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Abstract

Inventing immersive displays that can attain realism in vi-
suals is a long standing quest in the optics, graphics and percep-
tion fields. As holographic displays can simultaneously address
various depth levels, experts from industry and academia often
pitch these holographic displays as the next-generation display
technology that could lead to such realism in visuals. However,
holographic displays demand high computational complexity in
image generation pipelines and suffer from visual quality-related
issues.

This talk will describe our research efforts to combine visual
perception related findings with Computer-Generated Holog-
raphy (CGH) to achieve realism in visuals and derive CGH
pipelines that can run at interactive rates (above 30 Hz). Specif-
ically, I will explain how holographic displays could effectively
generate three-dimensional images with good image quality and
how these images could be generated to match the needs of hu-
man visual perception in resolution and statistics. Furthermore, |
will demonstrate our CGH methods running at interactive rates
with the help of learning strategies. As a result, we provide a
glimpse into a potential future where CGH helps to replace two-
dimensional images generated on today’s displays with authentic
three-dimensional visuals that are perceptually realistic.

Introduction

Today’s conventional displays can paint two-dimensional
pixelated images. However, the scenes humans view in their day-
to-day lives can be viewed from various perspectives, leading to
a continuous viewing frustum with no pixelation. Thus, repli-
cating the three-dimensional visuals could be vital in attaining
realism in next-generation displays [1].

Computer-Generated Holography (CGH) [2] offers a com-
putational method to reconstruct light fields in three dimensions
in a programmable manner. CGH generates these light fields
by interfering with light from diffracted pixels on some image
plane. Generated images are then a result of a superposition of
continuous-wave functions. Unlike conventional displays, these
images are not pixelated and are focused on various depth levels.
Thus, CGH is often pitched by industry and academia as the en-
abling technology in next-generation displays that could lead to
lifelike three-dimensional images [3].

We take this opportunity to introduce our CGH related re-
search works aiming for perceptual realism in visuals. We be-
lieve that there are three components to be discussed within this
scope. These components are (1) an accurate definition of a stan-
dard holographic display, (2) light transport models that could
account for the imperfections in holographic displays, and (3)
perceptual guidance that could potentially help to ease the com-
putational complexity of hologram generation routines in the fu-
ture. Furthermore, I will connect on optimising phase-only holo-
grams that lead to three-dimensional images using CGH.

Overview of State of the art
CGH techniques and holographic displays have seen a
tremendous amount of development in the last two to three years

time frame. Here we briefly review the most noticeable develop-
ments and advancements in the field.

Standard holographic display. Inspired by the holography
pipeline from Maimone et al. [4], the work by Shi et al. [5]
introduces a new Convolutional Neural Network (CNN) that
could generate phase-only holograms with occlusion support.
This CNN is unique as it bypasses classical rendering pipelines
and generates high-quality three-dimensional images at various
depths. The work by Shi et al. [5] could be interpreted as the state
of the art when it comes to image quality in CGH. The standard
display definition that we will be provided in the next section
follows a similar implementation to these works [4, 5].

Modelling holographic displays. Researchers have recently
looked into advancing the modelling of light transport in holo-
graphic displays. This way, imperfections in optical components
could be modelled effectively. Such modelling can enable the us-
age of the resources in the correct way leading to higher quality
image generation. These efforts often involved building dedi-
cated CNNs, trained using data from captured photographs, for
two-dimensional images [6, 7] and three-dimensional images [8].
We have recently extended these efforts by improving the classi-
cal light transport models with learned variables [9]. This way,
we trust that we mitigate issues related to small receptive fields
typically found in CNNs, leading to physically informed and ac-
curate light transport models that accounts for hardware related
imperfections (e.g., optical abberations or nonlinearities).

Perceptual guidance in holography. Classical CGH pipelines
optimize or predict holograms that aim to match a certain visual
quality across all the parts of a target image or a light field. Aim-
ing for perfection in every target corner may lead to moderate im-
age quality as the density of points reconstructed in a target light
field increases. This aim often degrades images with novel noise
patterns known as Speckle [10] in the literature. Researchers
have recently looked into gaze-contingency in holography by
foveating visuals [11], which resulted in improving foveal visu-
als while potentially offering speckle noise suppression. We ex-
tend the idea of gaze contingency for CGH from Chakravarthula
et al. [11] by incorporating novel loss functions that statistically
match peripheral images rather than pixel by pixel accuracy [12].
Our work [13] generates peripheral visuals with speckle noise
such that they are statistically represented correctly. Thus, it dis-
tinguishes itself as the first that tries to take advantage of speckle
rather than suppress it. Our work is also unique as it generates
varifocal images leading to perceptually accurate depth represen-
tations.

