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Abstract
Blind assessment of video quality is a widely covered topic

in computer vision. In this work, we perform an analysis of how
much the effectiveness of some of the current No-Reference VQA
(NR-VQA) methods varies with respect to specific types of scenes.
To this end, we automatically annotated the videos from two
video quality datasets with user-generated videos whose content
is unknown and then estimated the correlation for the different
categories of scenes. The results of the analysis highlight that the
prediction errors are not equally distributed among the different
categories of scenes and indirectly suggest what next generation
NR-VQA methods should take into account and model.

Introduction
Video Quality Assessment (VQA) is one of the most im-

portant tasks in video analysis. VQA methods attempt to evalu-
ate perceptual degradations (introduced by signal processing and
transmission operations) on video sequences to calculate a qual-
ity score. The quality score should reflect the concept of quality
as perceived by human observers [27]. The perceived quality is
usually expressed in terms of Mean Opinion Scores (MOSs) that
are collected thanks to subjective studies during which naive or
expert evaluators are asked to grade various aspects of the pre-
sented stimuli.

The evaluation of stimuli depends on human visual percep-
tion. It has complex mechanisms that are influenced by both in-
ternal and external factors. Many of these factors are content-
specific, meaning that the content of the presented stimulus in-
fluences the evaluators’ judgment when assessing stimulus prop-
erties [17]. For example: certain video content can induce a
high level of emotional arousal and this influences the quality
judgment [8]; video content genres recognized by the evalua-
tors are penalized in terms of evaluation compared to unpub-
lished/unrecognized contents [11]. Gulliver et al. [9] discovered
that the content of a video sequence has a more significant effect
on a user’s level of information transfer than either the frame rate
or display device type. On the other hand, spatial and temporal
impairments are peculiar to the type of content. For example,
in sports scenes it is common to encounter widely diverse levels
of motion (motion blur, camera motion and in-frame motion), in
indoor or evening outdoor scenes it is common to have low-light
effects including blur and graininess, resolution and compression
artifacts, diverse defocus blurs, and complicated combinations of
all of these.

For images, scene and object categories have been shown
to influence human judgments of visual quality for JPEG com-
pressed and blurred images [23]. Two compressed images with
the same compression ratio may have a different subjective qual-
ity if they contain different scenes [26]. A similar content de-
pendency can be found in the subjective quality assessment of
compressed videos [17].

Table 1: Characteristics of user-generated content datasets for
video quality assessment. In the column Device types: “DSLR”
stands for Digital single lens reflex.

Attribute/Database KoNViD-1k [10] LIVE-VQC [24]
Year 2017 2018
No. of sequence 1200 585
No. of devices N/A 101
Device types DSLR smartphone
Duration 8s 10s
Resolution 540p various
Frame rate 30 N/A
Format MPEG-4 N/A
Rating per video 50 >200
MOS range 1.22–4.64 0–100

Based on previous knowledge, recent state-of-the-art VQA
methods encode semantic information of video frames for video
quality assessment in order to reduce the gap with human per-
ception [15, 1, 2, 28]. Siahaan et al. [23] demonstrate that image
regions presenting clear semantic information are more sensitive
to the presence of impairments, consequently they may be judged
more annoying by humans as they hinder the content recognition.

In this paper, we take a deeper look at performance of some
of the current No-Reference VQA (NR-VQA) methods. Specif-
ically, we measure how much performance varies with respect
to specific types of scenes. For this analysis we consider two
datasets containing user-generated videos that are widely used
for evaluating NR-VQA methods, namely KoNViD-1k [10] and
LIVE-VQC [24]. These datasets do not provide any knowl-
edge about the video content, thus we automatically annotate
the videos and group them according to several scene categories
taken from the SUN dataset [29]. The results of the analysis
show that the prediction errors are not equally distributed among
the different categories of scenes.

User-generated Video Quality Datasets
We conduct our analysis on two representative datasets con-

taining User-Generated Content (UGC), namely the Konstanz
Natural Video Database (KoNViD-1k) [10] and the LIVE Video
Quality Challenge Database (LIVE-VQC) [24]. Differently from
other state-of-the-art datasets for NR-VQA (e.g. CVD2014
[19] and LIVE-Qualcomm [7]), KoNViD-1k and LIVE-VQC
databases have a high number of videos diverse in terms of con-
tent and affected by mixtures of genuine artifacts.

