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Abstract
Image enhancement and image retouching processes are of-

ten dominated by global (shift-invariant) change of colour and
tones. Most “deep learning” based methods proposed for im-
age enhancement are trained to enforce similarity in pixel val-
ues and/or in the high-level feature space. We hypothesise that
for tasks, such as image enhancement and retouching, which in-
volve a significant shift in colour statistics, training the model
to restore the overall colour distribution can be of vital impor-
tance. To address this, we study the effect of a Histogram Match-
ing loss function on a state-of-the art colour enhancement net-
work — HDRNet. The loss enforces similarity of the RGB his-
tograms of the predicted and the target images. By providing
detailed qualitative and quantitative comparison of different loss
functions on varied datasets, we conclude that enforcing similar-
ity in the colour distribution achieves substantial improvement in
performance and can play a significant role while choosing loss
functions for image enhancement networks.

Introduction
Traditional image enhancement methods, such as

CLAHE [13], are built from handcrafted rules that aim at
improving image quality. Finding image enhancement rules that
would work for variety of content is a challenging problem.
Therefore, the recent deep learning solutions attempt to learn
such rules from data, which is typically represented as a collec-
tion of input and enhanced images. LLNet [11] introduce a stack
of auto-encoders to learn denoising and low-light enhancement
jointly on the patch level of the image. Retinex theory [9] based
deep learning approaches decompose an image into reflectance
and illumination channels and employ deep networks to recover
each channel [4, 23, 19, 25, 15]. HDR-Net [6] employed
pairwise supervision by incorporating the idea of bilaterial
grid filtering and local affine colour transformations for deep
networks. Several GAN based approaches have been proposed
for unpaired low level vision tasks, e.g. dehazing, deraining,
super-resolution and photo enhancement [14, 10, 26, 27, 3, 7].
However, most of these works study the effect of network archi-
tectures for low-level vision tasks, rather than the importance
of loss functions used to train such methods. In this work, we
provide a comparative study on the loss functions for the tasks
that rely on the overall colour distribution of the image, namely,
image enhancement and retouching.

The choice of the loss function for training such methods
can play a key role in incorporating the colour distribution of
the image. Methods such as HDRNet [6] often use pixel-wise
loss functions, such as mean-squared error (MSE or L2), which
enforce pixel similarity rather than a similarity of colour distribu-
tion. Recent success of learning-based methods for visual recog-
nition have led to the advent of employing neural networks as
feature extractors for loss functions. Most commonly, the net-
works are trained to minimize the distance between the high

level features of a pre-trained VGG network [18] for the pre-
dicted and the reference image. Such methods have shown to
result in trained models that produce pleasing results by enforc-
ing similarity between the feature space of the reference and the
generated image. This class of losses are often referred to as
perceptual losses as they are meant to optimize the perceptual
quality rather than the pixel differences.

In image enhancement tasks, in addition to the pixel inten-
sities, the true colour distribution of the target image is signifi-
cantly shifted. To this end, we study the effect of different loss
functions for training an Convolutional Neural Network (CNN)
based image enhancement network. We show that a loss func-
tion that can capture and enforce the inherent colour distribu-
tions between the target and the predicted images, in addition
to a regular L2 loss, provides more efficient enhancement of the
resulting images. More specifically, we show that a colour dis-
tribution loss that enforces Histogram Matching [1] between the
predicted and the reference images along the three colour chan-
nels (RGB) performs significantly better than the conventionally
used loss functions. This constraint on model training, alongside
the conventional loss functions (like L2) is more suitable for tasks
like image colour enhancement and image retouching rather than
perceptual loss functions (like VGG and LPIPS [29]). Moreover,
similar to perceptual loss functions, this loss can work in con-
junction with pixel-wise losses without any additional changes
in the underlying model architecture. In this work, we show that
the Histogram Matching or HistMatch loss function improves the
performance of HDRNet [6] for the tasks of image retouching
and colour grading on diverse datasets.

