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Abstract. Benchmark datasets used for testing computer vision
(CV) methods often contain little variation in illumination. The
methods that perform well on these datasets have been observed
to fail under challenging illumination conditions encountered in the
real world, in particular, when the dynamic range of a scene is high.
The authors present a new dataset for evaluating CV methods in
challenging illumination conditions such as low light, high dynamic
range, and glare. The main feature of the dataset is that each scene
has been captured in all the adversarial illuminations. Moreover,
each scene includes an additional reference condition with uniform
illumination, which can be used to automatically generate labels
for the tested CV methods. We demonstrate the usefulness of the
dataset in a preliminary study by evaluating the performance of
popular face detection, optical flow, and object detection methods
under adversarial illumination conditions. We further assess whether
the performance of these applications can be improved if a different
transfer function is used. c© 2021 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2021.65.4.040404]

1. INTRODUCTION
Computer vision (CV) methods are often trained and
evaluated on datasets that contain images obtained in
relatively ‘‘easy’’ conditions, in which the illumination is
mostly uniform across the scene, and there is little camera
noise in the images. The performance of such methods can
drop substantially when used with images captured in more
realistic conditions, where the illumination can vary sub-
stantially across the scene. Commonly encountered problems
include false edges produced by shadows, contrast reduction
due to glare, and camera noise in the darker parts of the scene.
These problems have been recognized and addressed by
collecting large datasetswith varying illumination conditions
[1–3] or by simulating different illumination conditions with
computer graphics [4] methods.

In this work, we capture a dataset using controlled
camera and lighting setups to evaluate the robustness of
CVmethods under adversarial illumination conditions. Our
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dataset is composed of video sequences captured for the same
scene but under several different illuminations. The frames
were captured from the same camera position with the
same scene arrangement, while a set of artificial lights were
configured to mimic one of four illumination conditions:
an ‘‘easy’’ uniform illumination, low-light night condition,
high dynamic range (HDR) condition, and a condition with
a bright light source that induces strong glare. The main
advantage of this approach is that we can use the ‘‘easy’’
uniform condition to produce labels for any CV method.
Subsequently, these labels enable us to measure the relative
degradation in performance of the method under other
illumination conditions. This saves us the manual work of
labeling the dataset for each CV application. The dataset is
publicly available at https://doi.org/10.17863/CAM.71285.

We captured video sequences with a CV camera
mounted on a motorized camera slider, which let us
introduce motion parallax and therefore widen the range of
applications that can be addressed. Thus our sequences can
be used to evaluate optical flow [5, 6] and global motion
compensation [7] methods under challenging illuminations.
We provide both linear 16-bit demosaiced RGB images and
merged HDR images in the OpenEXR format. The former is
representative of a typical CV camera, and the latter can be
used to simulate a range of cameras and capture scenarios.

In Section 2, we discuss existing datasets and categorize
them according to the target applications. Then, in Section 3,
we describe our camera and illumination setup, and in
Section 4, the construction of our indoor scenes. Next,
in Section 5, we provide a summary of the dataset and
describe how each frame is processed. To demonstrate the
utility of our dataset, we show how several face detection,
object detection, and optical flow methods are affected by
adversarial illumination in Section 6.1. Finally, in Section 6.2,
we analyze how the choice of the color transfer function (TF)
can improve the performance of CV methods in adversarial
illumination conditions.

2. RELATEDWORK
Publicly available image datasets serve as the main means
of evaluating and comparing CVmethods. Some established
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Figure 1. The Street scene along with the capture and setup. Controllable
lights are present on either side of the scene to simulate various lighting
conditions. The right image shows the spotlight behind the scene, which
shines through the diffuser and serves as a source of glare.

datasets, such as Middlebury stereo [8, 9] and optical flow
datasets [10] contain well-illuminated images captured in
controlled laboratory conditions. A similar trend can be
observed for higher-level detection and recognition tasks,
for which commonly used evaluation datasets are COCO
[11] for objects and LFW [12], CelebA [13], and FFHQ
[14] for faces. Although such datasets are highly influential
and essential for evaluating CV methods, they attract
criticism since they may not sufficiently reflect the varied
illuminations found in real-world scenes.

