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Abstract
Exposure problems, due to standard camera sensor limita-

tions, often lead to image quality degradations such as loss of de-
tails and change in color appearance. The quality degradations
further hiders the performances of imaging and computer vision
applications. Therefore, the reconstruction and enhancement of
uder- and over-exposed images is essential for various applica-
tions. Accordingly, an increasing number of conventional and
deep learning reconstruction approaches have been introduced
in recent years. Most conventional methods follow color imag-
ing pipeline, which strongly emphasize on the reconstructed color
and content accuracy. The deep learning (DL) approaches have
conversely shown stronger capability on recovering lost details.
However, the design of most DL architectures and objective func-
tions don’t take color fidelity into consideration and, hence, the
analysis of existing DL methods with respect to color and con-
tent fidelity will be pertinent. Accordingly, this work presents
performance evaluation and results of recent DL based over-
exposure reconstruction solutions. For the evaluation, various
datasets from related research domains were merged and two gen-
erative adversarial networks (GAN) based models were addition-
ally adopted for tone mapping application scenario. Overall re-
sults show various limitations, mainly for severely over-exposed
contents, and a promising potential for DL approaches, GAN, to
reconstruct details and appearance.

Introduction
Standard dynamic range (SDR) color images and videos

mostly deteriorate from under- and over-exposure problems. Cur-

rently, exposure problems arise from camera sensor limitations,

unprofessional acquisition setups, post processing for display re-

ferred content formats, and related other factors [1, 2, 3]. These

situations usually lead to quality degradation such as loss of de-

tails, color clipping, saturation, and hue changes, as well as vis-

ibility/contrast reduction. Appearance changes due to such qual-

ity degradations further disrupt the artistic intent and put addi-

tional hurdle on other applications such as computer vision and

robotics. Hence, for accurate appearance reproduction as well as

scene content analysis, quality enhancement of ill-exposed con-

tents is highly essential [1, 4].

The enhancement of appearance degradation, due to one or

two channels camera sensor clipping or application of tone map-

ping, have been addressed with state-of-the-art techniques such

as propagation of data from well-exposed image regions and/or

color channels. Statistical and probabilistic corrections of pixel

values in different perceptual color spaces were also utilized. In

some of the proposed enhancement techniques, for example, lu-

minance or chrominance gradients as well as RGB channel spatial

variation patters were propagated from the well-exposed parts of

the degraded images in a gradient domain and sRGB spaces. The

methods mostly rely on the assumption of strong spatial and color

channel correlations of natural image contents [5, 6, 7]. Other re-

lated methods utilized perceptual color spaces to adjust degraded

perceptual attributes (such as chroma and hue) for color clipped

pixels in ill-exposed image regions [8, 9].

In case of over-exposed contents, where information is lost

in all color channels, image reconstruction techniques such as his-

togram equalization, tone adjustments, inpainting based content

hallucination, brightness enhancement using image pyramids, and

utilization of RGB image channels’ spatial correlation were ap-

plied [10, 11, 12, 13, 1]. Such techniques also are designed to

fill lost details in the over-exposed image regions with informa-

tion extracted from correlated and well-exposed image regions,

and to adjust the intensity distributions of image pixels for better

visibility and contrast. However, the conventional computer vi-

sion techniques generally showed limited capabilities to recover

severely over-exposed contents [1]. Recreating lost details from a

single image and with no other well-exposed and correlated image

regions requires more advanced machine learning and optimiza-

tion approaches.

The recent advances of DL based approaches brought more

capacity and hope in this regard. Accordingly, few DL based

under- and over-exposure enhancement methods were introduced

recently. The methods mostly utilized convolutional neural net-

work (CNN) based autoencoder architectures and Laplacian pyra-

mid decompositions techniques [14, 15, 16, 17, 18]. Even if the

content reconstruction ability of DL methods (given a proper data

set) is robust, the color and content fidelity of the results is not

primarily guaranteed. However, for applications like color image

reproduction and high dynamic range (HDR) imaging, the repro-

duction quality of scene appearance and artistic intent is highly

relevant, and the results of the DL methods need to be investi-

gated accordingly.