Standard Holographic Display

Like any other CGH work, our work relies on a holographic
display with phase-only modulation. We rely on the most com-
mon implementation of a holographic display where a slightly
diverging light source approaches a pixelated phase-only mod-
ulator. In our implementation, we use a Jasper Display JD7714



Spatial Light Modulator (SLM) as our pixelated phase-only mod-
ulator. This specific SLM runs at 30 Hz and provides 360 degrees
phase delays and 4094 by 2400 pixels. The SLM’s modulated
beam goes through a 4f imaging system with a pinhole filter on a
Fourier plane. We used 100 mm and 35 mm focal length plano-
convex lenses with a one-inch diameter and purchased them from
Thorlabs. Finally, a bare imaging sensor is placed near this spe-
cific 4f imaging system to capture the images generated by the
holographic display from various depths. We use a standard lin-
ear stage to move this image sensor back and forth to get it to the
correct focal plane. A photograph from our experimental setup
can be seen in Figure 1.

SPellElN
FOUMer [Light lodlatel
Fllter

Figure 1.  Standard Holographic Display. Our implementation of a stan-
dard holographic display is photographed, showing pieces such as laser
light source, spatial light modulator, 4f imaging system, fourier filter, imag-
ing sensor and a linear stage.

Holographic Light Transport

The light transport for coherent beams is often described
using Rayleigh-Sommerfeld diffraction integrals [14], the first
solution of the Rayleigh-Sommerfeld integral, also known as the
Huygens-Fresnel principle [15], described as follows:
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where the field at a target image plane, u(x,y), is calculated by
integrating over every point of the input complex field, ug(x,y).
Note that, for the above equation, r represents the optical path
between a selected point over an initial complex field and a se-
lected point in the image plane, 8 represents the angle between
these two points, k represents the wavenumber (gf) and A rep-
resents the wavelength of light. The described holographic light
transport model is often simplified into a single convolution with
a fixed spatially invariant complex kernel, A;(x,y) [16].

u(x,y) = uo(x,y) xhz(x,y)
= F YT {uo(x,y)}- F{h(x,y)}}
In our case, we choose to use the Fresnel approximation to the

Rayleigh-Sommerfeld which is a commonly used form of 4 de-
scribed as
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where z represents the distance between an initial complex field
plane and a target image plane. We identify a new h; by train-
ing with holograms and their corresponding reconstructed im-
ages captured as photographs [9]. This way, a more accurate
form of h; could be established for a given hardware, leading to
improvements in image quality as sampled in Figure 2.
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els do not account for imperfections in optical hardware, often times leading
to degraded image quality. (b) Rather than using an ideal light transport,
learning light transport in the form of a single convolutional kernel can lead
to improving image quality. Training process of this learned kernel requires
training with an input hologram and a corresponding photograph capturing
reconstructed images [9].

Perceptually guided holograms

Our most recent work provides a varifocal and foveated
hologram generation pipeline using the metamers in the periph-
eral vision, images that look statistically correct but not pixel
correct; such images are perceived as identical when viewed in
peripheral vision [12] (see Figure 3. We have reformulated our
previous work [12] in the form of a differentiable loss, function to
optimize holograms with a Stochastic Gradient-based optimizer.
This way, we can generate plausible images at the peripheral and
focus on the depth that a user is interested in observing. For
more, please consult our technical paper [13].

Figure 3.

A sample metamer display by following the work by Walton
et al. [12] using a gaze location at the center of the image (red dot at the
center).

Both our loss function and optimizers are readily available
in our code library available publicly [17].

Conclusion

CGH offers a unique graphics system that can provide gen-
uinely three-dimensional images. This work discusses a base
holographic display, which we call a standard holographic dis-
play. We also briefly introduce new tools that can help improve
the visual quality of holographic displays. We believe these
works formulate a new base for achieving “perceptual” realism
in holograms in the future.
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