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Abstract
Cameras operating in the visual range of the electromag-

netic spectrum are central to advanced driver assistance systems
(ADAS). Front cameras, analyzing traffic, are often located be-
hind the windshield to detect and classify objects.Thus, the area
of the windshield within the camera’s field of view is a part of the
optical system. Simple windshields consist of two curved glass
surfaces connected by a thermoplastic interlayer. Due to defects
present in the raw glass, as well as those introduced during the
bending and lamination process, windshields will have optical
aberrations. While optical quality may be suitable for human vi-
sion, it can fall short of what is needed for machine vision. In this
article we investigate how the optical aberrations generated by
laminated safety glass (LSG) influence the optical performance
of a camera system and based on this, how the classification of
image content by a convolutional neural network (CNN) is af-
fected. A method for wavefront measurements of LSG samples
is presented, which allows us to parameterize a linear optical
model in Zernike Space. From this, we derive space-variant point
spread functions (PSFs) and apply those to the dataset to simu-
late the windshield’s impact on the camera image. As a use case,
a CNN was trained on the unmodified dataset and compared to
the modified versions with the LSG models applied. We measured
and modelled two different LSG samples, one with high and the
other one with low optical quality. We compare the prediction ac-
curacy of the classification with the unmodified data. The high-
quality sample had negligible effect on the overall classification
accuracy, while the low-quality sample lowered the prediction
accuracy by up to ten percentage points due to the optical aber-
rations.

Introduction
Advanced Driver Assistance Systems (ADAS) enhance the

safety of road users [1]. For example Blind Spot or Lane Keeping

Assist, Collision Warning and Mitigation Systems are believed

to have had the potential to prevent up to 1.6 million accidents

per year in the U.S. in 2015 [2]. ADAS are therefore a crucial

means to make our roads safer and achieve the so-called ”vision

zero”, no more fatalities by auto accidents. Therefore, as the field

of ADAS grows, assistants such as emergency lane keeping and

collision, speed, and backup warning systems for pedestrians and

cyclists have been added to regulations such as EU Regulation

2019/2144 [3]. Further, ADAS are often based on the interaction

of different sensor types, where camera systems operating in the

visual range of the electromagnetic spectrum are crucial. Digital

camera systems are continuously being improved. Inexpensive

and readily available, they are flexible [4] and can be combined

with other sensor systems. These characteristics allow for their

use in assisted as well as automated driving. Furthermore, cam-

eras for traffic monitoring are typically placed behind the wind-

shield in a central location close to the top and near the transition

to the roof edge. This ensures good viewing angles, and the sys-

tem is protected by the windshield. The vehicle occupants are

protected by the laminated safety glass (LSG) windshield, usu-

ally consisting of two layers of glass and a thermoplastic bonding

layer.

However, windshields are not an optically ideal for machine

vision. Aberrations can arise from the intrinsic material proper-

ties and defects present in the raw glass, the bonding interlayer,

and coatings. The bending and lamination process also create

optical defects. Furthermore, optical errors can be intensified

by low camera installation angles. Therefore, it is necessary to

recognize and assess a performance drop in the corresponding

ADAS caused by the presence of the windshield [5]. One of

the main requirements for windshields is currently the refractive

power specified in milli diopters [mdpt]. Besides the refractive

power, further optical requirements like transmission, haze and

double image exist. Zone definitions, some optical requirements

and regulations for windshields are specified [6, 7]. Conversely,

camera requirements, as an example, are specified in terms of

spatial frequency response (SFR) as defined in ISO 12233 [8].

The parameters that camera specifications share with automotive

glazing regulations, such as zone definition, filter parameters and

limit values, differ from the standard windshield requirements

for human drivers and OEM’s specifications for maximum opti-

cal refractive power, among others. Nevertheless, the main goal

of both is the same: flawless operation of the ADAS must al-

ways be ensured. The windshield should have no influence on

its performance. However, a reliable quality assessment of an

ADAS placed behind different windshields would require sev-

eral hundred million kilometers [9] of real driving tests, which is

not practical. Therefore, simulations for ADAS offer many ad-

vantages [10]. Approaches to model-based safety analysis [11]

and suggestions regarding the design, development of tests and

validation of ADAS [12] can be found in recent publications.

However, the influence of the windshield is often ignored in this

context or described by overly simple representations, e.g. flat

monolithic glasses, which are ideal.In this study, a novel ap-

proach for the measurement of a LSG, the simulation of its op-

tical aberration, and the influence on a classification task per-

formed by CNNs is presented. The main benefit is to have an

optical model of a physical LSG, which can be validated with

lab images or real driving tests. The model can be applied to

degrade an image database to generalize and evaluate the influ-

ence on ADAS tasks. Following this approach, the relationship

between measured aberrations, quality requirements and actual

ADAS performance can be investigated.