Consequently, a concise evaluation of the few openly avail-

able DL approaches for over-exposure correction is presented in

this work. The cycleGAN and Pix2Pix implementation of Jun-

Yan Zhu et. al. [19, 20] DL models are also adopted, trained,

and evaluated for this scenario, with a newly constructed over-

exposure data set. The analysis results indicate the improved per-

formances of generative models compared to the ones with the

simple encoder-decoder CNN architectures. Conversely, consid-

ering color fidelity, higher inaccuracy was observed for all the as-

sessed models in the extreme cases of scene dynamic ranges and

severely over-exposed images. The inaccuracy is mainly resulted

from the nature of the network architecture, objective functions

and data set related issues. The details of the DL models, the

evaluation methodology as well as the evaluation results of this

work are provided in the following sections.
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Deep Learning Based Over-exposure En-
hancement

Considering the enhancement of ill-exposed images applica-

tions, most proposed DL methods are intended for under-exposed

images [17, 18, 16]. However, in this study, only over-exposed

contents are considered, and only limited number of DL over-

exposure reconstruction solutions were available at the time of

writing. Mahmoud Afifi et. al. [15] recently proposed an over-

exposure correction method based on a concatenated encoder-

decoder UNet networks [21], processing different levels of the

Laplacian pyramid outputs of the input and reference images.

Other earlier methods again utilized auto-encoder and GAN based

approaches [15, 22, 14]. The proposed models are mainly trained

on paired data sets generated from raw-RGB (such as MIT-

Adobe FiveK data set [23, 15]) and multiple exposure based im-

ages [24, 17, 4]. This work evaluates the two CNN models of

Steffens et al. [22, 14] and my adaptations of two GAN architec-

tures [20, 19] for over-exposure enhancement, for their content

and color fidelity performances. Brief descriptions of the models

are given as follows.

ReExposeNet and UCan
Steffens et. al. proposed two DL models for over-exposure

correction with contrast enhancement [14] and luminance and

color correction [22]. Both models are designed similarly with a

memory optimized encoder-decoder type CNN architecture. For

memory optimization, they have used dilated convolution layers

with fewer dilation rate and Exponential Linear Unit (ELU) acti-

vation layers. To prevent loss of details and efficiency purposes,

strided convolution based spatial down- and up-sampling process

was applied rather than the common polling operations. The au-

thors also added the Structural Dissimilarity (DSSIM) metric to

the loss function (as shown in Eq. 1), which is mostly Pixel-wise

Euclidean Distance (L2) in other DL applications, for the network

to learn more high-level structural differences. The L2 distance is

also weighted according to the closeness of the image intensity to

the saturation point (b) of the camera sensor.

L(x,y) = λ |0.5−b|L2(x,y)+(1−λ )DSSIM(x,y) (1)

x,y,λ respectively represent the input image, ground truth image,

and a user defined parameter.

GANs: Generative adversarial networks
The application of the simple encoder-decoder CNN archi-

tectures and optimization processes with minimization of simple

and fixed pixel wise differences, usually result in less generaliz-

able models. The processed results of such models will also be

mostly blurred. GANs, however, can provide more robust and

generalizable adversarial models by utilizing a CNN discrimina-

tor network as a learning loss function [25]. Currently, there are

many variants of GANs but the basic framework of all mostly

consists of two CNN networks: a Generator G(x,z) for gener-

ating predictions (z) from the input latent distribution (x) and a

Discriminator D(y) to penalize and assess the predictions accord-

ing to the target ground truth (y). As such, most GANs do not

require paired data set training, providing semi-supervised learn-

ing opportunities. The training of such frameworks is mostly per-

formed by a min-max optimization formulation of their objective

function, which the generator needs to minimize while the dis-

criminator is maximizing it [25]. Since there are not any openly

available GANs proposed for over-exposed image enhancement

applications, by the time of writing, I have adapted and trained

two models (Pix2Pix and CycleGAN), which are originally pro-

posed for image-to-image translation applications [20, 19].

