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Abstract
In this paper, we tackle the issue of estimating the noise

level of a camera, on its processed still images and as perceived

by the user. Commonly, the characterization of the noise level of

a camera is done using objective metrics determined on charts

containing uniform patches at a given condition. These methods

can lead to inadequate characterizations of the noise of a cam-

era because cameras often incorporate denoising algorithms that

are more efficient on uniform areas than on areas containing de-

tails. Therefore, in this paper, we propose a method to estimate

the perceived noise level on natural areas of a still-life chart.

Our method is based on a deep convolutional network trained

with ground truth quality scores provided by expert annotators.

Our experimental evaluation shows that our approach strongly

matches human evaluations.

Introduction
Camera quality has been considerably improved in the last

years to meet the ever-growing standards of the consumers. Im-

age quality can be characterized through multiple attributes such

as exposure, color, texture, and noise. In this work, we are fo-

cused on assessing the capability of a camera to control its level

of noise. In addition, we aim to provide this assessment as a

metric that correlates with human judgment.

To assess the quality of a camera, a common way is to cap-

ture for each camera the same chart in a controlled environment.

A chart is designed to be reproducible and therefore allowing to

fairly compare different cameras due to its consistent visual con-

tent.

Since noise in an image is a random granulation, it is not

exactly reproducible from one image to another, but only sta-

tistically, so generally we aim at estimating its second central

moment (i.e. its variance) to describe this random process. This

metric is easier to estimate over uniform areas, this is why noise

is commonly measured on charts with uniform patches.

One of the common metrics for assessing noise level is the

signal-to-noise ratio (SNR). On a uniform area, this metric is

the ratio between µImage, the average of the image values, and

σImage, the standard deviation of the image values.

SNR = 20× log10(
µImage

σImage
)

However, the SNR only reflects the total amount of noise for

a given signal level, it does not describe how the human observer

actually perceives the noise. To tackle this issue, the visual noise

metric has been proposed. This metric intends to measure noise

as perceived by end-users. For example, noise that cannot be

seen by the eye at a given viewing condition will not be included

in the noise measurement.

The Visual Noise measurement is standardized by IEEE

CPIQ P1858 (Camera Phone Image Quality) 2016 [1], this stan-

dard is an adaptation of ISO 15739 [2] proposal. To compute this

metric, the used test target must be compliant with the ISO 14524

[3] opto-electronic conversion function (OECF) test chart. This

test chart is represented in Figure 1.

Figure 1. Visual Noise compliant Chart

However, nowadays, cameras integrate one or more denois-

ing steps in their processing pipeline. The purpose of these steps

is to reduce the noise in the image and restore the original signal.

But it is challenging to reduce the noise in the high-frequency

components while preserving the high-frequency content (such

as edges and textured areas). While on the contrary, the low-

frequency components have regular values, so noise is easily sup-

pressed by averaging the pixels within a neighborhood. Thus, it

is common to observe a different noise level between textured

and uniform areas cf. Figure 2.

Figure 2. Various level of noise between high frequencies and low fre-

quencies components.

As common measurements are not suitable for assessing

noise in other than uniform areas, they cannot lead to ade-

quate noise characterization of cameras with the behavior de-

tailed above. To tackle this issue, we define two areas of interest

well-suited for noise assessment in a still life chart (cf. Figure

3). We then propose a learning-based method using these spe-

cific areas of interest. The problem of assessing the perceived

level of noise in these areas of interest can be formulated as a

regression problem, so in order to solve this problem we sug-

gest using a deep convolutional network. We train the network

using annotations provided by image quality expert annotators,

this annotation process allow obtaining a set of scores that will

match with the perceptual user experience. We show that this

learning-based approach strongly correlates with the perceptual

ground truth and better predicts the perceived level of noise on

natural scenes than standard approaches.
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(a) First Region of interest
Feather

(b) Second Region of interest
Woman

Figure 3. Defined areas of interest to assess noise on natural areas.

Related Work
In this section, we will review the existing works done on

quality assessment of noise.

Visual Noise
Signal-to-noise ratio is often used as a metric to assess

noise. However, SNR only reflects the total amount of noise

for a given level of signal, it does not describe how the human

observer actually perceives it. The level of noise can be critical

for the image quality, as it can affect multiple of its aspects, from

object visibility to face detection.

