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Abstract
Tone curves are a key feature in any image processing

pipeline, and are used to change the pixel values of an input
image to find an output image that looks better. Perhaps the most
widely deployed tone curve algorithm is Contrast Limited His-
togram Equalisation (CLHE). CLHE is an iterative algorithm that
tone maps an input image so that the histogram of the output is
(approximately) maximally uniform subject to the constraint that
the tone curve has bounded slope (neither too large or too small).

In this paper, we build upon a neural network framework [1]
that was recently developed to deliver CLHE in fewer iterations
(each layer in the neural network is analogous to a single iteration
of CLHE, but the network has fewer layers than the number of
iterations needed by CLHE). The key contribution of this paper
is to show that the same network architecture can be used to
implement a more complex (and more powerful) tone mapping
algorithm. Experiments validate our method.

INTRODUCTION
Using a tone curve to enhance an image is one of the oldest

image processing techniques. A tone curve is a 1-to-1 mapping
function that transforms the pixel values of an image. These new
pixel values define an output image that should look better than
the original.

A well-known tone adjustment algorithm is Histogram Equal-
isation (HE) [2]. In HE, the tone curve is obtained directly as
the cumulative sum of the image histogram. For a standard 8-
bit greyscale image, the histogram has 256 bins, where each
bin counts the occurrences of pixel intensity k in the image
(k ∈ [0,255]). This histogram is normalised so that the sum of the
histogram is 1 (it is a probability density function, PDF) before
the CDF (cumulative density function), or cumulative histogram,
is calculated.

In Figure 1, left, we see a greyscale image of one of the 24
widely used Kodak reference images [3]. On the right, we see the
output of naive Histogram Equalisation. Clearly the output image
looks terrible. In the middle panel we see an output image that is
more pleasing. The image has more contrast and the details are
more conspicuous, while the image retains a natural appearance.

Contrast Limited Histogram Equalisation (CLHE) [4] is a
well known and widely used histogram modification algorithm
that produces tone curves that have bounded slopes (neither too
high or too low). While CLHE is an improvement on HE it is
still far from perfect. Known problems are that the generated
tone curves can be ‘wiggly’, and blacks and whites in the image
can become too compressed (resulting in loss of detail). The
Histogram Modification Framework (HMF) [5] is an example of
a more modern tone curve method which solves the problems in
CLHE but is more complex to implement. The middle image in
Figure 1 shows the output of the HMF. In essence, in this paper
we will show how complex methods such as [5] can be made as
simple as CLHE.

In Figure 2, left panel (a) we show the histogram (dashed
lines) of the input image (left, Figure 1). In the right panel (b)
we show the corresponding Histogram Equalised tone-curve (the
cumulative histogram), also a dashed line. The HMF algorithm
tries to find a histogram (that sums to one) that is close to the
actual input histogram, and that has the additional property that
its cumulative histogram will result in a more ‘reasonable’ tone
curve (see red curve in panel (b)).

Neural networks can approximate many functions and have
been used successfully in many applications including image pro-
cessing [6]. In this paper, we will use a neural net to map an input
image histogram to an output histogram that, when integrated,
will make a good tone curve. Our starting point will be the net-
work derived in [1] which was designed to approximate CLHE.
Like many networks, the CLHEnet has the same layer repeated
several times. Figure 3 summarises a single layer in the CLHEnet.

The solid blue columns in Figure 3 represent the values in
the bins of a histogram. In this toy example the histogram has
just 5 bins (hence 5 arrows), but the analogy extends to any N-
bin histogram. The values of the input are directly connected to
an output layer. The values of the input are also weighted and
connected to a single summation block (follow the red arrows)
and a bias term also feeds into this block. The calculated sum
is then weighted and added to the output layer (follow the green
arrows). With the exception of the final block in the network, the
new values in the output layer are then combined and fed through
an activation function. A piece-wise linear activation function is
used. The output of the network is the final output block (that
does not pass through the activation function before output).

The CLHEnet has the property that it can be instantiated (the
weights fixed) so that with > 50 layers the CLHE algorithm can
be simulated exactly. The novelty of [1] is to show that CLHE
- for a large corpus of images - can be computed in just two or
three layers so long as we train the network (and do not use the
CLHE default weights).