This article is structured as follows: first, we introduce the

example application chosen for our investigation, a CNN for

street sign classification. The database, the CNN’s architecture

and prediction results are briefly described. This is followed by

an explanation of how we create our optical model of a LSG. The

laboratory setup is described, and we outline the wavefront mea-

surements for a LSG followed by the linear optical model, which
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we apply to a database. Finally, we show the windshield’s effect

on the classification of street signs.
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Figure 1. The core concept: Comparing classification results of a CNN

for street sign classification for an unmodified image dataset and a modified

version. The modified dataset simulates the influence of a camera system

capturing images through a windshield. The model is parameterized by

real wavefront measurements of LSG samples. The CNN is trained on the

unmodified image dataset.

A CNN for street sign classification
One out of the many different use cases of an ADAS is the

recognition of objects in a driving scene. In this article, we exam-

ine the classification accuracy of street signs by a CNN due to op-

tical errors. Aberrations in the windshield can lower the contrast,

blur, and distort the objects which need to be classified. The ben-

efit of selecting this task is based on the properties of the street

signs. Street signs appear in a moderate range of sizes in images,

have distinct classes as well as high- and low-level details rang-

ing from simple shapes to more detailed pictographs. We use the

German Traffic Sign Recognition Benchmark (GTSRB) from the

Institute of Neuroinformatic at the Ruhr University in Bochum,

Germany [13]. The GTSRB consists of a large number of train-

ing (39,209) and test images (12,630) divided into forty-three

classes. The relative number of samples per class in the training

and test dataset is similar. Data augmentation is used by apply-

ing an additional translation variation of up to ±10% and rotation

variation of up to ±10° to the complete dataset. A Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE) [14] is used to

preprocess the images.

Architecture and Training
The presented CNN is chosen due to two reasons: first, it is

designed to achieve an average classification accuracy of street

signs similar to the average human performance of 98.84% [13].

Second, we aimed for a network which is potentially sensitive

for the predicted aberrations to create a better understanding of

their influence to the performance. The CNN consists of an input
layer of size [49×49×3] and three convolutional layers of size

[43×43×120], [17×17×180] and [6×6×260] each with max
pooling. A dropout of 0.5 and softmax is used in the final dense
layer. The training data of the GTSRB database is split into sub-

sets for training and validation with a 15% validation split. It

is trained using stochastic gradient descent (SGD) on a batch

size of ten images per batch over thirty epochs. The accuracy
and model loss are measured after each epoch by evaluating the

Sparse categorial cross entropy. The presented CNN’s overall

predicting accuracy is 98.61%.

Image degradation based on an optical
model for laminated safety glass

The windshield’s impact on an image database was simu-

lated by means of an optical model based on linear system theory

and measurement data. The optical data was passed to the model

from lab measurements with a Shack-Hartmann wavefront sen-

sor for two different real LSG samples. First, we will describe the

LSGs and the required lab setup used to sample the windshields’

wavefront at multiple points. Second, we will outline the image

degradation using the acquired measurement data from the lab.

Laboratory setup and wavefront measurements
of LSG

Two LSG samples (LSG No. 66 and LSG No. 84) were se-

lected for comparison, where No. 66 represented a high-quality

sample, and No. 84 a low-quality sample. The location of

each measurement on the LSG samples was determined by the

camera’s field of view (FoV), its distance and orientation to the

sample. To validate the model, a reference camera system with

an 8.3 MP (2168 × 3848) sensor, 2.1 μm pixel size and a lens

with 32.1°/53.7° vertical/horizontal FoV was used. The general
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Figure 2. Measurement setup and sampling: (a) Geometrical setup with

reference camera at C. (b-c) Sampling of the tilted LSG with non-regular

spaced measurement spots and (d) equidistant spots in the final imager

coordinates.

measurement setup is displayed in Fig. 2a. A windshield was

placed within the FoV of the reference camera, where the cam-

era’s installation angle α (angle between optical axis z and secant

through top and bottom edge of the LSG specimen) was 25°, the

horizontal distance dZ of the camera to the center of the LSG

was 35 mm and the vertical distance dY of the camera to the cen-

ter of the LSG sample was 15 mm. The LSG sample size was

130×130 mm2 with a total thickness of 4.46 mm and consisting

of 2.1 mm soda-lime outer glass, 0.76 mm clear PVB (Polyvinyl-

butyral) layer, 1.6 mm soda-lime inner glass. The nominal ver-

tical radius of curvature (ROC) was 10×103 mm, the horizon-

tal ROC was 3×103 mm. The LSG’s measurement locations as

shown in Fig. 2c were obtained from an inverse distortion model,

such that all spots were equally distributed in the image space

as displayed in Fig. 2d. The PSF was measured at each loca-

tion at the camera’s FoV respective angle. To reduce the number

of measurements required, the following simplification and as-

sumptions were made:

• A total of 289 measurements in a 17 × 17 grid per LSG

sample were assumed to be sufficient

• Refraction at both glass surfaces and the interlayer was not

considered when calculating the location of the measure-

ment points

• The LSG sample was assumed to be a flat thin surface
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• The angle of incidence was only considered for the vertical

FoV; furthermore the measurement angles γi were reduced

to three reference angles 42°, 25° and 8°.

• The mask size diameter for a measurement at γi was cor-

rected by the sin(γi)

For the selected spots the wavefront slopes were measured by a

Shack-Hartmann wavefront sensor and output the wavefront in

terms of Zernike polynomials. Each measurement point there-

fore consisted of the coefficient values for the first 24 Fringe

Zernike polynomials. In Fig. 3, five are visualized. Zernike Poly-

nomials are important to aberration theory, since each polyno-

mial Zm
n has its physical meaning, such as Tilt x, vertical Astig-

matism and Coma allowing to analyze optical systems, where

the amount of the aberration is controlled by its corresponding

coefficient Am
n .

Figure 3. Wavefront acquisition. The wavefront representing the LSG’s op-

tical influence is sampled in 17×17 locations within the reference camera’s

FoV. Each measurement spot is then decomposed into Zernike polynomials.

Optical model and image degradation
The effect of the LSGs as a general linear optical system

were modeled, and then parameterized with the measurement

data. An optical system is described by linear system theory with

its characteristic point spread function (PSF). The system’s inten-

sity PSF denotes the redistribution of a unit point light source’s

intensity caused by passing an optical system observed at an ob-

servation plane. However, there are some difficulties when mea-

suring the PSF directly, so sometimes there is an advantage when

describing the wavefront by other means: Revisiting the diffrac-

tion integral, it is also possible to describe this redistribution as

phase error in the pupil plane caused by a deformed wavefront

[15]. We compute the wavefront error W corresponding to the

PSF from a Zernike Polynomials expansion with Zernike coeffi-

cients available from the measurements. The Zernike Polynomial

expansion is defined on a unit circle in polar coordinates:

W (r,θ) =
N

∑
n

M

∑
m

Am
n ·Zm

n (r,θ) , (1)

with Zernike coefficients Am
n and Zm

n representing the polyno-

mial depending on pupil coordinates (r,θ ) [16]. Since we in-

clude measurements from the Shack-Hartmann wavefront sensor

outputting Zernike coefficients, we can use these to parametrize

our model of a windshield and compute the corresponding PSF

at every position in the imager.

In general, this deformed wavefront depends on the view-

ing angle, and thus the output PSF varies over the image field.

We assume that all PSFs can be cropped to a maximum size

and evaluate the local PSF by computing the Fourier Transform

of the aberrated phase function of the pupil. According to the

corresponding measured wavefront for different locations we get

monochromatic PSFs, which we scale to the pixel size of the im-

ager, l1 normalize and finally apply to an image from the image

database. Fig. 4 visualizes the application of the Zernike coeffi-

�

Figure 4. The LSG’s impact on the final image is obtained by transforming

the Zernike coefficients into point-spread functions which are then used to

degrade the image.

cients to form the specific wavefront error. This two-dimensional

function represents the phase function of a complex pupil func-

tion, where we assume a circular shape of the pupil. From this,

we can compute a PSF including the optical errors caused by the

presence of the windshield. We then apply the local PSF to the

image as convolution kernel and repeat these steps for all imager

locations to form the final degraded image. Note that the de-

graded image includes the windshield as well as the camera used

for capturing the traffic signs. A first validation approach is done

by comparing the pixel shift and eSFR of the images captured

by the reference camera system through the corresponding LSG

sample and the degradation.

Figure 5. Image deformation and bounding box (bbox) adjustment.

The level of degradation is determined by measured and

simulated aberrations including local horizontal and vertical

pixel shifts, which are caused by the tilt of the glass surfaces.

These local shifts deform the image and as a result, sub image

areas are stretched or compressed, while e.g. a higher level of

defocus and astigmatism blurs the image. Fig. 5 visualizes the

modified bounding box for a ground truth image after the ap-

plication of the degradation model. The original image is shown

framed by red solid line on the right-hand side. For each image, a

bounding box (solid green line) for the actual street sign is avail-

able as ground truth. After applying the degradation, the image

(dashed red line) is deformed, and the street sign’s bounding box

(dashed green line) is adjusted with respect to the simulated pixel

shift such that it fits to the degraded sign.