That is why the study of noise and in particular that of vi-

sual noise remains mandatory for the image quality assessment

(IQA). Visual noise has been introduced to propose a metric that

correlates more with human perception. The visual noise metric

takes into account the spectral frequency content of luminance

and chrominance noise by applying a contrast sensitivity func-

tion (CSF), a metric that integrated the noise power spectrum

with properties of the human visual system. The computation of

the visual noise described by CPIQ P1858 standard [1], based on

the formulation made by ISO 15739 [2], requires the following

steps:

• Conversion of the source image in a color opponent space

AC1C2

• Filtering of the luminance and chrominance channels by

respective CSFs

• Filtering of the channels by the display or print MTFs

• Application of a high pass filter to remove nonuniformities

due to lens shading

• Conversion to CIELab color space and computation of vari-

ances of luminance and chrominance channels

The CSF used for the spatial filtering is defined as:

CSFluminance =
a1 × f c1 × exp(−b1 f )

k

CSFchrominance =
a1 × exp(−b1 f c1)+a2 × exp(b2 f c2)−S

K

where parameters are defined in Table 1.

The visual noise metric is then obtained by applying the log 10

base to the weighted sum of the L∗, a∗, b∗ variances and L∗a∗

covariance.

V N = log10(1+23σ
2(L∗)+4.254σ

2(a∗)−5.47σ
2(b∗)+4.77σ

2(L∗a∗))

The previous formula weights the color noise for the b∗ channel

with a negative value, hence noise in the b∗ channel leads to the

decrease of the visual noise metric. Besides, a negative value on

CSF Parameters defined by CPIQ P1858

CSFA CSFC1
CSFC2

a1 75 109.1413 7.0328

b1 0.2 0.0004 0

c1 0.8 3.4244 4.2582

a2 96.5971 40.691

b2 0.0037 0.1039

c2 2.1677 1.6487

K 75 202.7384 40.691

S 0 7.0328

the b∗ channel doesn’t represent the human visual system prop-

erty. For this reason, works are still under progress to improve

the visual noise metric [4]. Moreover, the presence of the neg-

ative weights combined with the covariance, expressed by L∗a∗,

can lead to negative values and the inability to estimate the visual

noise metric for a given image.

Learning Based Methods
In opposition to the visual noise metric described in

the previous section, learning-based methods require annotated

datasets.

TID2008 [5] and its extension TID2013 [6]) are image qual-

ity datasets that give a Mean Opinion Score (MOS) for each dis-

torted image. These distortions are artificially introduced and

correspond mostly to compression or transmission scenarios. As

these distortions are artificially introduced, they do not fully

cover the ones introduced by real cameras. The LIVE in the

wild [7] database contains 1162 authentically distorted images

captured from many diverse mobile devices. Each image was

viewed and rated online on a continuous quality scale by an aver-

age of 175 unique subjects with the goal of providing one MOS

per each image, and not one score for each image quality at-

tribute, such as the noise which is our interest study. Similarly,

the KonIQ10k [8] dataset consists of samples from a larger public

media database with unknown distortions. This dataset provides

a ground truth for several image quality attributes, but does not

consider the noise quality as one of them.

More recently, Yu et al. [9] collected a dataset of 12 853

natural photos from Flickr and annotated them according to im-

age quality defects: exposition, white balance, color saturation,

noise, haze, undesired blur, composition. They aimed to solve

a multi-task learning problem and trained a multi-column deep

convolutional neural network to simultaneously predict the sever-

ity of all the defects. While their approach showed promising re-

sults, we are tackling a different issue, that of noise estimation in

specific areas only.

To the best of our knowledge, the most related work has

been proposed by Tworski [10] et al.. They adopt a regression

formulation and train a network to estimate the camera capacity

to preserve texture using a common perceptual chart. In the next

section, we will detail our deep regression framework for noise

quality estimation and the method used to collect the datasets

relevant to our noise assessment problem.

Method
In this section, we detail the proposed method for percep-

tual noise estimation on natural images. This task is a regression

problem, in which we want to estimate for an image X of dimen-

sions Height ×Width× 3 its corresponding noise quality score

Y , a scalar. To perform this, we use a learning-based method,

meaning that we use the ground-truth noise quality of the given
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image provided by expert annotators (cf. subsection Datasets ).

Inspired by previous works [11, 10], we chose to rely on

the very versatile ResNet-50 architecture. This network has al-

ready shown some excellent results in other related IQA tasks

[11]. ResNet -short for Residual networks, is the neural network

that won the imageNet [12] contest in 2015. The main addition

of the ResNet architecture is to partially solve the vanishing gra-

dient problem on extremely deep neural networks.