In-the-wild datasets Very large datasets with a good
variation of illumination conditions have been captured
with monitoring cameras [2, 3] or car-cabin cameras [15].
However, such datasets are intended for a single application,
and extending them to other applications requires tedious
manual labeling (e.g., 11 man-months of work in some cases
[2]). Our dataset cannot match the size of these specialized
datasets but can be used across diverse CV applications.

Multi-illumination datasets Scenes with the same
composition but varying illumination can be captured using
a motorized photographic flashlight on a camera by taking
multiple images [1, 16]. The light bouncing off the walls
and the ceiling illuminates objects from different directions,
providing a large variation in illumination required for image
relighting methods. Such an approach, however, is suitable
only for indoor scenes without motion, results in a rather
artificial structure of the reflected flashlight, and is unlikely
to produce high-contrast HDR illumination. Instead, we
carefully compose scenes with multiple light sources to
achieve challenging illumination conditions.

Abdelhamed et al. [17] captured the smartphone image
denoising dataset (SIDD), a dataset for testing denoising
methods intended for smartphone cameras. They captured
a series of images for ten different static scenes, each under
four conditions by varying the camera gain settings, color
temperature, and brightness of the light sources. In contrast,
our dataset consists of video sequences withmotion parallax,
captured with a CV camera, in which the illumination was
specifically designed to challenge a range of CV methods.

Tracking and detection under challenging illumina-
tion conditions Underexposed and saturated regions pose

Table I. Configuration of lights used for different illumination conditions. The first two
lights were controlled using the DMX512 protocol, allowing a value between 0 and 255.
The remaining lights could only be turned on or off using relays connected to an Arduino
board.

Light Night HDR Glare Uniform

DMX area 0 63 255 255
DMX spotlight 10 0 255 0
Photographic light off on off off
Tunnel/street LEDs on off off on
Background on on on on

problems to object detection [18] and trackingmethods [19].
To address this, Atoum [18] proposes illumination-aware
CNNs (convolution neural networks) to improve object
detection. Alismail et al. adapt illumination-invariant binary
descriptors to achieve photometric invariance in track-
ing [19]. Our work provides an evaluation dataset for these
and other related problems.

Relighting Image-based relighting can be used to
generate novel images of a scene under arbitrary illumination
conditions [20, 21]. However, most relighting methods
either require several images of the same scene captured
under different lighting, or they are restricted to a single
application, such as portrait relighting [22]. Since several
images need to be captured anyway, we are better off
capturing the images under the desired illumination and
avoiding potential artifacts of the relighting method used.

Rendering Large datasets with automatically generated
labels can be produced with computer graphics methods
[4, 23, 24]. Game engines or offline rendering can be used
to render photorealistic scenes in arbitrary illumination
conditions. However, obtaining highly realistic rendering
results, comparable to camera images, requires a substantial
amount of effort by skilled professionals. Furthermore,
rendered images tend to differ substantially from those
captured by cameras. This may introduce a bias in training,
validation and result in a model that underperforms in the
wild [25]. This problem is addressed by domain adaptation
methods [25], which involve training on a mixture of real
and computer-generated images in a fully or semi-supervised
manner or adversarial training on the source and target
domains [26].

3. CAPTURE SETUP
In this section, we discuss the common capture and
illumination setup shared across all scenes under different
illumination conditions. Figure 1 depicts the various com-
ponents of the capture setup.

