y ) and Munsell system

coordinates. However, Re-Re was not published as a printed at-

las and has received limited attention in the literature. A scanned

report[21] containing tables of color coordinates is available on

the RIT website [22]. It is not machine-readable, so the utility of

these tables for studying uniformity or developing UCSs is lim-

ited. Nevertheless, Re-Re offers potential advantages over the Re

dataset in terms of improved uniformity. Thus, we have digitized
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the Re-Re dataset and examined the uniformity of color values

within its color chains.

Method for errors correction in CD datasets
Since the Re-Re dataset is only available in scanned pages

of the report, we initially converted it into a machine-readable

format by manually inputting the table values. Subsequently, we

employed a semi-automatic procedure to identify nonuniformi-

ties in the resulting dataset. The proposed method involves opti-

mizing the UCS model using a uniformity score as a loss func-

tion. The nonuniformities were categorized into three types: (1)

typos made by us during the retyping process, (2) typos present

in the original table, and (3) nonuniformities that cannot be easily

corrected and require psychophysical experiments; we provide a

separate list of such colors and suggest excluding them from the

dataset when high uniformity is desired.

Retyping into a machine-readable form
To minimize errors during the conversion, several experts

independently performed the typing procedure. The procedure

was carried out as follows:

1. Each page was processed by two experts.

2. The results were compared by a third expert.

3. For each character with a contradicting final representation,

the correct version was selected.

This procedure identified 37 typos made by the experts.

They have been corrected.

Concept of nonuniformities detection in CD
dataset

The analyzed datasets consist of numerical values that lack

an intuitive interpretation, making them susceptible to difficult-

to-detect errors. Some of these errors may have been present in

the original tables. In this paper, we propose a method for de-

tecting such errors. While an ideal UCS is not yet established,

it is known that the true metric of a color space exhibits grad-

ual and smooth changes between points. Furthermore, there are

UCS models available that offer adjustable parameters. It can

be expected that by fitting a UCS model robustly to the dataset,

the portion of the dataset that is least consistent with the result-

ing UCS likely contains errors rather than genuine deviations in

human perception properties from the model. We will explore

the process of fitting the UCS model to the dataset and robust

techniques to achieve this.

STRESS as a measure of the discrepancy be-
tween experimental data and model predictions

The uniformity of a CS is determined by its ability to ac-

curately represent perceived CDs through the Euclidean metric.

The STRESS measure is commonly employed to quantify the

similarity between computed and psychophysical CDs [23]. Let

~x ∈ R
n represent a dataset of psychophysical CDs for n color

pairs and ~y ∈ R
n represent the vector of CDs for the same color

pairs in a given UCS. The ST RESS(~x,~y) can be expressed as fol-

lows:

ST RESS(~x,~y) =
‖k∗~x−~y‖2

‖~y‖2
=

√

n

∑
i=1

(k∗xi − yi)2

√

n

∑
i=1

y2
i

, (1)

where k∗ is the factor that is used for scale normalization:

k∗ = argmink‖k~x−~y‖2 = (~xT~y)/(~xT~x). It should be noted that

the STRESS value is independent of vector lengths, as indi-

cated by the equations above. Consequently, a STRESS value

of ST RESS(~x,~y) = 0 suggests that the CDs in~x differ from those

in~y by a constant multiplier.

STRESS for datasets with varying CDs scales
In a single dataset, the scales of CDs are usually the same.

However, in cases such as the Munsell data or when dealing

with multiple datasets, the scales may vary, and their relation-

ship is unknown beforehand. Therefore, the original form of the

ST RESS measure cannot be directly applied.

Safdar et al. [5, 24] estimated the uniformity of the UCS on

the COMBVD [25] meta-dataset (a union of several datasets) of

small CDs using the classical ST RESS applied to concatenated

sub-datasets. This estimation method is valid only if the scales of

CDs in the meta-dataset are known to be the same. Li et al. [16]

calculated ST RESS individually for each group and defined the

integral score for the meta-dataset as an average. However, this

method does not take into account the structure of a meta-dataset:

groups of different sizes may make a different contribution to the

ST RESS value. To address the issue of group size, Melgosa et

al. [1] used a weighted-normalized ST RESS to estimate the uni-

formity of CD formulas on the COMBVD dataset. This approach

equalizes the contributions of each group using weights that de-

pend on group sizes.