We have images with fixed size of 1000 × 1000 × 3,

ResNet50 can take an input of any dimensions but using large

inputs usually leads to large memory consumption so often it is

not an available option, e.g. a common input size for ResNet50 is

224×224×3. As resizing the images to a lower resolution will

affect the level of noise, we decide to take fixed size image crops

input. During our investigation we observed better results when

training the ResNet50 with a 448×448×3 input size, so we de-

cide to take crops of this size. We used the convolutional layers

and average global pooling layer of the ResNet-50 model trained

on ImageNet database and replaced the fully connected layer to

fit our regression problem with a unique output. It is thus a layer

with 2048 entries, that requires the training of 2049 additional

parameters, with a single output to which we apply the sigmoid

function σ(x) = 1
1+exp(−x)

to obtain a continuous output ranging

from 0 to 1.

At each epoch a crop is randomly selected, allowing the

model to learn to estimate the perceived noise on variable zones

and thus having a more robust estimation to field of view vari-

ations. As some crops may not be relevant for the evaluation,

we choose to use Huber loss during training as this loss is less

sensitive to outliers than the squared error loss.

At test time, we extract ten random crops and average their

predictions to get the estimated noise score.

Datasets
Lighting conditions While having photos from different cam-

eras is important for constructing our database, so are the lighting

conditions that do affect heavily the level of noise. Our database

therefore, contains multiple lighting conditions for each device

and chart:

• 5 Lux Tungsten

• 20 Lux Tungsten

• 100 Lux Tungsten

• 300 Lux TL84

• 1000 Lux D65

Charts and devices As there is no well-established reference

dataset for our problem, we collected annotated data using two

different charts.

• Still-Life: First, we use the chart in Fig. 5. This dataset

is referred to as Still-Life. This chart is specifically de-

signed by DXOMARK to evaluate multiple IQA attributes

and contains diversified content such as uniform zones, fine

details, portraits, vivid colors for color rendering, as well

as resolution lines and a low-quality Dead Leaves version.

We extract 2 areas of interest represented in Figure 3, that

we will note Feather and Woman. Images are acquired us-

ing 293 different smartphones and cameras from different

brands commonly available in the consumer market. Thus

this database consists of 1465 crops for each area of inter-

est. In Fig. 4, we provide an example region captured with

two different cameras in different lighting conditions. The

left image corresponds to a low-quality device in low light

conditions, while the other is obtained with higher qual-

ity. It illustrates the nature of distortions that appear in this

dataset when using different lighting intensities.

• Dead Leaves: Second, we employ the Dead Leaves chart

proposed in [13]. This chart depicts gray-scale circles with

random radius and locations. This chart is compliant with

ISO 14524 [3] and so allows to compute the visual noise on

it. In all our experiments, we refer to this dataset as Dead

Leaves. We use the same five lighting conditions and de-

vices as for the Still-Life chart. Consequently, this database

is made up of 1465 crops Dead Leaves shots.

(a) High Noise Image (b) Low Noise Image
Figure 4. Different levels of Noise in the database

Figure 5. Still-Life Chart used in our experiments. The Still-Life chart

contains many diverse objects with varying colors and textures while the

Dead Leaves chart depicts random gray-scale circles.

Annotations In order to obtain more faithful results, we need

to provide a reliable ground-truth annotation for each pair of de-

vice and lighting condition in our database. These annotations

should correspond to a precise way of encapsulating the per-

ceived visual noise quality. To obtain such quality annotations

for each of our pairs, we first established the ground truth refer-

ences by asking 20 human experts to rank the images according

to the level of perceived noise. We then averaged the rankings by

excluding the images rated with the highest and lowest positions

within the obtained stack. In order to obtain continuous scores,

we performed a linear rescaling of the ranks within the interval

[0,1], where the best possible rank corresponds to a score of 1,

while the worst to a score of 0. This reference set constitutes

our noise quality ruler. For each image to be annotated, we ask

an expert to correctly rank it by evaluating it with respect to the

quality ruler (cf. Figure 6).

Specific conditions were prepared to make the comparison

as reliable as possible, we use a 24” full hd monitor with a pixel

pitch of 0.27 millimeters, while the distance between the ana-

lyst and the screen is fixed to 40 centimeters. Note that the im-

ages used for annotation were provided with no down-sampling.

However, for low resolution images, bicubic resizing is applied

to match their size to the highest in the image stack. Each po-

sition among the set of references is assigned a score between 0

and 1. In the Still-Life chart, we have considered two different
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Figure 6. Perceptual noise evaluation by quality ruler

regions of interest to study as seen in Figure 3. In the case of the

Dead Leaves charts, since the charts are unnatural images, human

perceptual annotation is quite complex due to multiple reasons,

but it is mainly the presence of different types of patches at dif-

ferent intensities that make the annotation task quite hard for the

annotator. Therefore, we chose to transfer the annotations ob-

tained on the Still-Life chart to the Dead Leaves one, rather than

re-annotating the images. This assumes that our annotations are

device based: the quality of a given image depends mostly on the

device itself. The Still-Life chart contains diverse scenes similar

to what real images would contain. Evaluating devices according

to their performance on this card allows us to obtain a subjective

device evaluation in a setting more similar to real-life scenarios.