3.1 Lights
Each illumination condition was simulated by toggling
or dimming a combination of lights according to the
configurations detailed in Table I. The lights included
a compact spotlight (Cameo Q-SPOT 40 TW) and a
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Figure 2. The scenes (rows) captured under different illumination conditions (columns). All images have been gamma encoded (γ = 2.2) for visualization.

photographic box light (Astora SF 120), both controlled
over the DMX512 protocol using the QLC+ software [27].
Selenium webdriver [28] was used to control QLC+ software
using its web interface. We also used a photographic light
with a single LED bulb (Omnilux 18W 1800–3000 K), and
smaller LED lights controlled by a custom Arduino board
with several relays. Additionally, background illumination
was provided by an LED video light (Neewer NL480). We
tested all the lights with a custom high-frequency light meter
to ensure that they were flicker free up to 8.9 kHz.

Some example images from the captured scenes under
each illumination condition are shown in the columns of
Figure 2. These conditions are described below:

3.1.1 Uniform
For each scene, a uniform condition was obtained by
manipulating the lights to illuminate as much of the
scene as possible. The camera parameters were selected
to produce well-exposed frames with low levels of noise.
The CV methods tested in our experiments (Sections 6.1
and 6.2) perform very well on images captured under the
uniform condition. Thus, it serves as a reference condition
for generating labels used to test other, more challenging
illumination conditions. The advantage of such a framework
is that we prevent tedious, manual labeling of the data
for different applications. We note, however, that the labels
obtained are not ground truth labels and their only purpose
is to test the relative change in performance in under
adversarial illuminations.

3.1.2 Night
Night illumination simulates low-light conditions by using
only a few selected lights and dimming them as needed. In

low-light imaging, it is customary to use a high camera gain
to capture video, and thus, we used a gain of 16 (the camera’s
maximum gain). The high gain introduces significant noise
in the images as depicted by the zoomed-in patches in
Figure 3(a). Using longer exposure times is often not an
option for videos, as it results in motion blur and a low frame
rate. Another characteristic of the night condition is bright
lights such as tunnel lights in the Tunnel and street lights in
the Street scenes.

3.1.3 High dynamic range
Here, the lights were arranged to achieve a very high contrast
between the dark and bright parts of the scene to simulate
HDR illumination conditions (see Fig. 3(b)). Such high
contrast was achieved either by illuminating one of the faces
with the spotlight (for the Faces scene) or by using a foam
board to produce sharp shadows from a bright source of light
(see Fig. 1) (for other scenes). In theTunnel scene, the ceiling
lights of the tunnel were turned off, while photographic lights
simulated the bright outdoors. As depicted in Fig. 3(b) and
Fig. 2 column (b), dark regions of the scene were barely
visible when the image was display encoded using a regular
gamma encoding. These image regions were also affected by
noise much more than their brighter counterparts.

3.1.4 Glare
It is often unavoidable to have very strong light sources,
such as car headlights or the Sun, in an image. Such strong
light sources introduce visible glare, also known as blooming,
caused by unwanted scattering and reflections of light inside
the camera lens. The glare causes a reduction in contrast in
an otherwise well-exposed image, as shown in Fig. 3(c) (top).
Depending on the configuration of the scene, we used either
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Figure 3. Gamma encoded (γ = 2.2) images of the dataset showing the various problems or imperfections in images under non-ideal but realistic
illumination conditions.

three bright LED bulbs fixed in a photographic frame and
connected to a relay, or the compact spotlight controlled by
DMX512 protocol to induce glare in the images (see Fig. 1
right).

Lens flare is another problem caused by stray reflections.
Lens flare can be seen in Fig. 3(c) (bottom) and is caused by
the tunnel lights present in the scene.

