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Abstract
In this article we show the change in paradigm occurred in

color constancy algorithms: from a pre-processing step in image
understanding, to the exploitation of image understanding and
computer vision results and techniques. Since color constancy is
an ill-posed problem, we give an overview of the assumptions on
which classical color constancy algorithms are based in order
to solve it. Then, we chronologically review the color constancy
algorithms that exploit results and techniques borrowed from the
image understanding research field in order to exploit assump-
tions that could be met in a larger number of images.

Introduction
The observed color of the objects in the scene depends on

the surface spectral reflectance of the object, on the illumination,
on their relative positions, and on the observer characteristics.
Many computer vision problems both in the image and video
domain where color is an important feature for distinguishing
objects such as visual recognition [16], surveillance [22], image
manipulation detection [35] etc., make or can make use of color
constancy processing as a pre-processing step in order to guar-
antee that the recorded color of the objects in the scene does not
change when the illumination conditions vary.

Despite its apparent simplicity, being able to estimate the
color of the illuminant in the scene solely from the image data is
a very challenging problem for both human and computer vision
systems [26, 21], in fact many algorithms are explicitly inspired
by the mechanisms of human vision [39, 23, 1, 24]. Computa-
tional color constancy is a two-stage operation: the former is de-
voted to the estimation of the color of the scene illuminant from
the image data, the latter corrects the image on the basis of this
estimate to generate a new image of the scene as if it was taken
under a reference illuminant. While the second one is gener-
ally performed using the diagonal von Kries model [30], the first
one addresses a severely ill-posed problem as its solution lacks
uniqueness or stability. To cope with this problem, many color
constancy solutions in the state of the art exploit some assump-
tions about the statistical properties of the expected illuminants
and/or of the objects reflectances in the scene.

With the aim of providing more robust assumptions, in the
last years more and more color constancy algorithms have started
to exploit computer vision techniques and results.

The aim of this paper is to provide a chronological overview
of this last category of algorithms showing the different computer
vision techniques exploited to obtain robust color constancy al-
gorithms. A graphical representation of the timeline representing
the change in the paradigm of the color constancy algorithms,
from the use of color constancy for image understanding to the
use of image understanding techniques for the design of more
robust color constancy algorithms is reported in Figure 1.

Color constancy for image understanding
As previously said in the Introduction, illuminant estima-

tion is a severely ill-posed problem, and traditional color con-

stancy algorithms need to exploit some assumptions in order to
find a solution to this problem. In this section we will review the
assumptions on which the so-called statistics-based approaches
are based.

Statistics-based approaches
Early color constancy algorithms, often referred to as

statistics-based approaches, exploit assumptions about the statis-
tical properties of the expected illuminants and/or of the object
reflectances in the scene. For example, the Grey World (GW)
algorithm [13], is based on the assumption that the average re-
flectance in a scene is achromatic, and estimates the color of the
illuminant in the scene as the deviation from this hypothesis.

The White Point (WP) algorithm [31], also known as Max-
imum RGB, is based on the assumption that the maximum re-
flectance in a scene is achromatic. Therefore it estimates the
color of the illuminant in the scene as the maximum value in
the image in the three channels separately.

The Shades of Gray (SoG) algorithm [20], is based on the
assumption that the n− th Minkowski norm of a scene is achro-
matic.

The General Grey World (gGW) algorthm [2], is based on
the assumption that the n− th Minkowski norm of a scene after
the application of a smoothing filter is achromatic.

The first order Gray Edge (GE1) algorithm [37], is based on
the assumption that the n− th Minkowski norm of the first order
derivative in a scene is achromatic.

The second order Gray Edge (GE2) algorithm [37], is based
on the assumption that the th Minkowski norm of the second or-
der derivative in a scene is achromatic.

