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Abstract

In this paper we study up to what extent neural networks can

be used to accurately characterize LCD displays. Using a pro-

grammable colorimeter we have taken extensive measures for a

DELL Ultrasharp UP2516D to define training and testing data

sets that are used, in turn, to train and validate two neural net-

works: one of them using tristimulus values, XYZ, as inputs and

the other one color coordinates, xyY . Both networks have the

same layer structure which has been experimentally determined.

The errors from both models, in terms of ∆E00 color difference,

are analysed from a colorimetric point of view and interpreted

in order to understand how both networks have learned and how

is their performance in comparison with other classical models.

As we will see, the comparison is in average in favor of the pro-

posed models but it is not better in all cases and regions of the

color space.

Introduction

Display characterization has been an important topic in the

field of color imaging for years, gaining interest with the recent

availability increase of a variety of display technologies. Hav-

ing a precise display characterization allows accurate image re-

production. This is important not only from the consumer point

of view in order to optimize viewing experience, but, also, it is

critical for any color imaging application, where accurate image

reproduction is paramount, and for vision science research to pre-

cisely control the stimuli shown to observers when carrying out

psychophysics.

In general, display characterization means to create a model

able to relate device dependent DACRGB inputs with display out-

puts expressed in an appropriate device independent color space

(usually tristimulus values XY Z or xyY color coordinates). A col-

orimeter, or even better a spectrophotometer or spectroradiome-

ter, is used to measure outputs related to a set of DACRGB inputs.

Some years ago, usually, the measurements needed to be taken

manually. This led to the development of display models based

on their physical behavior and that could be built using just a few

measurements, which was convenient. Examples of these models

are those in [1, 2] that are based on representing the nonlinear be-

haviour of inputs with some power function or look-up-table and

then relate the linearized inputs with the outputs through a sim-

ple linear transformation (and so assuming constant chromaticity

for them). An alternative model presented [3, 4] is based on us-

ing measurements in xyY coordinates and processing separately

the Y component with a power function of the inputs and the xy

chromaticity using linear interpolation between measurements.

On the other hand, mathematical models have been also devel-

oped. One of the classical ones is based on trying to find the

best linear application able to relate inputs (or some function of

them like powers or square roots) and outputs (or some function

of them) [5]. To find this linear application an overdetermined

equation system is formulated using the measurements taken and

the best solution is found by squared error minimization using

Penrose pseudo-inverse [6], which is the reason why this method

is named the Pseudo-Inverse method.

Later, the availability of programmable measurement de-

vices has eased the access to more information about inputs-

outputs relationship by measurements. This has been helpful to

increase the accuracy of the physical models but it is more inter-

esting for the mathematical models as they only use the measure-

ments available and no more knowledge about the display. For

instance, in the Pseudo-Inverse model, the more data are put into

the overdetermined system, the higher the potential accuracy is

(if the data is appropriately chosen). Furthermore, this also opens

the possibility of using machine learning approaches to address

the display characterization problem as big amounts of measure-

ments are available.

In this paper we explore this latter possibility by building

two neural network models trained to compute what DACRGB

inputs need to be used to obtain a desired output expressed in

either XY Z or xyY coordinates. This choice is the only difference

between the two networks trained.

In the following section we detail the networks structure and

the procedure for training them. Section 3 shows the obtained re-

sults and the comparison with state-of-the-art models and Section

4 presents some conclusions and future work.

Neural networks training
In this study we have used a LCD display DELL Ultrasharp

UP2516D 25” and a X-rite eye-one display colorimeter. To build

the training set we have divided each DACRGB input range into

22 equally spaced levels and we consider all possible combina-

tions of them, which account for 223 = 10648 different inputs

so that they form an equally spaced 3D mesh of the input space.

Also, to take into account the measurement device error, we have

measured each input three times, which means that we have a to-

tal amount of 10648 ·3 = 31944 data in the training set. Specifi-

cally, we measured the full 3D mesh once after waiting for 2h the

display to warm up and immediately after we measured two more

time the set. On the other hand, for the testing dataset, we have

taken 21 input levels placed right in between the 22 levels of the

training set and consider all their combinations of 213 = 9261.

We focus the training on addressing the problem of find-

ing out what DACRGB inputs need to be set for the display to

show a desired color specified in XY Z or xyY coordinates. This

is known as the inverse model for the display (the direct model

aims to predict what output will be obtained for a given input).

Using tristimulus values has the advantage of being closely re-
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Model Average ∆E00 Standard dev.

RIT [1] 5.1 1.8

Pseudo-Inverse [5] 4.3 2.0

NNXY Z 2.6 1.2

NNxyY 4.2 1.5

Table 1: Average and standard deviation ∆E00 error per model

lated to the DACRGB inputs, while the xyY coordinates separate

the chromatic information xy from the luminance information Y

and so divides the problem in two. Both options have potential

learning benefits so we decided to study both.

For the sake of fair comparison, we have used the same

structure for both neural networks. As the structure should be set

related to the complexity of the whole problem rather than inputs

format, we think a common appropriate structure should not limit

the accuracy of either network. Both networks have been defined

and trained using libraries available in Python [7, 8]. After exten-

sive experimental simulations we concluded that a structure with

two hidden layers of 256 and 64 units each, respectively, was

used. This structure is depicted in Figure 1. In each unit a Recti-

fied Linear Unit (ReLU) activation function is used. For training

we used Adam optimizer [9] with a learning rate of 10−3 and

the Mean Squared Error (MSE) as loss function. As commented

above, we train two different networks using the same training

data set one of them with XY Z inputs and the other with xyY

ones, which we name NNXY Z and NNxyY , respectively. NNXY Z

needed 300 epochs to converge while NNxyY convergence was

found after 500 epochs. Batch size was 64 in both cases.