To account for the different scales among the dataset,

we propose a modification of ST RESS that we denote as

ST RESSgroup. We refer to each sub-dataset with the same scale

of CDs as a group. Let us consider a j-th group of target~x j and

predicted~y j CDs: ~x j = (x j,1, . . . ,x j,n j
)T , ~y j = (y j,1, . . . ,y j,n j

)T ∈
R

n j . The ground truth and predicted CDs for meta-dataset con-

sisting of m groups will be regarded as tuples of target X and

predicted Y vectors: X = 〈~x1, . . . , ~xm〉, Y = 〈~y1, . . . , ~ym〉. The size

of the meta-dataset is n = ∑
m
j=1 n j . Thus, we propose calculating

the ST RESSgroup as follows:

ST RESSgroup(X ,Y ) =

√

m

∑
j=1

n j

∑
i=1

(k∗j x ji − y ji)2

√

m

∑
j=1

n j

∑
i=1

y2
ji

, (2)

where k∗j =
(

∑
n j

i=1 x jiy ji

)

/
(

∑
n j

i=1 x2
ji

)

. Unlike Melgosa et al. [1]

we do not introduce weights w j for the groups, as we assume all

color chains are of equal importance. Among all modifications

of ST RESS that take into account the variability of CD scales,

ST RESSgroup is the only modification that is equal to the classic

ST RESS when the CD scales are the same: k1 = · · · = km =⇒
ST RESSgroup(X ,Y ) = ST RESS(X ,Y ).

L1-STRESS
Errors in the training dataset can introduce bias into the pre-

dictions of the trained model, and these erroneous data points

are commonly referred to as outliers. To identify outliers in the

dataset, it is crucial to train the UCS model in a manner that pre-

vents the predictions from being heavily influenced by them, i.e.,

the model should be robust to outliers.

In order to mitigate the influence of outliers on the op-

timized UCS parameters, we suggest a modification to the

ST RESS measure that is less susceptible to the presence of out-

liers. The proposed modification involves replacing the L2-norm

in equation (1) with an L1-norm:

ST RESSL1(~x,~y) =
‖k∗L1

~x−~y‖1

‖~y‖1
=

n

∑
i=1

|k∗L1
xi − yi|

n

∑
i=1

|yi|
, (3)
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where k∗L1
= argmink‖k~x−~y‖1 = argmink ∑i |kxi−yi|. When em-

ploying ST RESSL1 for optimization, outliers in the dataset will

have a reduced impact compared to using the original ST RESS.

In the case of multiple datasets, the ST RESSgroup formula

is also modified by utilizing the L1-norm:

ST RESSL1
group(X ,Y ) =

m

∑
j=1

n j

∑
i=1

|k∗j x j,i − y j,i|

m

∑
j=1

n j

∑
i=1

|y j,i|

. (4)

The introduced ST RESS
L1
group measure enables the opti-

mization of the UCS model on datasets with varying scales, while

leveraging the use of the L1-norm, which is less sensitive to out-

liers.

Semi-automatic detection of errors in a dataset
We propose an approach for detecting errors in experimental

CD data, which is based on the optimization of UCS model with

the ST RESS
L1
group as the loss function. The UCS model selected

for this study is proLab [26]. The proLab color space is derived

by the 3D projective transformation of the CIE XYZ CS and is

described by 8 independent parameters. Instead of relying on the

original parameter estimates given in the proLab paper [26], we

optimize the parameters of the proLab model on the given dataset

using the BFGS algorithm [27].