Image understanding for color constancy
As seen in the previous section, the hypotheses on which

traditional color constancy algorithms rely are simple, and when
they are not met, the algorithms can badly fail. In order to cre-
ate more robust algorithms, some authors have started to employ
computer vision results and techniques in order to exploit as-
sumptions that could be met in a larger number of images. This
section chronologically introduces such algorithms.

Exploiting high level visual information
Van De Weijer et al. [38] in 2007 proposed the use of high-

level visual information to select the most plausible illuminant
out of a set of possible illuminants. They achieved this by re-
stating the problem in terms of semantic interpretability of the
image. The idea is that the illuminant which results in the most
likely image interpretation is the more likely to be correct. Image
interpretation is meant in terms of semantics: an image where the
sky is blue and located in the top of the image, and the road is
grey and located in the bottom, can be considered more likely
than an image with purple grass surrounding a reddish cow.

In their work they applied to the input image several color
constancy methods in order to generate a set of illuminant hy-
potheses. For each generated illuminant hypothesis, they correct
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Figure 1. Timeline representing the change in the paradigm of the color constancy algorithms: from the use of color constancy for image understanding to

the used of image understanding techniques for the design of more robust color constancy algorithms.

the image, and evaluate the likelihood of the semantic content of
the corrected image. Finally, the most likely illuminant color is
selected.

In addition, they extend the set of illuminant hypotheses
with a set of top-down hypotheses based on the assumption that
the average reflectance of semantic classes in an image is equal
to the average reflectance of the semantic topic in the database.
For each of the semantic classes present in the image they com-
pute the illuminant which transforms the pixels assigned to this
class in such a way that the average reflectance is in accordance
with the average color of the class in the database. For example,
a patch of grass which turned reddish in the evening light, will
correctly hypothesize a red illuminant, since such an illuminant
will transform it to green under white light.

Exploiting indoor-outdoor image classification
Bianco et al. [12] in 2008 investigated the idea that the ef-

fectiveness of automatic illuminant estimation techniques may
be improved if information about the content of the images is
taken into account. To this end, they designed an illuminant esti-
mation approach which exploits the information provided by an
image classifier. As suggested by Szummer and Picard [36], they
considered the indoor and outdoor classes, which correspond to
categories of images with different content, usually taken under
different illumination conditions. Therefore their assumption is
that these two classes of images may require different color pro-
cessing procedures.

They describe each image by a set of low-level features re-
lated to color, texture, and edge distribution. The extracted fea-
tures are stacked in a feature vector and fed to a decision forest
trained to distinguish between indoor and outdoor images. In-
formation about color distribution is captured by spatial color
moments: they transform the image into the YCbCr color space,
divide it into seven horizontal bands, and compute the mean and
the standard deviation of each of the three color bands. Since
the YCbCr color space decorrelates luminance and chrominance
components, it is commonly used in image classification tasks.
The subdivision in horizontal bands adequately describes some
characteristics which are very useful for indoor/outdoor classifi-
cation (images with blue sky in the upper part, or green grass in
the lower part ). Color moments are less useful when the bands
contain heterogeneous color regions. Therefore, a global color
histogram has been selected as a second color feature. The RGB
color space has been subdivided in 27 bins by a uniform quanti-
zation of each component in three ranges. To describe the most

salient edges they used an 18 bin edge direction histogram (ten
degrees for each bin): the gradient of the luminance image is
computed using Gaussian derivative filters tuned to retain only
the major edges. Only the points for which the magnitude of the
gradient exceeds a set threshold contribute to the histogram. Tex-
ture information is extracted computing a set of features based
on a multiresolution analysis. A three level wavelet transform
of the luminance image is computed, yielding to ten different
sub-bands. For each band, they compute the average absolute
value of the coefficients and their standard deviation. Therefore
each image is described by a feature vector of 107 components.
For classification, they used decision trees built according to the
CART methodology.

