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Abstract 
Video compression in automated vehicles and advanced 

driving assistance systems is of utmost importance to deal with 
the challenge of transmitting and processing the vast amount of 
video data generated per second by the sensor suite which is 
needed to support robust situational awareness. The objective of 
this paper is to demonstrate that video compression can be 
optimised based on the perception system that will utilise the 
data. We have considered the deployment of deep neural 
networks to implement object (i.e. vehicle) detection based on 
compressed video camera data extracted from the KITTI MoSeg 
dataset. Preliminary results indicate that re-training the neural 
network with M-JPEG compressed videos can improve the 
detection performance with compressed and uncompressed 
transmitted data, improving recalls and precision by up to 4% 
with respect to re-training with uncompressed data.   

Introduction 
Advanced driving assistance systems (ADASs) and 

automated vehicles (AVs) constitute an emerging technology 
which has the potential to revolutionise the transport sector “by 
making everyday journeys greener, safer, more flexible and more 
reliable” [1]. In fact, safety is of foremost importance, and 
automated functions can play a pivotal role in dramatically 
reducing accidents, considering that 94% of serious car accidents 
occur because of human negligence, according to NHTSA [2].  

A way of defining the automation capability integrated in a 
vehicle is by using the SAE taxonomy, called Levels of Driving 
Automation [3]. These levels are used to describe the gradual 
transition of responsibility for driving tasks from the human to 
the machine, see Table I. Level 0 to Level 2 (L0-L2) encompass 
automated functions that are meant to support the driver, i.e. 
ADASs, whereas Level 3 to Level 5 cover AVs, including fully 
autonomous vehicles (L5) in which the existence of a driver is 
unnecessary.  

Perceiving and understanding the environment and its 
actors (e.g. pedestrians, bicycles, cars, lorries, etc.) around a 
vehicle are complex tasks, which in ADASs and AVs are 
implemented using data generated by a sensor suite, namely an 
array of perception sensors (i.e. camera, LiDAR, Radar and 
Ultrasonic) [4]. Each of these heterogeneous sensor technologies 
has its own limitations, and a more complete perception of the 
situation may be achieved by combining information from all the 
sensors. This process is known as sensor fusion [5]. Sensor 
fusion leads to more accurate and higher resolution 
measurements, extends the temporal and spatial coverage and 
increases reliability [6]. However, the amount of data collected 
by perception sensors can be estimated at 3Gbit/s-40Gbit/s, and 
current automotive data networks have difficulty supporting 
these data rates [7-9]. One possible solution is to reduce or 
compress the amount of sensor data to be transmitted; in this 
work we will focus on video camera data compression.  The 
novelty of this work is to consider video compression in 
combination with the perception task, namely with object 
detection implemented via deep neural data networks (NN) in 

ADASs and AVs. We demonstrate that carefully tuning a NN 
with compressed data can improve the accuracy of object 
detection with respect to the same NN trained only with 
uncompressed data.  

Table I: Overview of the SAE Levels of Driving Automation   
from [3]; L0-L2 are related to ADASs, L3-L5 are related to AVs. 
Abbreviations: envir., environment; accel., acceleration; 
decel., deceleration.; ODD, Operational Design Domain, DDT, 
Dynamic Driving Task.  

Background 
Among the available perception sensors which may be 

deployed in a vehicle sensor suite, visible light cameras are an 
affordable solution with a good angular resolution and optionally 
providing colour information [4]. However the amount of data 
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produced by the sensor suite,  even by a modest 2 Mpixel camera 
on its own can be too onerous to be transmitted by traditional 
vehicle data networks, so ad hoc expensive and heavy weight 
connectors and wiring are required.  Alongside the need for 
multiple sensors to cover the entire 360° around the ego-vehicle 
and the required redundancy when considering higher levels of 
autonomy (L3 and above), the data produced by all the 
perception sensors cannot be supported by current standard data 
networks [7-9]. Hence, efficient compression techniques or 
saliency selection techniques need to be applied to perception 
sensor data to transmit data in a timely, reliable and affordable 
(in terms of cost, weight and required power) fashion. This 
paper’s focus is automotive video compression, but we expect 
that similar challenges will apply to the other perception sensor 
technologies and their data. 