The prior work [1] shows how the individual algorithm steps
can be mapped one-to-one to the architecture shown in Figure 3.
In this paper we wonder whether more complex histogram based
tone mapping algorithms can be learnt using the CLHEnet. We
focus on the Histogram Modification Framework (HMF) of [5].
In HMF a modified histogram is sought that, like CLHE, is close
to the original but where additional constraints are also added to
ensure a smooth tone curve and good whites and blacks.

While the HMF tone mapped images are reliably preferred
over CLHE, the HMF algorithm is significantly more complex. In
this paper we show that we can re-train the CLHEnet and imple-
ment the HMF framework much more efficiently. Our work may
suggest that the CLHEnet can be used to implement histogram
based tone mapping algorithms more efficiently.

The Histogram Modification Framework is discussed more in
section 2. In section 3, we use a trained instantiation CLHEnet to
implement HMF. Section 4 details the results of our experiments,

https://doi.org/10.2352/issn.2694-118X.2021.LIM-93
©2021 Society for Imaging Science and Technology

93London Imaging Meeting 2021



Figure 1: Comparison of Histogram Modification Framework (HMF) and Histogram Equalisation (HE). a) Input greyscale image. b)
HMF enhanced image. λ = 1,γ = 100,α = 5 c) HE enhanced image. The tone curves used to enhance these images are shown in Figure
2b.

Figure 2: Histograms and associated tone curves of a greyscale
image. a) Normalised (and modified) histogram of pixel inten-
sities. (image PDFs) b) Tone curves that are cumulative sum
(CDFs) of the histograms.

Figure 3: A graphical representation of a ‘block’ in the CLHE
feed-forward neural network. Arrows indicate weighted connec-
tions in the network.

and the paper concludes in section 5.

Background
Revisiting the tone curves in Figure 2b reveals the cause for

the poor quality of the HE image. The slope of the HE tone curve
is very steep on a narrow interval. Consequently, pixel intensities
in that interval are over-emphasised in the output image. In 1c
this manifests as unnatural details on the door. The HE tone curve
is also very shallow over wide intervals. Shallow slopes cause
details to be compressed as intensities are mapped close together
[7]. This can result in loss of detail in the brightest and darkest
regions. Finally, consider the speed with which a slope changes
from steep to shallow. When this happens too quickly the image
details can become unevenly enhanced, which often manifests as
contour-like patchiness artefacts, seen throughout the HE image.

A Histogram Modification Framework (HMF) was intro-
duced in [5] and improves on the HE and the CLHE methods.
Both CLHE and HMF start with an input image and the histogram
for this image. In CLHE - through an iterative algorithm - we find
a derived histogram that has ‘clip’ limits on the bin counts (each

has to be larger than and less than respective lower and upper
bounds). Because the tone-curve is the integral of the derived
histogram we, by bounding the bin counts, also bound the slope
of the tone curve (to be neither too steep or too shallow).

However, CLHE can produce wiggly tone curves (leading
to contouring artefacts) and blacks and whites are often overly
compressed. The Histogram Modification Framework (HMF)
attempts to mitigate these problems. The HMF tone curve is also
the integral (cumulative sum) of a derived histogram. The derived
histogram is found by minimizing:

minh||h−hi||22 +λ ||h−u||22 + γ||Dh||22 +α||Sh||22. (1)

The first squared error term teaches that the derived his-
togram (h) should be close to the original hi. The second term
guides the derived histogram towards the identity histogram,
u = [ 1

N , 1
N , · · · , 1

N ]T (where T represents vector transpose). As
λ - a user defined weight - grows large the histogram becomes
closer to the uniform histogram. The integral (cumulative sum) of
the uniform histogram is a tone curve that is a line at 45 degrees.
This is the identity tone curve where output brightness equals
input brightness. Therefore, as the solved-for histogram is pushed
closer to the uniform histogram, the level of contrast enhancement
in the output image is reduced.

The third error term controls the smoothness of the his-
togram, here D is the discrete derivative operation (Dh is the
second derivative of the tone curve). We can usefully think of γ

as a constraint on the ‘wiggly-ness’ of the tone curve. As γ grows
large so the wiggly-ness of the tone curve decreases.