Exploiting image 3D stage geometry classifica-
tion

Lu et al. [32] in 2009 exploited 3D geometry models to de-
termine which color constancy method to use for the different
geometrical regions found in images. To this end, they first clas-
sify images into stages, i.e. rough 3D geometry models. Accord-
ing to the stage models, images are divided into different regions
using hard and soft segmentation. After that, the best color con-
stancy algorithm is selected for each geometry segment. As a
result, light source estimation is tuned to the global scene geom-
etry. Their algorithm opens the possibility to estimate the remote
scene illumination color, by distinguishing nearby light source
from distant illuminants.

From the typical 3D scene geometries, i.e. stages, proposed
in [33], the authors selected 13 different stages corresponding to
the typical 3D geometrical models of the scenes occurring in the
considered color constancy dataset.

The image description is based on the Bag-of-words repre-
sentation, using as a visual descriptor a color modification of the
SIFT descriptor. scene categorization. The classifier adopted is a
1-vs-all SVM classifier with a χ2 kernel.

Directly exploiting image features
In order to bypass the manual definition of the image classes

that may need a different correction, Bianco et al. [11] and Gi-
jsenij et al. [25] independently tried in 2010 to directly predict
the best algorithm to use on the input image.

More in detail, they investigated if it is possible to automat-
ically derive the suitability of an illuminant estimation algorithm
for a given image by analyzing a set of visual features. Given
a set of illuminant estimation algorithms, their frameworks de-
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termine how the estimation of the illuminant of a given image
should be computed.

In [11] the prediction of the suitability of each algorithm
is carried out by an image classifier based on an ensemble of
decision trees trained to identify the best algorithm in the con-
sidered set, on the basis of the values of a set of low-level visual
features. These features for the most part are general-purpose
features taken from the pattern recognition and image analysis
fields. The remaining features were instead specifically designed
for the illuminant estimation problem.

Since an image conveys information at different levels, in
order to capture most of the image information, they use differ-
ent features at the same time in order to have multiple representa-
tions which characterize the content from different perspectives.
To describe the image content they considered two groups of low
level features: general-purpose features and problem-dependent
features. The general-purpose features are features that can be
used on a large range of applications since they do not capture
characteristic of the images that are problem specific. The fea-
tures in this category that they selected are: color histogram,
edge direction histogram, statistics on the wavelet coefficients,
and color moments. The problem-dependent features they chose
are: the number of different colors contained in the image, the
percentage of color components that are clipped to the highest or
lowest value that can be represented in the image color space, a
cast index representing the extent of the presence of a color cast
in the image, and the magnitudes of the edges.

Exploiting face detection
Inspired by the robustness and efficiency of face detectors

Bianco and Schettini [10] in 2012 proposed a fully automatic
method to exploit the skin color extracted from detected faces to
estimate the illuminant in the scene. The method was further ex-
tended in 2014 [9] to cope also with multiple illuminants. Their
method is based on three assumptions:

- skin colors form a sufficiently compact cluster in the color
space in order to represent a valid clue for illuminant esti-
mation [27];

- the illumination on each face is uniform;
- the illumination estimated on the faces properly samples

the illumination distribution in the scene.

They conducted a preliminary analysis showing that by gen-
erating different queries on Flickr (http://www.flickr.com/) using
very generic tags such as cameras and mobile phones manufac-
turers, among 30% and 60% of the returned images were por-
traits or included faces. More specific queries such as party, fam-
ily, birthday, holiday, etc. usually contain a much higher number
of faces. They also showed that using skin color for illuminant
estimation is statistically equivalent to having a neutral patch in
the image.

The first step in their method consists in running the face
detector module on the input image to detect any faces. If no
faces are detected, the input image may be processed with any
other state-of-the-art illuminant estimation algorithm. If one or
more faces are detected, a skin detection module [8] is run on the
detected faces to filter out any non-skin and unreliable pixels. A
local illuminant estimation is performed on the detected skin pix-
els of each face. If the maximum distance among the estimations
on the different faces is lower than a fixed threshold, the local
estimates are combined into a unique global illuminant estimate;
otherwise the single face estimates are propagated to the rest of
the image to give a local illuminant estimate for each pixel of the
image.