Pix2Pix
This model is a conditional version of GANs proposed by

Isola at. al. for image-to-image translation purposes [20]. The

model is designed to work with paired images data set with

encoder-decoder generator network. Different variations of this

network are implemented by Jun-Yan Zhu et. al. [19, 20], by

changing the generator architecture and loss functions. For this

work, the generator networks with a 256 layers Unet architecture

(referred as Pix2Pix1 in the evaluation section and Tab. 1) and

with a 128 layers Unet architecture (for Pix2Pix2 and Pix2Pix3

variants) are evaluated [21]. Similarly, two different conditional

loss functions used in the vanilla GAN and lsGAN architectures

are also evaluated with the Pix2Pix2 and Pix2Pix3 variants, re-

spectively.

The vanilla GAN conditional loss function (LcGAN(G,D)),
given in Eq. 2, contains a discriminator loss D(x,y) as a function

of both the input and ground truth image. The overall objective

function, G∗
L1 in Eq. 3, then combines the L1 norm of the differ-

ence between the generated and ground truth image, Eq. 4, as a

min-max optimization. On the other hand, to avoid the vanish-

ing gradient problem of such loss functions, lsGAN introduced a

least square formulation of the discriminator, Eq. 5, and gener-

ator, Eq. 6, loss functions separately. a,b are created labels for

fake and real samples, whereas c represents a sample for which

the generator wants the discriminator to identify as fake.

LcGAN(G,D)=Ex,y[logD(x,y)]+Ex,y[log(1−D(x,G(x,z)))] (2)

G∗
L1 = argmin

G
max

D
LcGAN(G(D))+λLL1(G) (3)

LL1(G) = Ex,y,z[‖y−G(x,z)‖1] (4)

argmin
D

LlsGAN(D) =0.5Ex,y[(D(x,y)–b)2]

+0.5Ex,y[(D(x,G(x,z))−a)2]
(5)

argmin
G

LlsGAN(G) = 0.5Ex,y[(D(x,G(x,z))− c)2] (6)

CycleGAN
In cases where there is a lack of paired data sets, the original

GAN architecture with semi-supervised learning is more appli-

cable [25]. Accordingly, CycleGAN is proposed for translating

information among unpaired image distributions [19]. Cycle-

GAN consists of two consecutive GANs (with similar architec-

ture and objective function as the original GAN [25]) to translate

the source to destination and the destination back to the source

images. CycleGAN additionally considers the similarity between

the source images and the reconstructed images, all the way back

through the backward translation network, with an additional cy-

cle consistency loss. This loss helps to insure the preservation of

important source image attributes. In this work, we have adapted

and evaluated the CycleGAN implementation of Jun-Yan Zhu et.
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al. [19, 20] with ResNet generator architectures. For detail un-

derstanding of the CycleGAN architecture and the corresponding

loss functions, please refer to the original publication [19].

Data set and Training Procedure
As mentioned in the beginning of this section, the ReEx-

poseNet [14] and UCan [22] models are mainly designed for over-

exposure enhancement and they are trained on a large data set

containing the MIT-Adobe FiveK data set [23, 15]. Therefore,

their original pre-trained models, provided by the authors, are

used to generate their corresponding results. On the other hand,

the Pix2Pix[20] and CycleGAN [19] models have not been tested

for over-exposure correction before and they need to be trained on

appropriate data set. In this regard, both networks were trained on

two sorts of data sets. Firstly, a small scaled but strongly repre-

sentative data set (containing only severely over-exposed images)

was generated from 288 HDR images taken from the RIT Photo-

graphic Survey database of HDR photographs [26] and 114 SDR

over-exposed image sets generated by Steffens et. al. [14]. The

HDR images from the RIT database were in linear OpenEXR for-

mat and accompanied by detailed luminance measurements and

visual appearance scaling from the original scenes. Hence, due to

the required visibility in SDR rendering and compatibility to the

Steffens et. al. data sets, the RIT HDR images were slightly tone

mapped with γ = 1.5, as shown in Fig. 1). To create their cor-

responding over-exposed images, however, Banterle et. al.’s ex-

posure bracketing technique is utilized [3], as described in Abebe

et. al. [1]. Since paired images are not required for training the

CycleGAN, 402 more over-exposed images were added with no

corresponding well-exposed references. The results of the net-

works trained with this data set are shown as CycleGAN1 and

Pix2Pix1 in the evaluation results, Tab. 1.