Background
When training a deep network for image enhancement,

we are provided with a finite set of image pairs (xn,yn) : n ∈
(1, . . . ,N), where each input image xn ∈ X is sampled from an
input domain X and yn ∈ Y belongs to target domain Y . Con-
ventionally, we train a CNN based regression model gθ (·), pa-
rameterized by θ , to promote an accurate mapping between the
input images x and the target images y by minimizing the loss:

∑n L
(

gθ (xn) , yn

)
. The loss functions used to train such net-

works can be mainly classified into two categories: pixel-wise
losses and feature-wise losses. In image enhancement settings,
pixel-wise losses like the mean squared error (L2), L1 are most
commonly employed and have shown to perform well, however,
such losses fail to incorporate the overall image colour distribu-
tion while learning a mapping from the input to the target do-
main. Moreover, colour insensitive image quality metrics like
SSIM [22] and MS-SSIM [21] are not suitable for this task as the
input-target image pairs often involve significant shift in colour.

Recent success of Convolutional Neural Networks (CNNs)
in image classification [18] have led to the advent of another class
of loss functions known as the feature-wise losses. In such set-
tings, the similarity between the reference and the predicted im-
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Figure 1: Figure shows the working of the proposed combination of loss functions for the task of image enhancement. Please note that the loss
function is independent of the network architecture employed. The total loss function used to train the model is a weighted combination of the L2 and
the Histogram Matching Loss Lhm.
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Figure 2: The plot shows the comparison of histogram estimation for
DeepHist[1] with and without the modifications. Using the derivative of
a function closer to a unit step performs sharper and closer estimation of
the color histograms.

age is computed in the feature space of deep CNNs. Johnson
et al. [8] employed a pre-trained VGG-Net[18] on the ImageNet
dataset [17] to extract the latent features from the target and the
predicted image. L2 norm is then computed between the features.

Methods such as HDRNet [6] train the model with a
weighted combination of the L2 pixe-wise and the VGG feature-
wise losses [18]. Following the protocol set by [8], the feature
maps for computing the perceptual loss are extracted after the
relu1 2, relu2 2, relu3 3, and relu4 3 of the VGG-16 network.
However, all those losses enforce similarity of local rather than
global image statistics. For example, VGG features at the output
of relu4 3 have the receptive field of the size 150×150 pixels.
Furthermore, the extracted features have been optimized for the
task of image classification, not the colour representations.

Differentiable Histogram
In this section, we explain the differentiable approxima-

tion of a histogram from [1] with our modifications that allow
more precise estimations for spiky and discrete RGB histograms.
The differentiable histogram estimation lets us formulate the loss
function that combines Earth Mover’s Distance (EMD) between
the histograms of the input and target images and a regular pixel-
wise loss. Later we show a detailed comparison between the net-
work optimized for learning the colour distribution and other loss
functions for the tasks of image enhancement and retouching.

In digital image processing, a pixel intensity for each colour
channel lies within a discrete range of K intensity values. Colour
statistics of an image can be described by computing the image
histogram by counting the total number of pixels in each intensity
value a.k.a bins. Considering that the image space can take any
value in a continuous intensity range [0,1], we can define the

pixel intensity of an image pixel p ∈ Ω as I(p) ∈ [0,1]. As in [1],
we use the Kernel Density Estimation (KDE) for approximating
the channel wise density for each colour channel I as follows:

f̂I(i) =
1

|Ω|B ∑
p∈Ω

K

(
I(p)− i

B/α

)
, (1)

where, i∈ [0,1], K (·) is the kernel, B is the bandwidth and |Ω| is
the total number of pixels in the image. Due to the spiky and dis-
crete nature of the image histograms, we choose the kernel K (·)
as a derivative of a function closer to a unit step rather than a
conventional logistic regression function σ(z), as in [1]. For this
we set an additional hyper-parameter α , which is empirically set
at 1000. This leads to a closer estimation of the image histogram
than a sigmoid function as in [1] (see Fig. 2). The kernel is de-
fined as follows:

K (z) =
d
dz

σ(z) =
d
dz

(
1

1+ e−z

)
, (2)

For an efficient performance as a loss function, we divide the in-
terval [0,1] into K intervals {Bk}K−1

k=0 , with each interval of equal
length of L = 1/K with center µk = −1+ L(k+ 1/2). For our
experiments, we conducted a grid search for the hyper-parameter
K from the following set of values K ∈ {50,100,256} and found
the best results for K = 256. Each bin k contains the pixel inten-
sities between the interval Bk = [µk − L/2 , µk + L/2]. We can
then define the probability of a pixel belonging to a certain bin,
with center µk, for a colour channel I as follows:

PI(k) = Pr(i ∈ Bk) =
∫

Bk

f̂I(i)di. (3)

Given the kernel function K (·) as the derivative of σ(α z)
(see Eq. 2), we calculate the the function PI(k), which provides
the value for the kth bin in a differentiable histogram. Finally
for a specific colour channel I j, the image histogram for all bin
centers and the respective probabilities is given as:

h j =
{

µk , PI(k)
}K−1

k=0 . (4)

In Fig. 3, we show a comparison of the computed histogram
for a sample target domain image with the predicted output us-
ing different loss functions. It can be seen that addition of a his-
togram matching loss in the combined loss function provides en-
hanced colour representation at inference.
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Figure 3: The figure shows a comparison of the image histogram of the images predicted using models trained with L2 and our loss. It can be seen that
our loss function results in final predicted image’s colour distribution to be closer to the target image.
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Figure 4: Qualitative comparisons of HDRNet models trained with different loss functions on three datasets. The target for MIT5k dataset is the expert
C retouched image. It can be seen that addition of a constraint over the image histogram while training enforces the predicted image colour distribution
to be closer to that of the target image.

Loss Function
To compute the distance between two image histograms h1

and h2, we use the EMD [16]. Werman et al. [24] showed that
the EMD between two 1D histogram vectors can be computed
as the L1 distance between the cumulative histograms. The use
of L1 loss over the cumulative density function (CDF) allows for
faster convergence and easier optimization of a network. The
final histogram matching loss used in our model training can be
defined as follows:

Lhm(h1,h2) =
K−1

∑
i=0

∣∣CDFi(h1)−CDFi(h2)
∣∣ , (5)

where, CDFi(h1) is the i-th element of the cumulative density
function of the channel-wise estimated histogram h1. The overall
loss function is composed of the original objective of the CNN
augmented with the histogram matching loss for each of the three
RGB channels as:

L (x,y) = Lrec +
λ

3

3

∑
c=1

Lhm(xc,yc) , (6)

where c is each colour channel and the scalar λ is to control the
weightage given to the histogram matching loss term. Here, the
reconstruction loss Lrec is the L2 distance between the predicted
image and the target image.

Data
For experimentation, two real-world datasets with input-

target image pairs were used. Firstly, we explore the performance
of our method on MIT-Adobe FiveK dataset [2]. The dataset con-
sists of 5000 RAW images, and each input image is retouched by
5 colour artists according to their specific choice. In this work,
we follow the common practice [28, 6, 3, 20, 12] of using the
retouched images by expert C as the ground truth target images.
We choose a random sample of 4000 images for the train set and
the rest 1000 as the test set following a 80–20 train/test ratio. The
images are rescaled to 480p resolution.