The procedure for detecting and correcting errors in the

dataset requires the initial version of the dataset, D0, and the

starting amount of worst chains which we viewed (with the high-

est ST RESS values), N0, along with an increment value s. At

each i-th iteration, Ni worst chains are viewed, and N∗
i chains

with outliers among Ni are identified. By ∆Ni we denote the num-

ber of additional viewed worst chains. Two independent tests are

performed to identify chains with outliers: (1) visual inspection

of colors, and (2) analysis of the consistency of CD predicted

by different models. If a color stands out from the general trend

in both cases, it is classified as an outlier. The procedure stops

when the following condition is met: ∆Ni ≥∆Nmax (where ∆Nmax

is the maximum acceptable additional number of viewed chains).

A detailed procedure for detecting and correcting errors is pro-

vided below.

The iteration process begins by initializing the counter i to

zero. The following steps are then executed iteratively until the

stopping condition is met:

1. Optimize proLab using the ST RESS
L1
group loss function on

the current version of the dataset Di.

2. Calculate the ST RESS value for each chain and sort chains

in descending order according to their ST RESS value.

3. Visualize a list of Ni color chains with the highest ST RESS

and manually inspect each chain for outliers.

4. If errors are detected (N∗
i > 0), correct them in Di, incre-

ment the iteration counter by 1 with Ni+1 = Ni, and return

to step 1.

Else set ∆Ni = 0 and repeat the following steps until ∆Ni ≤
∆Nmax − s:

(a) ∆Ni+= s.

(b) Increase the number of viewed chains: Ni+= ∆Ni.

(c) If errors are found, correct them in Di, increment

counter i+= 1 with Ni+1 = Ni, return to step 1.

(d) If ∆Ni > ∆Nmax − s, return the dataset Di.

Method validation on the Re dataset
In addition to the Re-Re dataset, we also tested the effec-

tiveness of the proposed method on the Re dataset. As is well

known, the Re dataset is not perfectly perceptually uniform, but

no significant outliers have been found in it [18, 19, 20]. This al-

lows us to evaluate the specificity of the method. During the first

iteration of the proposed method, no outliers were found among

the 80 worst color chains in the Re dataset, indicating that it does

not contain obvious errors. However, it is worth noting that sev-

eral color chains with less apparent outliers were found in the

Re dataset, but their correction cannot be suggested based on

the adjacent sections of the data table. As it turned out, these

nonuniformities in the Re dataset correspond to the two most sig-

nificant anomalies of the Munsell system found in experiments

conducted by Indow [18, 28]. Therefore, we conclude that the

proposed method exhibits high specificity.

The revised version of the Re-Re dataset
We implemented the proposed method to validate and cor-

rect the Re-Re dataset. The initial number of chains N0 was set to

20 and the value of s parameter was set to 10. With ∆Nmax = 30

we executed 11 iterations, the procedure terminated when the

amount of viewed chains reached N10 = 110, resulting in a sin-

gle chain detected as erroneous.

Figure 1. The visualization of equidistant color chains, with wrong colors

indicated by arrows before correction (upper row). The corresponding result

after correction is illustrated in the lower row.

Figure 2. The fragment of the table displays errors in a chain of equidistant

colors with h=7.5P (Purple) and V=6. The two “x” coordinates of the colors

with saturation C=2 and C=4, highlighted with underlines, exhibit significant

differences from the “x” coordinates of the other colors in the chain.

As a result, the proposed method revealed a total of 52 in-

correct values, 34 of which were errors in the original dataset and

18 were mistakes made during the dataset digitization process

that we missed during the corresponding stages. Most correc-

tions were associated with a single coordinate from xyY, except

for 7 tricky cases where more than one coordinate required cor-

rection. Figure 1 provides examples of color chains before and

after correction. Note that the middle chain in the figure has a

longer length (42 colors) and all colors in it are visualized as nar-

rower bands. The left chain shows an easily detectable wrong

color in the 8th position, while in the right chain, the 4th color

deviates slightly from the general trend, and the correction results

in a more visually uniform chain.