Considering the complexity of both Pix2Pix and CycleGAN

models, training with a total of 402 and 804 images may be is

inadequate and leads to generalization problems. As the result, a

second data set is constructed by combining images from the data

set provided by Mahmoud Afifi et. al. [15] to the small data set.

Their data set is also generated from MIT-Adobe FiveK raw-RGB

images [23] and their sRGB images were generated at five dif-

ferent exposure values, by expert photographers. The final com-

bined data set contains 18000 unpaired (for CycleGAN) and 4569

paired (for Pix2Pix) over-exposed images. The evaluated models

which are trained on this data set are CycleGAN2, Pix2Pix2, and

Pix2Pix3.

All the models were trained on Twin Titan computer (with 2

Nvidia GPUs) for a total of 500 (CycleGAN1), 50 (CycleGAN2),

1000 (Pix2Pix1), 200 (Pix2Pix2, Pix2Pix3) epochs. In all the

trainings, the recommended hyper-parameters of the original im-

plementations were followed.

Evaluation and Analysis of Results
As per the main goal of this work, all the trained models

(listed in Tab. 1) were assessed for their color and content fidelity.

Around 25 over- and well-exposed image pairs are generated for

the evaluation, based on the same HDR exposure bracketing tech-

nique described in the previous section. Fig. 1b and Fig. 1c also

show an example pair, which is created similarly as the evaluation

pairs. Only 6 of the evaluation images were taken from Steffens

et. al. [14] data set, for fair comparison, and note that none of

the 25 images were used for training all the models. The over-

exposed images of the 25 pairs are then processed by all the eval-

uated models for enhancement and content recovery. The eval-

uation of content fidelity is finally performed by comparing the

enhanced images of each model with the well-exposed reference

images of the evaluation pairs.

Quality comparisons were done both visually and objec-

tively. To consider both color and structural fidelity, objective

quality metrics such as structural similarity index metric (SSIM),

improved color image difference (iCID), CIE2000 color differ-

ence (CIEDE2000) and visible difference prediction metric for

HDR images (HDR-VDP3) are utilized [27, 28].

(a) Reference HDR (b) Input LDR (c) Slightly tone mapped HDR

Figure 1: Example training pare generated from the RIT HDR im-

ages. Fig. 1a is the HDR image linearly displayed. Fig. 1b shows

the over-exposed version generated with exposure bracketing and

Fig. 1c is the slightly tone mapped (with γ = 1.5) well-exposed

version of the training pair.

In the overall visual inspection of results, most of the evalu-

ated models observed good color correction and content recover-

ing capabilities for slightly clipped image regions. For example,

the color and details of the slightly clipped sofa, pillow and bunny

regions of Fig. 2 (first column) were able to be recovered well al-

most by all evaluated methods. However, since the focus of this

work is mainly on severely over-exposed images, all the 25 eval-

uation images contain severe over-exposures. In the presence of

severely distorted regions, like around the wall and the sky re-

gions of the first and second columns of Fig. 2, the color fidelity

performances of most of the models significantly reduced. The

models tend to fill some over-exposed image regions with seman-

tically incoherent contents (as can be seen in Fig. 2) or they do

not show any improvement at all. Such problems in generative as

well as autoencoder based DL methods are very common, mainly

with insufficient training data and time. The causes of such in-

fidelity can include the evaluated models’ network architecture

and loss functions. Both the GAN and CNN based models are

constructed using simple CNN components and doesn’t consider

semantic pixel to pixel (in an image) as well as cross-class (among

images) relationships. The various loss functions tested with the

evaluated models also not consider color reproduction or appear-

ance quality. It is currently not common to use state of the art

image quality assessment metrics as an objective function due to

their complexity, convexity, as well as differentiability issues.