3.2 Camera and Lens
We captured the scenes using an IDS UI-3860CP-C-HQ
computer vision camera, which has a Sony IMX290 1/2.8’’
CMOS sensor of resolution 1936× 1096 pixels and pixel size
2.9µm.The camerawas remotely controlled to capture 12-bit
RAW images. For each video frame, we captured a stack of
13 images with increasing exposure times with a distance of
1 stop between them. A higher gain of 16 was used for some
conditions such as night andHDR. The final images selected
for each illumination condition depend on the scene-specific
lighting configuration and lens aperture used. These are
selected from the captured exposure stacks. An advantage
of the captured exposure stacks is that the HDR scenes
can be accurately reconstructed. Subsequently, pretrained
generative models [29] or calibrated camera parameters
[30, 31] can be used to simulate other cameras, generating
additional realistic images of the same scenes captured with
different camera settings.

Our scenes were captured using one of three lenses
depending on the specific camera motion and illumination
condition. The different lenses used were:

• Narrow: Fujifilm HF25HA-1B with focal length 25 mm
and the effective field of view (accounting for the sensor
crop) of 14.6◦× 9.78◦

• Medium: Navitar HR973NCN with focal length 8mm
and the effective field of view of 43.7◦× 29.9◦

• Wide: Wide-angle Navitar MVL4WA with focal length
3.5mm and the effective field of view of 85◦× 62.9◦

All lenses have a maximum aperture of f/1.4. However,
in most captures, we set a much smaller aperture to ensure
a sufficiently large depth of field. The exact lens used varied
for each sequence and is discussed in Section 4.

3.3 Motorized Camera Slider
The camera mounted on a camera slider was powered by
a stepper motor driver (Wantai DQ542MA) and controlled
with a custom Arduino board connected to a PC. To
ensure that the frames were captured from the same
viewpoint for each illumination condition,we cycled through
all illumination conditions before moving the camera to
the next position on the slider. We captured each scene
from 100 different camera positions, simulating smooth
camera motion. The total length of the movement was
808.89mm and thus, the distance between each frame of
the sequence was 8.09mm.We positioned the slider parallel,
perpendicular, or diagonal to the background plane of the
physical scene, depending on the scenario.

4. SCENES
Since we required full control of the lights and needed to
capture the scenes over several hours, we had to simulate
semi-realistic scenarios in the lab. The scenes consisted of
printed foam board cutouts and models in 1:24 scale. All
objects were placed at different distances from the camera to
introduce parallax. The background was made out of a large
foam board with printed photographs or patterns glued on
it. All the scenes also included X-Rite Classic Color Checker
Chart used for white balance and color calibration.
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Figure 4. Distribution of pixel values under different illumination conditions
for all scenes in the dataset. Dashed vertical lines show the average pixel
values under each illumination for each scene.

4.1 Faces
Face detection and recognition are important and well-
studied problems. Most face datasets [12–14] contain
prominent, well-exposed faces under ideal illumination
conditions. To evaluate the robustness of state-of-the-art
face detection and recognition methods, we constructed a
scene composed of cardboard cutouts of the faces of popular
figures. We also included cutouts of a tiger and a gorilla
to introduce the possibility of false positives. The source of
glare was introduced by cutting a circular hole in the foam
board that supported the background and covering it with
a diffuser film. As depicted in Fig. 1, the compact spotlight
was placed on the other side of the foam board and directed
toward the camera. For this scene, the camera slider moved
horizontally, parallel to the scene. The dynamic range of the
scene was increased by pointing the focused spotlight on one
of the cutouts (the Queen in Fig. 3(b)) while keeping the
background light dim. The lens with medium focal length
was used for HDR and night conditions as it allowed the
camera to be placed closer to the scene. However, this lens
produced images with significant lens flare in the presence
of a bright source of light. For this reason, the narrow-angle
lens was used for the glare condition and the camera was
placed at a larger distance from the scene. Since we had to
use a different lens and also move the spotlight, we captured
a separate uniform illumination condition, which served as a
reference for the glare condition.