The final error term is used to map a predetermined range
of the darkest and brightest intensities to darker and brighter
intensities respectively. This is sometimes referred to as ‘black
and white stretching’. The last term ensures unwanted details are
not introduced to the deepest blacks and whites of the image. See
[5] for a more in depth explanation.

Additionally, the solved for derived histogram h should have
all bins in the range [0,1] and sum up to one (the histogram is
a PDF). As in CLHE we would like the derived histogram have
a bounded minimum and maximum bin counts (so we constrain
slope bounds of the tone curve). In this work the upper and lower
bounds are defined as 2

N and 0.5
N respectively, where N represents

the number of bins (values) in the histogram. This results in tone-
curves whose slope is between 0.5 and 2. We can solve Equation 1
- with these additional constraints - using Quadratic Programming.

As a final detail, the penalty terms in Equation 1 are weighted
using values suggested in [5] (and also used in Figure 1).

94 Society for Imaging Science and Technology



Method
Let us consider a generic description per-block of the com-

putation carried out in a feed-forward neural network [8]:

al = σ(W lal−1 +bl). (2)

Where al ∈ RN is a vector that is the output of layer l in the
network. Next, σ() is an activation function. W l ∈ RN×N is a
matrix of weights that scales the contribution of each neuron in
the previous layer, l−1. al−1 ∈ RN is a vector that is the output
of the previous layer in the network, and bl ∈ RN is a vector that
holds the bias values for each neuron in layer l.

In this work, we adopt the same framework as CLHEnet to
define a neural network version of the HMF algorithm. So we
need to marry Figure 3 with the notation of Equation 2. Let us
begin by initialising the network using the CLHE parameters, that
are the values for the weights and biases such that > 50 blocks is
CLHE.

At initialisation, the weight matrix W is written as vwT

when v,w ∈ RN are two vectors of 1 and 1
N respectively. Here

vwT models the single block summation (where the red arrows
feed in and the green ones leave, shown in Figure 3). The bias
vector b ∈ RN is defined at initialisation as a vector of 1

N ’s (b =

[ 1
N , 1

N , · · · , 1
N ]T ). The activation function, σ(), is a piece-wise

linear function that bounds the input to upper and lower bounds,
in this case 2

N and 0.5
N where N is the size of the input and target

histograms. This bounding of the histogram bins has the effect of
making the min and max slopes of the associated tone curve .5
and 2 respectively. We illustrate this function (for a histogram of
size N = 100) and it’s effect on a histogram in Figure 4.

Of course, a clipped histogram will not sum to one. So
we need to calculate the ‘delta’ 4 (from 1) and add ∆/N to the
clipped histogram (so that it does sum to one). This is exactly
what the architecture in Figure 3 computes (with the initialisation)
proposed in the last paragraph. Previous research has shown that
CLHE (which can take up to 50 iterations to converge) can be
implemented with a 3 layer net (using the blocks shown) where
we do not use the defualt initialisations but rather learn the optimal
weights.

Figure 4: A piecewise linear activation function and it’s effect of a
histogram vector. a) A function that is linear between at 0.005 and
0.02 (and clips to the these values for inputs outside this range).
b) A histogram. c) This histogram after it has been modified by
the plateau function.

Here, we will attempt to use the same CLHEnet architecture
to learn the HMF algorithm. As before we will initialise with
CLHE weights. And, arbitrarily, we will use a 3 layer network.
We call our learnt network (even though it is based on CLHEnet),
HMFnet because the learned weights are different. Indexing over
a large corpus of histograms we seek to find the weights and
biases that minimize:

J = min
P

∑
i
||HMF(hi)−HMFnet(hi;P)||22. (3)

In Equation 3 P denotes the set of all weights and biases that
define the 3 layers of the network. In the neural-net literature,
J is called as a loss function. We seek to learn the weights and
biases that minimize the loss.