Exploiting deep learning
Bianco et al. [6] in 2015 inspired by the success obtained by

deep neural networks outperforming state-of-the-art approaches
on various computer vision tasks, were the first to apply such
techniques to color constancy.

They tried two different approaches: in the first one they
extracted the 4096-dimensional feature vector from each image
using a CNN trained on a large dataset (ILSVRC 2012) with
image-level annotations to classify images into 1000 different
classes; the extracted features are then used as input to a linear
Support Vector Regressor (SVR) to estimate the illuminant color
for each image. In the second approach they designed an ad-hoc
CNN working on small image patches. This particularity led to
its extension to estimate multiple illuminants [7]. Interestingly,
in their analysis they showed that some neurons of their trained
network behave like already existing methods in the state of the
art: for instance, some neurons seem to fire on image edges (fea-
ture exploited for example by [37]), some neurons on highlights
(feature related to the assumption exploited in [31]), some neu-
rons on sky and bluish texture, some on vegetation and greenish
texture (reminding the features exploited in [38]), and some on
skin and orange/reddish texture (reminding the use of faces and
skin in [10, 9]).

More recent approaches try to exploit the power of different
deep learning architectures, such as for example Generative Ad-
versarial Networks (GANs) [17, 15], or use different modules,
such as for example Attention [29, 40].

Exploiting object recognition
Buzzelli et al. [14] in 2018 investigated to what extent one

can learn illuminant estimation as a byproduct of an independent
auxiliary task. In their work they consider object recognition.

In their work they describe a training process which uses
only the labels for the auxiliary task but no illuminant ground
truth whatsoever. During training, the input image first passes
through an illuminant estimation network, which estimates the
scene illuminant and corrects the image accordingly. The illu-
minant corrected image is then processed by an object classifi-
cation network, which produces an estimation of the classes that
are present in the image. By training both networks in an end-
to-end fashion, they show how they can effectively train the illu-
minant estimation network without any illuminant ground truth.
After the training is complete, this illuminant estimation network
can then be independently applied to any other dataset, such as
standard color constancy benchmarks, simply removing the ob-
ject recognition network. Their method is particularly interest-
ing since it is the first learned method for illuminant estimation
which does not require illuminant annotations, an idea that has
been further developed in [5].

Other approaches
Some researchers have reformulated the problem of illumi-

nant estimation as a 2D spatial localization task in a chromaticity
space [3, 4], thereby allowing them to apply techniques from ob-
ject detection and structured prediction to the color constancy
problem.

It is also worth mentioning that in parallel with the develop-
ment of methods that employ computer vision results and tech-
niques to obtain robust illuminant estimates, some authors de-
signed alternative methods reaching competitive results. For ex-
ample [19] obtained good results using a fixed bias correction of
simple statistics-based approaches.
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Future directions
In this article we showed the change in paradigm that oc-

curred in color constancy algorithms. At the beginning color
constancy was commonly used as a pre-processing step to help
improving the performance of image understanding tasks. More
recently instead, color constancy has started to exploit the suc-
cessful results obtained in image understanding and computer vi-
sion in general to create more robust color constancy algorithms,
as is it also evident from the trends of the methods that partici-
pated in very recent illuminant estimation challenges [18].

The development of robust color constancy algorithms able
to cope with all the conditions that may occur in digital photog-
raphy is very important, since color constancy is also a crucial
step in the processing pipeline of digital cameras.

Furthermore we believe that this is a very promising re-
search direction, that in the future will continue to exploit the
recent successes in the image understanding field, such as for
example the depth and 3D information, that have been experi-
mentally proven to enable a better color constancy performance
in human observers [28].

Another research direction that could be investigated is the
exploitation of video understanding techniques to extend color
constancy also to the video domain [34], and to the multispectral
domain.
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