4.2 Tunnel
This scene simulated a camera mounted inside a car on a
busy road. The motion of the camera slider simulated the
movement of the car as it exited a tunnel and approached an
intersection. Unlike the other scenes, the camera moved in
the direction it was facing, perpendicular to the plane of the
background.We used a wide-angle lens, similar to those used
in dash cameras. The scene consisted of objects built from
cardboard and foam board cutouts (the tunnel, truck, bus,

Figure 5. The ISP pipeline, used for evaluating the performance of CV
methods. The intermediate frames are processed by a TF, followed by an
optional quantization. This serves as an input to the CV application being
tested.

traffic signs, etc.), models of cars in 1:24 scale, and amodel of
a tree.Wemodified one of the cars so that it had its headlights
on during the capture. For the night illumination condition,
the tunnel was illuminated with controllable LED lights.

This scene had a large dynamic range as it included
low-luminance regions inside the tunnel and bright regions
outside. Lens flare caused by the headlights of oncoming
cars and tunnel lights provided additional adversarial
illumination.

4.3 Street
The final scene depicted a crowded street with cars, a bus,
and pedestrians. For the night condition, the street was
partially illuminatedwith smallmodel lamp posts, controlled
by the Arduino board. The pedestrians were model people
in 1:25 scale from a model train collection (the closest
matching scale). The camera moved either along the street
(labeled Street-parallel) or on a diagonal 45◦ path (labeled
Street-diagonal), simultaneously moving along and toward
the street. The source of glare had the shape of a set of
construction-site lights with the DMX spotlight behind the
diffuser film.

5. PROCESSING OF THE FRAMES
We prepared linear color camera frames, stored as 16-bit
PNG files, and HDR frames stored as OpenEXR images. The
RAW camera frames were first demosaiced using DDFAPD
[32] and then white balanced. To perform white balance, we
multiplied RGB values so that all color channels had equal
intensity for the white patch in the color checker chart.

The 16-bit PNG images were created by selecting an
appropriate exposure from the captured exposure stacks. For
every scene and illumination, we selected the exposure that
avoided saturated pixels, and hence, was representative of
typical capture conditions. For example, we chose sequences
with high gain for night conditions, and exposures with
high contrast and almost no saturation for the HDR scene.
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Figure 6. Bounding boxes for several face and object detection methods (rows) for three adversarial illumination conditions (columns), each gamma
encoded (with γ = 2.2). Faces and objects detected by the various methods for the reference uniform illumination condition are shown as shaded green
rectangles, while the results of the tested methods for other illumination conditions are shown as red rectangles.

Saturation of the pixels was unavoidable for the glare
conditions, containing bright light sources. However, we
selected exposures in whichmost objects were visible and not
saturated.

The HDR image stacks were merged using HDRutils
[31], which reduces estimation error in the presence of noise.
We used 13 exposures, from 0.2ms to 819.2ms, separated by

1 stop. Demosaicing and white balance were performed after
merging RGGB sub-pixels. The multi-exposure merging
procedure resulted in HDR images with a minimal amount
of noise and without any saturated regions. Such images
can be used to simulate other cameras with different noise
characteristics [29–31].

J. Imaging Sci. Technol. 040404-6 July-Aug. 2021



Hanji et al.: HDR4CV adversarial illumination dataset

Table II. The performance of popular methods under different illumination conditions, averaged over 100 images in each sequence. All input images were encoded using a gamma
encoding (γ = 2.2). The reference labels for each application were obtained from uniform conditions. (*) The lens and setup for images containing glare in the Faces sequence
differed from other conditions. As a result, a different setup for the reference uniform condition was used.