We actually minimize a loss function that is slightly more
complex:

min
P

J +βS . (4)

where S controls the smoothness of the discovered weights and
biases. While the details of what smoothness means are discussed
elsewhere, we recapitulate the intuition. In the lth level of the
network we have the weights vl , wl and the bias bl . These vectors
are in one-to-one correspondence to the histogram bins. These in
turn have a natural order (e.g. they record the relative frequency
of the pixels in the image from darkest to brightest). We would
like this natural order to be accounted for in the minimization.
Indeed, we do not expect the kth weight wl

k to be significantly
different from wl

k+1. That is, we expect the weight vectors vl , wl

and the bias bl (viewed as functions we might plot on a graph)
to be smooth. Thus, the term S in Equation 4 is the sum of
the squared derivatives of the weights and biases calculated at
the different levels. This in turn is weighted by the controllable
parameter β , where β represents the importance of smoothing.
See [1] for more details.
The specific weights and bias values that underpin the optimiza-
tion in Equation 4 are found using stochastic gradient descent
(SGD) and back propagation (BP). The precise details of the SGD
and BP [6] are not important for the purpose of this work. What
is important that we can use these standard techniques to optimize
Equation 5 efficiently.

Training the network
To train the network we used a randomly sampled set of

30,000 images from the ImageNet dataset [9]. From each image
we obtained the input histogram and modified histogram found
by the HMF. These served as the input and target of the network
respectively. We trained the network using a regularised mean
squared error loss function (Equation 4) with β = 0.001, and the
following hyper parameters: batch size = 30,000, learning rate =
1e-4, and epochs = 250.

Experiments
To evaluate the success of our HMFnet we compare the

closeness of images enhanced with our method against images
enhanced with the target algorithm HMF [5]. For the purpose of
this work closeness is quantitatively measured using the CIELAB
Delta E [10] distance metric. To obtain the Delta E statistics we
take a reference image and enhance it with the target algorithm.
We then enhance the same reference image independently with
the proposed method. Both enhanced images are then converted
to the CIELAB colour-space, and the per-pixel difference between
the proposed and target image is calculated to generate an error
image. Using this error image we calculate the mean Delta E per
image. We then calculate the mean, median, and 99 percentile of
the mean error for all the images in the dataset.

We evaluate our method on three datasets: the well-known
Kodak dataset [3] that contains 24 RGB images. A randomly
sampled set of 20,000 RGB images from the ImageNet dataset
[9] that were not used to build the model, and a final 20,000 RGB
images from the MIT Places database [11].
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Results and Analysis
In Table 1 we show the Delta E error statistics for the pro-

posed HMFnet framework when compared to HMF [5]. Clearly,
the errors shown are not zero. However, the numbers are small.
In tightly controlled viewing conditions a Delta E of 1 correlates
with a just noticeable color difference. However, in complex im-
ages (e.g. photographic pictures) an average Delta E of between 3
and 5 [12, 13] is generally thought to be visually not noticeable.

In Figure 5 we show a series of images from the Kodak
dataset that have been enhanced with HMF (middle column) and
HMFnet (right column). For each image in the set we show the
mean Delta E in the top right corner. From these images we learn
that a target for Delta E of around 3 is sensible, as the image in
the set that is ‘most-different’ (flower) shows only few noticeable
differences even under very close observation.

3 block
HMFnet Mean ∆E* Med. ∆E* 99pt ∆E*

Kodak 1.49 (± 0.34) 1.22 (± 0.41) 3.74 (± 0.96)
ImageNet 1.32 (± 0.37) 1.48 (± 0.28) 3.31 (± 0.89)
Places 1.16 (± 0.23) 1.24 (± 0.31) 3.12 (± 0.88)

Table 1: Mean, median, and 99-percentile (± standard deviation)
of the mean ∆E* for enhanced images, averaged over each image
in the datasets.

Figure 5: For each image in the set: First, original image. Middle,
image enhanced with HMF [5]. Right, image enhanced with
proposed HMFnet.

Conclusion
In this paper we demonstrate that a neural network frame-

work that was designed to approximate a specific histogram based
tone mapping algorithm (CLHE [4]) is also able to be retrained to
approximate the Histogram Modification Framework (HMF) of
[5]. Significantly, HMF is a complex algorithm. By reformulating
it in network form it is orders of magnitude faster (than the orig-
inal QP-based implementation). Experiments demonstrate that
the HMFnet delivers images that are visually very similar to those
delivered by the original HMF algorithm.
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