Results and discussion
We provided the desired colors in the testing set to each

trained network to compute the corresponding input RGB. Then,

we have measured with the X-rite eye-one display the real color

obtained for the computed RGB inputs and computed the per-

ceptual error using the ∆E00 formula [10, 11]. An analogous

procedure has been followed to assess the performance of two

state-of-the-art methods which we compare our proposals with:

RIT model [1, 2] and Pseudo-Inverse model [5]. For this latter

model we consider the following linear function to compute each

one of the RGB inputs:

Fk(X ,Y,Z) = ak

√
X +bk

√
Y + ck

√
Z +dk

√
X
√

Y+

ek

√
X
√

Z + fk
√

Y
√

Z +gkXY +hkXZ + ikY Z, (1)

where k = R,G,B and ak,bk,ck,dk,ek, fk,gk,hk, ik are the

parameters to compute by least-squares minimization for each k

using the training dataset.

We have to take into account that device measurement error

is about ∆E00 = 0.1 on average, which we have computed by

looking at the ∆E00 between the three measurements taken for

each DACRGB input in the training set.

Table 1 shows the average error for the testing dataset for

each of the models in the comparison along with its standard de-

viation. We can see that both figures of merit are in favor of the

NNXY Z network. This better performance can also be seen in

Figure 2, which shows histograms for the ∆E00 errors for each

model. NNxyY and Pseudo-Inverse show a similar average er-

ror but the latter has a higher standard deviation, which means a

higher variability for different color regions, as it is expected for

a linear model. The RIT model shows a slightly worse average

performance but with a not too large standard deviation.

It is important, specially when using machine learning ap-

proaches, to analyze the performance in detail in order to fully

understand the behaviour of the different methods. We approach

this analysis from a colorimetric point of view. To do so, we have

analyzed ∆E00 errors in terms of luminance and chrominance for

each model using xyY representations. In Figure 3 we show plots

of ∆E00 versus luminance Y and chrominance xy for each of the

models in the comparison. By closely looking at this plots we

can point out the following:

• NNXY Z has a better average performance for low Y than

when Y gets higher, where we can see that the model can

make both low and high errors, most probably depending

on chromaticity. In terms of the latter, we see the error is

worse for medium x and y (achromatic colors), and a bit

higher for high y and low x (greenish colors). On the other

hand, performance is quite consistent in the rest of the chro-

maticities and specially good for high x and low y (purplish

colors). As a consequence, we can see that the network

performs worse in the sides and vertices of the 3D training

mesh. This is due to the mesh having less data in these re-

gions and the network trying to minimize the average error

tends to optimize performance in the core of the data set.

• NNxyY and RIT model perform quite similar when

analysing the errors for different luminances and chro-

maticities: both perform better when Y is high. That is

explained for the RIT model because in these cases the con-

stant chromaticity assumption holds better than for lower

Y . Also, both models perform better for achromatic colors

and when x is high (reddish), y is high (greenish), both x

and y are medium-high (yelowish) or both x and y are low

(bluish). For the RIT model, same explanation about chro-

maticity constancy holds. For the NNxyY it seems that the

learning process has maken it perform in an analogous way

and higher luminance colors are better managed.

• The Pseudo-Inverse model also works better for higher Y

but with a higher variability than the rest. In terms of

chrominance, we see a variety of areas with very differ-

ent behaviour, which means that the model only adjust well

in some regions of the color space and most depending on

chromaticity regions that are better represented by the cor-

relations included in the model in Eq. 1.

Overall, we can conclude that the networks are better in

learning XY Z −DACRGB relations than xyY −DACRGB. The

former makes the network learn better in general. We think this

is becasuse of a more direct individual correlation between inputs

and outputs. Conversely, it means that xyY −DACRGB relation

is more complex to learn and maybe the network architecture

and/or the training set need to be extended for the training. Also,

this latter option has some advantages with respect to the learn-

ing acquired by the network as, for instance, when processing

high luminance colors. Moreover, in the NNXY Z case it is easy to

see how important is the design of the training dataset and the in-

fluence it has on performance. This suggests also that increasing

the number or points in the regions of lower performance can be

beneficial.

Conclusions
In this paper we have studied the use of neural networks

for LCD display characterization. Using a programmable col-

orimeter we have taken extensive measures for a DELL Ultra-

sharp UP2516D to define training and testing data sets that are

used, in turn, to train and validate two neural networks: one of

them using tristimulus XYZ inputs and the other xyY color co-

ordinates. Both networks have the same layer structure which

has been experimentally determined. Average performance in
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Figure 1. Neural network structure

Figure 2. ∆E00 error histograms for: (a) NNXY Z , (b) NNxyY , (c) RIT physical

model, (d) Pseudo-Inverse data model.

terms of ∆E00 color difference favors the neural network trained

with XYZ inputs in front of the network trained with xyY data

and two state-of-the-art methods. A more detailed analysis re-

veals that performance is far from being better in all cases for the

XYZ trained network and suggests some ways to improve perfor-

mance. Furthermore, we point out that the networks are better in

learning XY Z −RGB relations than xyY −RGB. The former has

a more direct individual correlation between inputs and outputs.

Future interesting work could include extending the study

to other LCD display models and other display technologies.
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search interest includes medical image reconstruction, image processing,

and deep learning.

Samuel Morillas received a degree on Computer Science by Univer-

sidad de Granada (2002) and a PhD on Applied Math from Universitat
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