Application Method Faces Tunnel Street-parallel Street-diagonal
Night HDR Glare* Night HDR Glare Night HDR Glare Night HDR Glare

Face detection (mIoU) ↑ HoG 0.75 0.15 0.66 7 7 7 7 7 7 7 7 7

MMOD 0.93 0.16 0.44 7 7 7 7 7 7 7 7 7

SSD 0.56 0 0.1 7 7 7 7 7 7 7 7 7

Object detection (mIoU) ↑ YOLOv3 0.92 0.63 0.76 0.52 0.85 0.9 0.71 0.76 0.88 0.78 0.82 0.9

Optical flow (EE) ↓ PolyExp 0.97 5.91 3.1 2.52 2.78 2.35 4.11 3.56 1.34 2.07 2.47 1.84
Coarse2Fine 0.13 0.64 0.35 1.03 6.21 6 0.57 0.18 0.09 0.35 0.28 0.17

RAFT 54.71 40.49 1.82 22.6 0.32 0.27 0.68 0.15 0.1 0.48 0.2 0.15

Figure 7. TFs used in our experiments to map linear color values to the
encoded values, suitable for CV methods.

5.1 Distribution of Pixel Values
To visualize the differences between the illumination condi-
tions, we plot histograms of pixel values in Figure 4 for each
scene. It should be noted that the pixel values under uniform
illumination are in the upper part of the dynamic range,
making those images well-exposed. The HDR condition
resulted in the widest histograms, often with two distinct
modes. The histograms under the night illumination are
shifted to the left, making images darker and more affected
by noise. And finally, the histograms are shifted to the right
in the glare condition due to the scattered light.

6. PERFORMANCE OF COMPUTER VISION
METHODS

Todemonstrate the usefulness of the newdataset, we perform
two experiments: first, we test how much the performance
of selected CV methods degrades due to challenging
illumination and then test whether their performance can
be improved when different TFs are used to encode frames.
A suitable TF maps linear RGB pixel values to non-linear
values, which can be represented at lower bit depth and tend
to bemore perceptually uniform. Note that we avoid labeling
these methods tone mapping operators, as tone mapping is
typically used to produce visually pleasing images for human
consumption rather than machine vision. Our experiments
form a preliminary study intended to confirm the selection
of the adversarial illumination conditions and are not meant
to be a comprehensive evaluation of all possible TFs. Such a
larger experiment is planned for future work.

Traditional image signal processing pipelines are de-
signed for best visual quality and are not optimized for
CV algorithms [33, 34]. Many steps in the ISP pipeline
may be redundant for some CV algorithms, and may even
degrade their performance. Previous work [33] has shown
that only two stages of the traditional ISP pipeline are
critical in terms of machine vision, namely demosaicing
and gamma encoding (or gamma compression). We follow
this observation and simulate a simplified camera pipeline,
shown in Figure 5. The first two steps of this pipeline,
demosaicing and white balance, were explained in Section 5.
The last two steps, encoding with a TF and quantization,
were different for each experiment and tested method, and
are explained in more detail in the following sections.

Our experiments were performed on publicly available
implementations for three CV applications—optical flow,
object detection, and face detection. We used the uniform
condition encoded with the gamma TF (with an exponent of
1/2.2) to generate reference labels for evaluating methods.
As described in Section 3.1.1, the uniform condition consists
of well-exposed frames with low levels of noise. We created
individual labels for each tested CV method and thus each
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Figure 8. The performance of optical flow (top three rows) and object detection (bottom row) for all four scenes (columns) and three adversarial illumination
conditions (three sections in each plot). Dots represent the mean, and the error bars represent the standard deviation for a sample of 100 frames. The
y-axis is reversed for optical flow so that the points located higher on the plot correspond to the better performance.

face detection and optical flow method had its own set of
reference labels. We inspected the reference labels and found
that almost all objects were correctly detected in the uniform
condition and therefore no manual labeling was necessary.
It should be noted, however, that the reference condition
should not be considered as the ground truth and is only
meant to show the relative degradation in the performance
due to the adversarial illumination.