Metrics
A straightforward way to assess our results could consist in

computing the correlation between the predictions and the an-

notation. However, the underlying assumption that the predic-

tions of each method correlate linearly with our annotations is

not always correct and might bias our evaluation. Thus we de-

cided to use two distinct metrics based on the correlation of the

rank-order. First, the Spearman Rank-Order Correlation Coeffi-

cient (SROCC) defined as the linear correlation coefficient of the

ranks of predictions and annotations. We also note the Kendall

Rank-Order Correlation Coefficient (KROCC) defined by the dif-

ference between concordant and discordant pairs divided by the

number of possible pairs. This second metric allows us to check

the similarity of the ranking. For both metrics a value of 1 means

that the observation of the predictions and annotations are iden-

tical.

For all visual charts, the dataset is split into training and test

sets as follows. First, among the devices we use in our experi-

ments several are produced by the same brand. So, to avoid bias

between training and test, we impose no brand-overlap between

training and test sets. To do that, we create 6 distinct manufac-

turer families chosen at random to balance the set of images from

each family of devices. Then for each family, we proceed for a

training on the rest of our set excluding it, and using that said

family of devices as a test set. Thus, for each performed train-

ing and test there are approximately 1221 images in the training

database and 244 images in the test database.

Comparison to state of the art
In this section, we compare the performance of our ap-

proach to existing methods. We compare the measurements per-

formed on the DeadLeaves chart and predictions on the Still-Life

chart on the whole database (293 devices). We chose to bench-

mark our method to three different formula of the visual noise

metric:

• The formula standardized by CPIQ [1] (V NCPIQ)

• The formula in discussion in ISO15739 and lastly proposed

[4] (V NISO)

• The formula used by DXOMARK [14] (V NDXOMARK )

As the visual noise metric provides one metric for each patch, we

consider for each formula the one interpolated for CIE−L∗ = 50.

Besides this, the visual noise takes into account the sensitivity

of the human eye to different spatial frequencies under various

viewing conditions. Hence the measurement is always dependent

on the size of the image (i.e. print or on-screen) and the view-

ing distance. The effect of the viewing conditions is to stretch

the CSF along the frequency axis. To evaluate the ability of the

visual noise measure to assess the noise level in our dataset, we

use two different conditions:

• Viewing Condition Print: a commonly used viewing con-

dition of a print of 120 centimeters height viewed at 100

centimeters

• Viewing Condition Display: a viewing condition as the

one used during the annotation process, involving a display

viewed at 40 centimeters with a pixel pitch of 0.27 millime-

ters

Moreover, our method on the Still-Life chart, gives predictions

on two areas of interest for each image: Woman and Feather.

We will therefore evaluate the predictions of Woman and Feather

compared to the ground truth of their respective areas as well as

the average of the two predictions compared to the average of the

annotations. Quantitative results are reported in Table 2

Performance on the devices database.

Method Viewing Condition SROCC KROCC

V NCPIQ Print -0.640 -0.460

V NCPIQ Display -0.620 -0.445

V NISO Print -0.585 -0.416

V NISO Display -0.576 -0.408

V NDXOMARK Print -0.646 -0.464

V NDXOMARK Display -0.654 -0.470

Ours Woman 0.883 0.717

Ours Feather 0.862 0.689

Ours Average 0.904 0.734

First, we observe that our method strongly matches with the

provided annotations, and that it also outperforms other bench-

mark methods. These results must also be weighted, as the pre-

dictions were made on the same chart as the annotations (i.e. the

Still-Life chart), while the visual noise metrics were established

on the Dead Leaves chart. The results of the visual noise metrics

show that the concerns raised in Introduction are valid: measur-

ing the noise on uniformly gray patches does not sufficiently al-

low us to assume the perceived level of noise of the camera on a

natural image.

Conclusion
In this paper, we propose an efficient learning-based method

to assess the perceived level of noise of a camera. Compared to

traditional methods, our approach can be used in images with

natural contents. The experimental results show that our predic-

tions strongly match that of the user experience. These promising

results show the great potential of deep learning for image quality

assessment. Future work will focus on improving the proposed

method and will consist in building a system able to evaluate the

noise more exhaustively, namely by characterizing its chromatic-

ity as well as its frequency.
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