Results: LSG’s influence on street sign clas-
sification

Table 1 summarizes the classification results for both LSG

samples and the original test dataset. The weighted accuracy,

precision and recall for each sample and unmodified data (refer-

ence) is calculated. As the accuracy loss in LSG No. 66 is lower

than 0.5 percentage points compared to the reference dataset, the

CNN is not highly affected by the LSG’s aberration. In LSG
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(a) (b) (c)
Figure 6. Confusion matrices - classification accuracy for (a) ground truth (b) LSG No. 66 and (c) LSG No. 84 . Note that for better readability only

misclassifications above 3% are displayed on a reduced set of classes. Deviations from 100% are due to the reduction.

Metric Reference LSG No. 66 LSG No. 84
Accuracy 98.61% 98.19% 88.54%
Precision 98.77% 98.37% 91.35%
Recall 98.61% 98.19% 88.54%

Table 1. Accuracy, precision and recall (weighted) of unmodified and de-

graded datasets with different LSG models.

No. 84 the accuracy loss is ten percentage points showing a sig-

nificant impact on the CNN’s performance. Figure 6 shows the

confusion matrices for the ground truth (a), LSG No. 66 (b) and

LSG No. 84 (c) for thirty-two out of forty-three street signs in

which entries greater than 3% are displayed. Figure 7 shows

Figure 7. Comparison of ground truth data (left), samples no. 66 (mid-

dle) and no. 84 (right) for different street signs from the GTSRB database.

Images are scaled to have equal size.

the influence on a selected set of street signs. Each street sign

is shown in different representations: the unmodified image, the

degraded image based on LSG No. 66, and the degraded image

based on LSG No. 84. A comparison of the top-3 classifica-

tion rates for four street signs degraded with the optical model of

LSG No. 84 is shown in figure 8. Classification rates for the un-

modified images is greater than 94.8% for all signs shown. After

the degradation, the CNN predicts the wrong class: Maximum
Speed 20 changes to Maximum Speed 70, Traffic Signal changes

to Danger, Uneven Surfaces Ahead changes to Pedestrians, and

Cycles changes to Children. For a deeper analysis of the accu-

racy loss in LSG No. 84, the misclassifications are divided into

their classes. Increased misclassifications are observed in sets of

signs in which the signs are of similar color scheme and shape

with different pictographs in the center e.g., speed signs or warn-

ings. However, many street signs are misclassified as the Dan-
ger sign. If the image content in the center is highly degraded

by the aberrations, there is a higher probability that the classifi-

cation will fail. First investigations lead to the conclusion that

similarity between signs and smaller sizes are a reason for these

increased misclassifications. A correlation between the false pre-

diction and mentioned attributes are not unexpected, however, it

can be shown that aberrations introduced by the windshield can

cause this level of degradation and can therefore have a notice-

able impact on the performance. As the size of a street sign is

connected to its distance, a practical interpretation of this can be

summarized as: more distant signs, which are captured as smaller

(a) (b)

(c) (d)
Figure 8. Misclassification examples for the LSG No. 84 model: (a-

d) shows the original image (top) and the degraded input image by the

LSG model (bottom) passed to the CNN for street sign classification. The

achieved top-3 classification scores are shown on the right.

sub-images by the camera, are more likely to be misclassified,

if the windshield introduces strong aberrations. The acceptable

level of aberrations and the influence on different ADAS tasks is

left for future studies.

Conclusions
An optical model was created for each of the two LSG sam-

ples by composing local wavefront measurements, and the de-

rived PSFs were locally applied as a spatially variant convolu-

tion. The image degradation based on the optical model was val-

idated by comparing the pixel shift and eSFR for sample images

of checkerboard charts. The principal aberrations of the LSG

were be simulated with the proposed method. However, further

work on the optical model and degradation is needed to improve

the fit to real images. The advantage of the presented method is

a model based on measurements of a physical sample, which can

be verified under real world conditions as well as in test drives.

For the low-quality sample, the degradation of the image dataset

for traffic sign recognition resulted in a significantly reduced ac-

curacy of the classification by ten percentage points. The loss of

accuracy was found in an image region with high Zernike coef-

ficients de-focus and astigmatism 90°, in combination with low

resolution of the sub images. Thus, the quality of the windshield

as part of the optical system is a non-negligible factor for camera

systems for ADAS/AD. Furthermore, this approach is applica-

ble to any other image dataset, to simulate the LSG’s effects and

investigate their influence on specific tasks.
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