Video compression can be categorized into lossy and 
lossless compression methods. Lossless compression allows the 
received data to be decoded into a received picture which is a bit-
accurate copy of the original data. There is a limit to lossless 
compression which is based on the entropy of the raw data. Due 
to this limit, the vehicle’s data network bandwidth can still be 
overloaded, leading to data loss. Lossy compression provides a 
higher degree of compression but usually results in a degradation 
of the received picture.  

Figure 1. Sensors and vehicle control loop, modified from [10]. Our focus is 
analysing the effect on the perception step (based on deep NN) when the 
transmitted data are compressed (highlighted in figure by the shape with 
the dashed contour).  

However, most of the work on lossy digital video 
compression has been designed to maintain the perceived video 
quality for human vision (leveraging our visual perceptive 
system weaknesses). Here instead we focus on compression for 
video consumed by the vehicle processing unit(s) of AVs or 
ADASs, Fig 1, and in particular we will focus on the perception 
step. This step entails the extraction of multiple types of 
information, e.g. localisation, identification of traffic objects 
(signs, lights, road markings, etc.) and also identification and 
tracking of surrounding hazardous objects [10]. This exploratory 
work is focused on vehicle detection, since vehicles are key road 
actors and an array of ADAS functions are determined from the 
detection of vehicles [11]. 

Camera data can be processed using traditional computer 
vision (CV) algorithms or through neural networks (NN). There 
is a trend in automotive engineering to use machine learning for 
object detection as it can provide high accuracy and higher 
flexibility to possible real-life variations (e.g. car models, 
colours, positions, brands, denting, etc.) with respect to 
traditional CV techniques [12]. Although NNs can be re-trained 
and tuned for their use in automated vehicles, they still have 
some drawbacks and currently it is impossible to achieve a 
detection accuracy of 100%, which poses a problem when AVs 
will be relying on these NNs. The inclusion of lossy compression 
in AV to ensure effective video data transmission can result in 
diminished video quality (e.g. loss of some details/objects), 
and/or introduction of artefacts. In this paper we evaluate the 
combined effect of compression and perception based on NNs, 
considering quality of videos for training, size of transmitted data 
and implication on the ADAS or AV perception stage.  

Methodology 
Our methodology aims to study the effect on object 

detection accuracy using an automotive camera video stream 
under different rates of lossy compression. We also consider the 
relationship between accuracy and compression rate for re-
training the NN-based object detector.  A schematic view of the 
applied methodology is presented in Fig.2, and its detailed 
description is provided in the following subsections. This 
structure aims to mimic an AV architecture wherein perception 
sensor data are compressed by or close to each sensor, then 
transmitted by the vehicle data networks to the vehicle 
processing unit/units, where data are consumed (i.e. we focus on 
the region delimited by the shape with dashed contour in Fig.1). 

Deep NN based detection and training 
In our experiments we used a pre-trained Faster RCNN 

(Faster Region proposed deep convolutional NN) architecture, 
ResNet50. ResNet50 operates on RGB input images, it has a 
depth of 50 convolutional layers, 25.6 M parameters and a size 
of about 96 MB; it provides a good compromise between 
detection accuracy and prediction speed with a relatively small 
size of the NN [13]. The training of the selected NN has been 
improved using different training sets, one at a time, to produce 
several different re-trained or compression trained Faster 
RCNN. These different training sets have themselves been 
created by applying different rates of compression to the chosen 
KITTI MoSeg dataset (described in the following subsection), 
from uncompressed videos to videos with a size of 15%, 7%, 4% 
and 2% with respect to the original dataset.  Therefore, the 
number of compression trained NNs we have used is 5, with one 
of them re-trained with the original uncompressed MoSeg 
dataset. Note that the NN hyperparameters have been optimised 
for the NN re-trained with the uncompressed dataset, and kept 
constant for the compression trained NNs. The specific 
compression trained NN, used in each experiment to infer the 
prediction accuracy depending on neural network training and 
transmitted data compression rate, is represented by the light 
blue block in Fig. 2. 