Additionally, we evaluate the efficacy of our method on
video dataset, where the input and target movies are separately
colour graded for Standard Dynamic Range (SDR) and High Dy-
namic Range (HDR) displays by colour artists. For this task,
we decode two Blue-ray movies, namely, “BBC Planet Earth II
Episode 3 - Jungles” and “BBC Blue Planet II Episode 5 - Green
Seas” which constitute our dataset. From each input (HDR) and
target (SDR) movie, we choose a sequence of every 120th frame.
Each frame pair was added to the dataset after computing the
cross-correlation to ensure time-synchronization. We choose the
first 80% of frames for training and the rest 20% for testing. To
this end, we have a total of around 500 image pairs for training
and another 100 for testing for each movie. Each movie frame
is rescaled to a resolution of half HD (960p×540p). Both SDR
and HDR RGB pixel values are display encoded (BT.2020 + PQ
for HDR, BT.709 + sRGB for SDR).
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Figure 5: The plot shows the comparison of HDRNet model’s prediction trained with different loss functions on a synthetic test image. The left and
the right plots are for the model trained on the Green Seas movie and the MIT-Adobe FiveK dataset respectively.
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Figure 6: Quantitative performance comparison of HDRNet trained using different loss functions for the task of image enhancement on different
datasets. The purple ‘+’ in the plots show the mean and black ‘×’ show the lowest 5th percentiles. Note that our method provides an enhanced average
PSNR as compared to other loss functions.

Experiments
In this section, we evaluate the effect of incorporating image

histogram matching loss for image enhancements tasks where a
CNN is employed. In this work, we choose the state-of-the art
HDRNet [6] architecture to train our input to target domain im-
age mapping for two applications: image tone mapping and im-
age retouching. For image tone mapping, we evaluate the per-
formance of HDRNet on movies dataset where the input and
the target frames have been separately colour graded for HDR
and SDR displays. For the task of image retouching, we use the
camera RAW and the expert C retouched images from the MIT-
Adobe FiveK dataset. We provide the results for baseline models
(trained using L2 loss), perceptually trained models (trained with
L2+ VGG loss, as done in the original paper [6]) and the mod-
els trained with the proposed loss function for each application.
The codes for our experiments are based on PyTorch [5]. Each
network was trained for 500 epochs with an initial learning rate
of 1e− 4 with an exponential learning rate scheduling. For his-
togram construction, we use K = 256 bins and the width of the
bin L = 1/256. To achieve the best performance, we need to se-
lect the values for the hyper-parameter λ , which controls the split
between the L2 loss and the histogram matching loss while train-
ing. For this we conducted a grid search from the following set
of values λ ∈ {0.1,1,10} and found the best results for λ = 1.

Results and Discussion
In this section, we test the importance of using underly-

ing colour statistics while designing the loss function. For this,
we evaluate the performance of the HistMatch loss function on
CNN based architectures for the task of image tone mapping and
colour retouching. We further compare the performance of the
loss for HDRNet [6] training, with the most widely used loss
functions. In Fig. 6, we provide a PSNR comparison of HDRNet

trained with various loss functions as a violin plot. Furthermore,
in Fig. 4, we provide a qualitative result comparison for an image
sample from each dataset. It can be seen that the proposed loss
function provides enhanced colour reconstruction of HDRNet.

In Fig. 5, we plot the tone curves for the HDRNet models
trained with different loss functions on “Green Seas” movie and
the MIT-FiveK datasets. It can be seen that the additional his-
togram matching loss term acts as a regularizer to prevent drastic
shifts in the colour of the predicted image. We observe the same
results in qualitative results shown in Fig. 4, where the additional
loss term prevents over enhancement of the predicted image. The
resulting images produced using the HistMatch loss are thereby
closer to the target image.

Conclusion
There has been an immense surge in the methods proposed

for image colour enhancement and colour retouching. However,
none of the models explicitly enforce similarity in the colour
statistics of the predicted and the target image. We in this work,
study the effect of a different loss functions on the performance
of HDRNet model for tasks that involve significant shift in the
overall colour statistics. Finally, we conclude that a loss func-
tion that explicityly enforces similarity in the RGB histogram of
the predicted and the target image provides much superior per-
formance to its counterparts.
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