We used dense optical implementations of a polynomial
expansion algorithm [5], a coarse-to-fine algorithm [6],
and a state-of-the-art deep neural network RAFT [35]. To
compare predicted pixel-wise optical flow field Vpred(p) to
the referenceVref(p), we used the endpoint error (EE)metric

EE=
1
N

N∑
p=1

|Vpred(p)−Vref(p)|, (1)

where N is the number of pixels.
For object detection we used a pretrained YOLOv3 [36]

network. For face detection we used a pretrained single-shot
detector (SSD) [37], face detector based on histogram of
oriented descriptors (HOG) [38], and maximummargin ob-
ject detection with CNN features (MMOD) [39]. Bounding
boxes of both detection tasks were evaluated using the mean

intersection over union (mIoU) metric

mIoU=
area(Rpred

⋂
Rref)

area(Rpred
⋃

Rref)
, (2)

where Rpred =
⋃N

i=1 Bpred(i) is the union of all N bounding
boxes predicted, and Rref =

⋃M
j=1 Bref(j) is the union of allM

reference bounding boxes.

6.1 Effect of Changing Illumination
All images Iin were encoded with the gamma encoding,
Iout = I1/γ

in , where γ = 2.2. Such a gamma encoding is the
most widely used TF in CV cameras, which produces images
that can be directly viewed on standard monitors, as it
approximates the TF used in the sRGB color space. Here, we
test how the performance of the CV methods is degraded in
adversarial illumination conditions.

The results of this experiment are listed in Table II. We
observe a considerable difference in the results of the tested
methods with changing illumination conditions. Figure 6
shows a qualitative comparison for the different conditions
for the face and object detection methods.

The low scores of all face detection methods for the
HDR illumination (see Table II) can be explained by the first
three images of the second column of Fig. 6. The inefficient
encoding of the input images results in 5 out of 6 faces
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Figure 9. Failure of gamma encoding for night condition of the Tunnel
scene when the optical flow is estimated by RAFT. The purple region in
optical flow visualization for gamma-2.2 indicates high velocity in the
south direction, which is most likely caused by the dark region in that
corner of the frame. The HDR TFs (log and PQ ) can better handle this
sequence. This is also the cause of the large error bars in some plots in
Fig. 8.

being underexposed. In the glare condition (last column
of Fig. 6), the faces present under the bright light source
are not detected by any of the methods. The MMOD and
HOG detectors are slightly more robust to glare and are able
to detect faces further away from the source of glare. This
explains their better performance for the same inputs.

Glare is not as much of a problem in the other scenes
(Tunnel and Street) because the objects of interest are
further away from the bright light source. In general, the
methods produce lower mIoU scores for very dark objects
in night illumination. This is likely a consequence of
underexposed pixels rather than noise since underexposed
objects pose a problem even inHDR conditions (for example,
the bus and the truck in Tunnel , and the car and the person
in the bottom-right shaded region in Street-diagonal).

6.2 Comparison of TFs
Next, we evaluate the performance of the CV methods
when the input images are encoded using different TFs.
These include a linear function (no TF, linear color values),
gamma encoding (see Section 6.1) using three different
exponents (1/1.8, 1/2.2, and 1/2.6), the log function, and
the perceptual quantizer (PQ) TF, which is commonly used
for encoding HDR content [40]. All the TFs are plotted
using log-linear coordinates in Figure 7. The advantage of
this visualization is that the slopes of the plotted functions

Figure 10. Object detection using YOLOv3 for images captured under
different illumination conditions (rows) and encoded with log (left column)
and gamma (right column) TFs. The log function produces brighter images
by devoting more bits to dark regions as indicated by the left plot in Fig. 7.
This leads to contrast reduction in bright regions posing problems to some
object and face detectors for the Glare condition, but this is an effective
strategy for other conditions.

correspond to the compression or expansion of contrast at
a particular intensity value. The plots show that the TFs
intended for HDR images (log and PQ) better preserve
contrast across the entire range of values, while gamma
and linear functions compress contrast at lower intensity
values. The code for the transfer functions can be found
at https://www.cl.cam.ac.uk/research/rainbow/projects/hdr
4cv-dataset/.