KITTI MoSeg dataset  
In the last few years, whilst virtual verification has been 

gaining traction, datasets for training and testing of AV and 
ADAS functions have been proliferating [14-16].  These datasets 
usually contain data collected from several automotive 
environmental perception sensors mounted on test vehicles 
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driving in different regions of the world.  
Amongst the above mentioned datasets, the KITTI dataset 

is a well-established benchmarking tool for the plethora of 
functions (from object detection to trajectory prediction, from 
segmentation to identification, etc.) that can be created for 
automated driving tasks and for computer vision in the 
automotive context [17]. KITTI offers data collected using one 
360O LIDAR scanner, four cameras and one inertial navigation 
system. The KITTI MoSeg dataset (a subset of the KITTI 
dataset) has been chosen in this paper as it provides time 
correlated, individual video frames with vehicle labels in each 
frame. It contains 1950 frames in total, with 2383 and 5997 
annotated static and moving vehicles respectively [18-19].  

Figure 2. Schematic view of the experimental methodology. The labelled 
video data from KITTI MoSeg dataset are used as the inputs and their labels 
are used as ground truth for evaluating NN accuracy. Data are compressed 
with different compression rates and then used as inputs of a compression 
trained Faster-RCNN (F-RCNN) employed to detect vehicles in the videos. 

Video Compression 
Motion JPEG or M-JPEG is an intraframe-only 

compression method, i.e. the compressed image quality depends 
on the spatial complexity of the single frames and the method 
does not take into account movement and variation over time. M-
JPEG exploits JPEG to compress each frame in the video stream, 
and it is a common format used in applications with low-latency 
requirements [20]. Due to time sensitivity of automotive 
application, we therefore decided to use M-JPEG as the tool to 
compress the video data to be transmitted.  

In our experiment we have used the KITTI MoSeg dataset 
to create 5 different datasets by applying different M-JPEG 
compression rates (from uncompressed to a size of 2% with 
respect to the uncompressed videos). These 5 datasets 
correspond to the transmitted data in Fig.1-2, and they have also 
been used to generate the compression trained Faster RCNN.  

Figure 3 a) and b) show a selected area from one frame of 
the KITTI MoSeg dataset with no compression and with 
maximum compression respectively. Some details have been 
zoomed and it is possible to observe the degraded quality of the 
compressed picture (right sides in Fig. 3 c)-f)), with the traffic 
light in the distance no longer visible, the degraded intensity of 
brake lights, the P sign characters and arrow distorted, the blocky 
artifacts arising in different parts of the frame.  

Accuracy Evaluation 
There are several performance metrics computed over 

different criteria that can be used to evaluate the performance of 
an object detector [21-22]. In the case of the KITTI MoSeg 
dataset the ground truth is in the form of the vehicle bounding 
boxes associated with each frame. We compare these to the 
bounding boxes provided as an output by the compression 
trained Faster RCNN. The comparison is implemented by 
calculating intersection over unit (IoU) of predicted versus 
ground truth bounding boxes; for our experiment the criterion for 
a successful match is that an object is detected when IoU>0.5. 
Based on this definition, for each compression trained NN and 
each set of transmitted data (25 combinations) we have evaluated 
recall (R) and average precision (AP) for the NN results [21-22].  

 

Figure 3. A selected area from one frame of KITTI MoSeg dataset, 
(a) uncompressed, (b) maximum compression; the rectangles in a) and b) 
highlight the details which are zoomed: c) traffic light (not visible on the 
right), d) brake lights (intensity degraded on the right), e) P sign characters 
(distorted on the right), f) parking slot (blocky artifacts on the right). In c), d), 
e) and f) the details from the frame uncompressed and with maximum 
compression are on the left and right sides respectively. 

Results 
As a first attempt, we re-trained and fine-tuned the 

hyperparameters of the ResNet50 network using the 
uncompressed KITTI MoSeg dataset (so the light blue block in 
Fig.2 was re-trained with the original videos). Then we observed 
the effect on the NN output when data are transmitted over the 
vehicle data networks with different compression rates. 
Figure 4 a) shows the recall values (dashed line) and average 
precision (continuous line) for the NN output (i.e. bounding 
boxes of detected vehicles in the videos) as a function of the size 
of the transmitted video data (the size of the compressed dataset 
is normalised versus the size of the original dataset and expressed 
as a percentage, i.e. a size of 100% represent the uncompressed 
data). The figure shows that this NN has good performance for 
increasing compression rates, however R and AP start to degrade 
when the size of the transmitted data is below the 10% of the 
original dataset.  