The KoNViD-1k database contains 1200 videos of resolu-
tion 960×540 sampled according to six specific attributes from
the YFCC100M dataset [25]. The resulting database contains
video sequences of 8 seconds with a wide variety of contents and
authentic distortions. The MOS have been collected through a
crowdsourcing experiment and ranges from 1.22 to 4.64. The
LIVE Video Quality Challenge (LIVE-VQC) database contains
585 videos of unique content, captured by 101 different devices
(the majority of these were smartphones), with a wide range of
complex authentic distortions. Videos are on average 10 seconds
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Table 2: List of the 16 basic-level categories provided with the
SUN397 dataset.

ID Category name ID Category name
0 shopping and dining 8 forest, field, jungle
1 workplace (office building,

factory, lab, etc.)
9 man-made elements

2 home or hotel 10 transportation (roads, parking,
bridges, boats, airports, etc.)

3 transportation (vehicle interiors,
stations, etc.)

11 cultural or historical
building/place (military, religious)

4 sports and leisure 12 sports fields, parks, leisure spaces
5 cultural (art, education, religion,

military, law, politics, etc.)
13 industrial and construction

6 water, ice, snow 14 houses, cabins, gardens, and farms
7 mountains, hills, desert, sky 15 commercial buildings, shops,

markets, cities, and towns

Table 3: MobileNet-v2 architecture. Each line describes a se-
quence of 1 or more identical layers, repeated n times. All layers
in the same sequence have the same number c of output channels.
The first layer of each sequence has a stride s and all others use
stride 1. t represents the expansion factor.

Input Operator t c n s
224×224×3 conv2d - 32 1 2
112×112×32 bottleneck 1 16 1 1
112×112×16 bottleneck 6 24 2 2
56×56×24 bottleneck 6 32 3 2
28×28×32 bottleneck 6 64 4 2
28×28×64 bottleneck 6 96 3 1
14×14×96 bottleneck 6 160 3 2
7×7×160 bottleneck 6 320 1 1
7×7×320 conv2d 1x1 - 1280 1 1

7×7×1280 avgpool 7x7 - - 1 -
1×1×1280 conv2d 1x1 - n classes - -

long and have variable resolutions, but most videos have reso-
lution equal to 404× 720, 1024× 720, and 1920× 1080 pixels.
Subjective video quality scores have been collected via crowd-
sourcing: a total of 4776 unique participants produced more than
205,000 opinion scores. MOSs span between 0 and 100.

Table 1 details the characteristics of the two databases.

Video Scene Annotation by Frame Tagging
As far as we know, there is no method for scene recognition

in videos. This section describes the data and procedure used to
create the video scene annotation model for the videos of the two
considered UGC datasets.

Scene UNderstanding (SUN) [29] is a scene categorization
database. Two versions of the database are available (i) the first
consists of 899 categories and 130,519 images, and (ii) the sec-
ond consists of 397 well-sampled categories (each category has
at least 100 images) and 108,754 sub-sampled images. The au-
thors also propose a 3-level tree: 899 or 397 leaf nodes represent-
ing the SUN categories are connected to 16 parent nodes at the
second level (basic-level categories), the latter are in turn con-
nected to 3 nodes at the first level (super-ordinate categories). In
this work we consider the 108,754 images belonging to the sub-
set of 397 well-sampled categories (known as SUN397) and the
list of 16 basic-level categories that are shown in Table 2.

Scene image recognition model
The training stage on the SUN397 database is performed

using a MobileNet-v2 architecture [22] (see the CNN architec-
ture in Table 3) pre-trained on the Imagenet database [5]. The
original classification layer having a number of output channels
n classes equal to 1000 is replaced by another layer having c

equal to 16 channels, i.e. the number of the basic-level categories
of SUN397. The dataset images are random shuffled and split
into 80% for training and the remaining 20% for testing. Dur-
ing training each image is random horizontally flipped, resized
to 256× 256 pixels and then central cropped to 224× 224 pix-
els before feeding the batch of 32 images to the network. Given
that SUN categories are not mutually exclusive, for training the
model we exploited the binary cross-entropy loss, LBCE :

LBCE =
1
N

N

∑
i=1

yilogσ(xi)+(1− yi)log(1−σ(xi)), (1)

where N is the number of samples in the batch, σ is the sigmoid
function, xi is the predicted logit, and yi is the ground-truth that
is either 0 or 1.