Optical flow As shown in the top three rows of
Figure 8, all tested optical flow methods show similar
characteristics: they all benefit from HDR TFs (log and PQ)
for most conditions. It should, however, be noted that there
are also important differences between the methods. The
Coarse2Fine method seems to be robust to noise, in the
night condition but affected by the large dynamic range, in
the HDR condition, especially for the tunnel scene (note
the absolute values of the EE). PolyExp resulted in larger
EE across all the conditions and is less robust to noise.
Finally, RAFT resulted in huge EE for Faces and Tunnel.We
investigated this issue and found that the cause was a dark
region of the image, which captured a part of our laboratory
outside the illuminated part of the scene. RAFT predicted
very high velocity for this region, resulting in an EE an order
of magnitude higher than for other methods (see Figure 9).
For the twoStreet conditions, RAFTwas robust in theHDR
condition but was affected by noise in the night condition.
We can conclude that theCoarse2Finemethod ismost robust
to adversarial conditions and it should be combined with PQ.

Object detection The results for object detection
(YOLOv3) shown in the bottom row of Fig. 8 are strongly
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Figure 11. The performance of face detection methods for all transfer functions and all illumination conditions. Dots represent sample mIOU, and error
bars represent the sample standard deviation over 100 frames. When some transfer functions are used, some methods are unable to detect even a single
face. For example, notice the zero entries for the HDR and glare illuminations with the log function for SSD and MMOD.

affected by the adversarial illumination. The TFs intended
for HDR data, log, and PQ, improve performance for HDR
condition, but they also reduce performance for the two
other conditions. This is because night and glare conditions
contain objects of interest in the upper (brighter) part of
the dynamic range. Since gamma encoding tends to enhance
contrast in the upper part of the dynamic range, it achieves
better performance for those two conditions but fails for
HDR, where it is unable to reproduce contrast in the darker
part of the frame, as shown in Figure 10.

Face detection The results plotted in Figure 11 show
similar trends for all three face detectionmethods. Aswas the
casewith object detection,HDRTFs help inHDR conditions,
but can also degrade performance for other conditions. For
the same reason, linear color representation unexpectedly
performs reasonably well for night and glare, though it
still fails for the SSD method. It is also worth noting that
the SSD face detector is more affected by the adversarial
illumination than the two other methods. We can conclude,
that face detection would benefit from an adaptive TF, which
selectively reproduces contrast in the darker or brighter part
of the dynamic range, depending on image content.

7. LIMITATIONS
Although our dataset was designed to be possibly realistic,
it may not be suitable for applications that rely on accurate
material reflectance properties, such as shape from shading
or relighting. This is because many objects in our model
scenes are cardboard cutouts and do not capture the richness
of materials in the wild. The dataset could complement
computer graphics datasets, which can potentially reproduce
more accurate materials but may lack imperfections and
artifacts caused by camera sensors (noise, quantization) and
optics (glare).

8. CONCLUSIONS
We created a new dataset consisting of short video clips
captured in adversarial illumination conditions. The main
advantage of our dataset is that it includes uniformly
illuminated scenes which result in images with minimal
noise. With these, reference labels can be automatically

generated formost CVmethods. Such labels can be then used
to measure the degradation in the performance of computer
vision methods in adversarial conditions: night (high noise),
HDR (high contrast), and glare (stray light in camera lens).

We used the dataset in our preliminary study to evaluate
the robustness of popular methods for face detection, optical
flow, and object detection under adversarial illumination
conditions. We also studied whether the performance of
these methods can be further improved under challenging
lighting conditions by selecting an appropriate transfer
function. The results suggest that as expected, the popular
gamma encoding is unsuitable for HDR scenes. At the same
time, the transfer functions intended for HDR scenes, such
as log or PQ, reduce contrast in bright regions leading
to rather poor performance in well-exposed images. We
plan to expand this study to consider more advanced,
adaptive transfer functions, which could further improve the
robustness of CV methods under adversarial illumination is
in preparation.
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