In all chains with identified outliers, the dynamics of a coor-

dinate along one of the xyY axes were clearly disrupted. Figure 2

illustrates an example of a fragment of the Re-Re table where one

of the coordinates varies significantly from the other coordinate

values within a chain. After correcting the errors, the dynam-

ics of coordinate changes within the chain were restored and the

chains appeared visually more uniform. Figure 3 illustrates the
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Figure 3. Difference values for equidistant color chains from the Re-Re dataset after Mean Normalization: before correction (left) and after (right).

contrast between the CD value dynamics before and after correc-

tions. As depicted, the CD values underwent significant changes.

The revised version of the “Munsell Re-renotation” dataset

is available at github.com/iitpvisionlab/mrr-revised. In addition

to 34 detected misprints, we have also revealed 2 duplicate colors

and 4 significant nonuniformities that are not obvious typos. The

version of the dataset excluding these ambiguous outlying colors

and a duplicate is also provided.

UCS evaluation on the revised Re-Re dataset

To assess the effectiveness of error correction, we examined

the consistency of several UCSs and one CD formula with both

the original and corrected Re-Re datasets. The considered UCSs

were CIELAB, ICTCp [4], CAM16-UCS and CAM16-LCD [16],

Jzazbz [5], Oklab [29], proLab [26], and as CD formula we con-

sidered CIEDE2000 [25]. For the CIEDE2000 and UCSs param-

eterized by illuminant, we specified illuminant C. For CAM16-

based UCS, the luminance of adaptive field LA=64, luminous

factor Yb=20 and “average” surround were specified according

to [5] for Munsell Renotation data. We optimized proLab UCS

on two versions of the dataset and evaluated ST RESSgroup values

(ST RESSgroup was also used as a loss function for optimization).

For other UCS and CD formulas, we evaluated their consistency

with the dataset using the ST RESSgroup as a measure. The results

for the original and revised datasets are demonstrated in Table 1.

The correction of 34 colors out of 2858 unique colors,

which corresponds to approximately 1.2% of the data, resulted in

a significant improvement in the consistency between models and

the Re-Re dataset. Notably, in the case of the CAM16-UCS and

ICTCpmodels, it was not even possible to calculate ST RESSgroup

for the original data, as the conversion of xyY coordinates with

misprints produced NaN (not a number) values for the coordi-

nates in these UCS. Although the number of typos is relatively

small, they greatly distorted the uniformity of the data, rendering

the Re-Re dataset unusable. Now, after the proposed corrections,

the revised version is much more uniform and can finally be used.

Conclusion
In this article, we have presented the “Munsell Re-

renotation” dataset in a digital format, with corrected misprints.

We have proposed a semi-automatic method for detecting errors

in datasets containing chains of equidistant colors. This method

UCS or CD

formula

The original Re-

Re data

The revised Re-

Re data

CIELAB 0.928 0.566

CAM16-LCD NaN 0.364

CAM16-UCS NaN 0.360

ICTCp NaN 0.341

CIEDE2000 0.480 0.466

proLab∗ 0.464 0.256

Jzazbz 0.877 0.179

Oklab 0.482 0.144
Table 1. ST RESSgroup values for various UCSs and CIEDE2000.

A lower ST RESSgroup value indicates better consistency. The

symbol “∗” indicates that the model was optimized using the

corresponding dataset version.

allowed us to identify 34 wrong colors (≈ 1.2% of the total

amount of colors) in original data. We have proposed corrections

for these errors to restore the uniformity of the color chains these

colors belong to. Comparison of the original and corrected ver-

sions of the dataset in terms of consistency with various uniform

color spaces’ predictions shows that the misprints had a critical

impact on the data.

As the major contribution of the study we provide two

revised versions of the “Munsell Re-renotation” dataset in

machine-readable format: (1) with corrected erroneous col-

ors and (2) with removed ambiguous and duplicate colors

that we have also found. The datasets are available at

github.com/iitpvisionlab/mrr-revised. As well as the original

“Munsell Re-renotation” data that we converted from page scans

into digital format is provided.

Additionally, we proposed a new measure, ST RESSgroup,

for estimating the consistency between a uniform color space and

color difference meta-dataset with various scales.
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