Fig. 4 b) shows again R and AP for a compression trained 
NN, namely the network re-trained with a dataset size of the 7% 
with respect to the original KITTI MoSeg dateset. Notably, the 
compression tuned neural network outperforms the one re-
trained with the original dataset for all the sizes of transmitted 
data. 

a) b) 

c) d) 

e) f) 
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Figure 4. Recall values (dashed line) and average precision 
(continuous line) versus transmitted video data size (a) for the NN trained 
on uncompressed data, and (b) for the NN trained with compressed training 
data (7% size with respect to the original dataset).  

Figures 5 a) and b) summarise the results achieved with the 
compression tuned NNs. For almost all the possible 
combinations the compression tuned NNs outperform the NN re-
trained with uncompressed data or re-trained with datasets with 
a size above the 10% of the original dataset. However, when the 
size of the transmitted compressed dataset is the smallest (2% of 
the original dataset) both the recall values and average precision 
are below the other transmitted datasets, demonstrating an 
increase in the false positives (FP) and false negatives (FN) 
generated by the NN. This increase can be due to artifacts 
manifesting at higher compression rates, and further 
investigation of the frames and detections is required to 
understand if it possible to further tune the NN hyperparameters 
to counteract this issue. Furthermore, in these extreme cases, the 
compression tuned NNs are more able to counteract the effect of 
compression on transmitted data, and the tuning is particularly 
beneficial in decreasing false negative with respect to the NN re-
tuned on uncompressed data. It is possible that compression 
trained NN are more robust to distortions/variations in the targets 
or that M-JPEG quantisation and high frequency filtering causes 
a reduction of noise in the transmitted data. However 
compression artifacts can still cause high false positives. 

It can also be noted from all the figures that recalls are 
always higher than that the average precision, indicating that the 
number of FPs is higher than the number of FNs. It is of outmost 
importance that FNs are suppressed in automotive, as they are 
targets (namely, in our study, vehicles) which are not detected 
and can therefore be the cause of an accident. Therefore, fine-
tuning needs to target a further reduction in the number of FNs. 

Conclusion and Further work 
The results presented in this work suggest not only that 

compression can be successfully used with deep neural network 
based object detection in videos, but that the detection accuracy 
can be improved using an appropriately retrained network. In 
fact, retraining the NN with compressed data can provide results 
that exceed the detection performance of a system not employing 
compression, until the compression reaches a level that it starts 
to cause severe performance degradation. More work is in 
progress to further optimise the hyperparameters of compression 
trained NN, and also to consider bigger training datasets, raw 
sensor data and other NN architectures. In this paper we have 
used motion JPEG to compress the dataset, as it is a widespread 
approach in low latency application, however M-JPEG is best 
suited for videos with low-complexity, and achievable 
compression rates are lower with respect to other methods (e.g. 
MPEG). Therefore, we are also currently evaluating other 
compression techniques and their suitability/adaptability for 
highly dynamic and crowded automotive scenarios. 

This work aims to pave the way to a holistic approach to the 
perception sensor data conundrum in automated vehicles, 
considering vehicle sensor fusion architecture and where it is 
convenient to process or pre-process data. From one side there is 
the need to collect the information of the vehicle surrounding 
environment with rich details and enough redundancy to support 
the higher levels of autonomy, and from the other side there is 
the need to transmit these data with low latency, without 
dramatically and impractically increasing the cost and power 
needed for storage, transmission and elaboration. Furthermore, 
this paper is focused specifically on data produced by sensors in 
AVs and ADAS functions, however big data transmission, 
storage and compression is becoming a troublesome issue in 
several fields, e.g. robotics, manufacturing, biostatistics, etc., 
and we expect that this work will influence the approaches to 
data pre-processing in numerous fields.   

Figure 5. (a) Recall values (dashed lines) and (b) average precision 
(continuous lines) as a function of the size of the dataset used to re-train 
the NN for different sizes of the transmitted data (different colours).  
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