The whole train process is conducted in PyTorch framework
[20] and is performed using the Adam optimizer with fixed learn-
ing rate equal to 0.0001, and it is stopped at the 15th epoch ob-
taining a Matthews Correlation Coefficient (MCC) of 0.77 on the
test set. The MCC ranges in the interval [-1,+1], with +1 repre-
senting the perfect classification and is defined as follows:

MCC =
T P ·T N −FN ·FN√

(T P+FP) · (T P+FN) · (T N +FP) · (T N +FN)
(2)

where T P, FP, T N and FN are respectively the number of true
positive, false positive, true negative, and false negative. It has
been demonstrated to be more reliable than accuracy and F1-
score especially on imbalanced datasets [4].

Video annotation
We annotate the videos of the considered UGC datasets

by using the previously described model. Given a video, we
independently process each frame. Following the same pre-
processing for image recognition on ImageNet [13], we first re-
size the frame to a fixed size of 256×256 pixels, then we center
crop to 224 × 224 pixels and fed the CNN model. The CNN
model predicts the probability of occurrence for each of the 16
scene categories. We repeat this process for each frame until we
gather all the frame-level predictions.

Frame-level predictions are aggregated into a video-level
prediction by averaging the predictions for all the video frames.
Predictions over the threshold 0.5 are used for tagging the video.
Figure 1 reports a video frame belonging to a video annotated
for each category. Most of the videos for both datasets, namely
465 videos from KoNViD-1k and 243 videos from LIVE-VQC
dataset, are not assigned to any category by the proposed classi-
fier. They are therefore attributed to the category we call “Un-
known”. These results are mainly motivated by the fact that the
impairment affecting the video is too high to understand what
the scene portrays (see Fig. 2). In Figure 3 is reported the num-
ber of videos that belong to one of the 16 categories. Among
these videos about 18% of LIVE-VQC contains scenes of “water,
ice, snow”. In KoNViD-1k most of the videos have been tagged
with these three categories: “cultural”, “water, ice, snow”, and
“mountains, hills, desert sky”. The category of scenes that is
less represented in both datasets (only a total of 6 videos) is the
“industrial and construction”.

We analyze the agreement between the frame-level predic-
tions of the same video. This can tell us if the predictions of the
proposed model for video tagging are noisy and random. In a
broader sense, this analysis can verify if the content of a video is
maintained over time and therefore if a scene tag is representative
of the entire video. To this end, we compute the standard devia-
tion of the frame-level predictions. We then estimate the amount
of video with predictions having the standard deviation between
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0 - shopping and
dining 1 - workplace 2 - home or hotel 3 - transportation 4 - sports and

leisure 5 - cultural 6 - water, ice,
snow

7 - mountains,
hills, desert, sky

8 - forest, field,
jungle

9 - man-made
elements 10 - transportation

11 - cultural or
historical

building/place

12 - sports fields,
parks,

leisure spaces

13 - industrial
and

construction

14 - houses,
cabins, gardens,

and farms

15 - commercial
buildings,

shops, markets,
cities, and towns

Figure 1: Sample videos tagged by the semantic annotation method for each of the 16 categories.

Figure 2: Sample videos that do not belong to anyone of the 16
basic-level categories of the SUN dataset.

frames with respect to five different confidence intervals, i.e.
[0.00 − 0.10), [0.10 − 0.20), [0.20 − 0.30), [0.30 − 0.40), and
[0.40−+∞). Several considerations can be made by analyzing
the plot in Figure 4. First, since only about 4% of the predictions
have a standard deviation equal or greater than 0.40, we can de-
duce that there is a high agreement between the predictions of
the different frames. Second, about 30% of the video predic-
tions for both datasets have a standard deviation between frames
in the range [0.20− 0.30). This means that the predictions be-
tween frames are very consistent. Third, LIVE-VQC have many
predictions with high standard deviations, which means that the
tagging is probably not as accurate as that of KoNViD-1k.

Experimental results
Current state-of-the-art VQA methods can be grouped into

those that (i) measure video quality in terms of deviation from
Natural Scene Statistics (NSS) [21, 6, 18], (ii) exploit hand-
crafted features for modeling spatial and temporal distortions
[14, 12, 30], (iii) model semantics and distortions using CNNs
[2, 15, 28]. For our analysis we sample a method representa-
tive from each category, namely V-BLIINDS [21] for NSS-based
methods, TLVQM [12] for hand-crafted methods, and Agarla et
al. [2] for CNN-based methods.

Pearson’s Linear Correlation Coefficient (PLCC) and Spear-
man’s Rank-order Correlation Coefficient (SROCC) are used as
evaluation metrics. The evaluation protocol consists in running
100 times the random selection of 80% of training videos and
20% testing videos. We exploit the same 100 splits used in [1]
and run the original source code with the default parameters of
each method. In Table 4 and 5 are presented the overall perfor-
mance of the selected methods on KoNViD-1k and LIVE-VQC,
respectively. As it is possible to see, Agarla et al. achieved the
best performance on KoNViD-1k, while on LIVE-VQC the cor-
relation between Agarla et al. and TLVQM is equivalent.

The performance of the methods with respect to the scene
categories are obtained as follows: for each video, the predictions
obtained in the iterations in which the video falls within the test

Table 4: Overall performance on KoNViD-1k. Mean PLCC,
SROCC, and RMSE across 100 train–test are reported.

Method PLCC SROCC RMSE
Agarla et al. [2] 0.79 0.78 0.40
TLVQM [12] 0.76 0.76 0.42
V-BLIINDS [21] 0.64 0.65 0.49

Table 5: Overall performance on LIVE-VQC. Mean PLCC,
SROCC, and RMSE across 100 train–test are reported.

Method PLCC SROCC RMSE
Agarla et al. [2] 0.78 0.74 10.85
TLVQM [12] 0.78 0.78 10.75
V-BLIINDS [21] 0.72 0.69 11.76

split are averaged, then the correlations for each scene category
are calculated for the videos that belong to it.

Figure 5 shows the correlations for each scene category on
KoNViD-1k (categories 13 and 14 are missed due to the low
number of videos). It is possible to see that V-BLIINDS achieves
the worst performance for all scene types and a negative corre-
lation is obtained for the scene category 3 “transportation”. All
methods attain the highest correlation for the scene category 2
“home or hotel”. The lowest correlation is obtained for videos
labeled as “10 - transportation” and for category 11 “cultural
or historical” Agarla et al. is the only method obtaining a high
correlation. For scene category 9, TLVQM achieves better per-
formance than Agarla et al. . Figure 6 reports correlations on
LIVE-VQC. In this dataset only 4 videos have been tagged as
“industrial and construction”, so the correlation for this class
is not estimated. Differently from KoNViD-1k performance of
TLVQM are comparable to those of Agarla et al. for all scene
categories, V-BLIINDS still achieves the worst performance and
on categories 6 and 9 obtains negative PLCC and SROCC. As
on KoNViD-1k, all methods achieve excellent performance for
the category 2. Finally, TLVQM clearly outperforms Agarla et
al. for category 10. To summarize, the performance of methods
varies according to scene type. V-BLIINDS [21], which was de-
signed for quality estimation on legacy NR-VQA datasets having
a reduced number of scenes and distortions, achieves the worst
performance for all scene categories. TLVQM [12] and Agarla et
al. [2] which have been designed for UGC datasets achieve the
best performance.

Conclusions
In this paper, we have presented an analysis of how much

the effectiveness of some of the representative No-Reference
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Figure 3: Percentage of video for KoNViD-1k and LIVE-VQC for each of the 16 basic-level categories of the SUN dataset.
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Figure 4: Percentage of predictions with respect to the standard
deviation of frame-level predictions.
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Figure 5: PLCC (a) and SROCC (b) across all basic-level cat-
egories on the KoNViD-1k database. Categories 13 “industrial
and construction” and 14 “houses, cabins, gardens and farms”
are removed due to the low number of examples (i.e. 2 and 4, re-
spectively). The “Unknown” category ID is for videos that have
not been tagged by our annotation method.
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Figure 6: PLCC (a) and SROCC (b) across all basic-level cat-
egories on LIVE-VQC dataset. Due to time constraints, V-
BLIINDS input is resized to (400× 500)px. The category 13
“industrial and construction” is removed due to the low number
of examples (4).

VQA (NR-VQA) methods varies concerning the type of scenes.
Since the scene information contained in each video is not known
we have trained a model for the recognition of scenes in images
and adapted it for the annotation of the videos. The videos are
grouped with respect to the scenes they contain according to the
16 basic-level categories of SUN397, so three NR-VQA methods
have been used to estimate the quality score of each video. For
each method, the correlation between the quality scores and the
MOS is estimated for each scene category.

The results obtained by the three NR-VQA methods for
each scene confirm that video quality assessment is highly do-
main dependent and that some categories of scenes are more
challenging than others. New generation NR-VQA methods will
certainly not only have to model the distortions that occur within
the video but also improve scene/content understanding. For this
reason, our plan is to investigate content-oriented methods as al-
ready done in other fields [16, 3].
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