For the objective evaluation, the average quality values of the

evaluation images set for all the described image quality metrics

are computed and given in Tab. 1. The results of all the variants

of the evaluated models, described in previous sections, as well as

the input over-exposed images are presented. As shown from the

results, the two models which are trained on the small-scale data
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Table 1: Average quality evaluations of the enhancement results, computed from 25 test images.
SSIM iCID DE2000 VDP-Q
mean δ mean δ mean δ mean δ

Input 0.683661 0.234756 0.339291 0.274037 13.30943 13.15839 6.607415 1.420977
CycleGAN1 0.714409 0.180895 0.325367 0.203527 9.771153 6.824443 7.094045 1.151893
CycleGAN2 0.628975 0.20626 0.37248 0.228797 12.12396 9.645018 6.696073 1.272312
Pix2Pix1 0.799783 0.13298 0.242246 0.185161 5.956528 3.658938 7.161347 1.096364
Pix2Pix2 0.653193 0.172157 0.381459 0.211426 10.95747 6.703688 6.739119 1.256269
Pix2Pix3 0.643285 0.154942 0.409377 0.178226 11.86516 5.508725 6.204647 1.106786
ReExposeNet 0.608942 0.164575 0.333918 0.197487 10.38835 4.40941 5.78962 1.188603
Ucan 0.525642 0.207551 0.34854 0.21599 11.7023 6.653122 5.857483 1.274583

set (CycleGAN1 and Pix2Pix1) resulted in better quality values

in terms of both structural and color recovery. The two simple

CNN based models (ReExposeNet and Ucan), on the other hand,

performed worse in almost all metrics.

The better performance of Pix2Pix1 model is understand-

able given that it is trained with supervised learning and teach-

able loss function as discriminator network (compared to the fixed

DSSIM and L2 norm based loss functions of the ReExposeNet

and UCan models). Considering the performances of the Cy-

cleGAN models, cycle consistency loss objective function is in-

tended to translation of image attributes with in structurally sim-

ilar images, with a data set of similar structural distributions like

the apple2orange and horse2zebra data sets, proposed by the re-

spective authors [19]. Therefore, the diverse structural distribu-

tion of the proposed data sets together with the cycle consistency

loss may further hinder and constrain the generator from generat-

ing more realistic (well-exposed) results.

The data set improvement made for creating the second data

set also seems not to influence and improve the results of the

GAN based models (as it can be inferred from the results of Cy-

cleGAN2, Pix2Pix2, and Pix2Pix3 in Tab. 1). This issue may

be is the result of insufficient training time and less representa-

tions of severely over-exposed scenes in the data set. As it is

mentioned in the training procedures section, these models were

trained on a much larger data set but with much lower number of

epochs, due to resource and time limitations (at the time of writ-

ing). Therefore, there is a good potential that these models will

result in higher performances with longer training time. It is also

a good idea to further increase the size of the data set with more

representative images for severe over-exposure scenarios.

Conclusion and Future Work
In this work, various DL based over-exposure correction

techniques were assessed for their content and color fidelity. The

assessment was mainly focused on the color and structural con-

tent recovery of severely over-exposed scenarios. The results of

the assessment showed better content and color fidelity perfor-

mances of GAN based solutions. However, for most severely de-

graded contents, the methods fail to give significant appearance

improvements. Advancements on the network architectures and

objective functions of the models, to consider the semantic rela-

tions of image pixels [29] as well as the representation consistency

of images with the same semantic classes [30], can lead to better

content fidelity. Creating a more appropriate data set, generated

from absolute HDR data with proper inspection on HDR display

devices, can also be considered as a next research direction.

(a) Ref.1 (b) Ref.2 (c) HDR-VDP3 colormap

(d) Input 1 (e) Input 2 (f) VDP3 for 2

(g) CycleGAN1 (h) CycleGAN1 (i) HDR-VDP3

(j) Pix2Pix1 (k) Pix2Pix1 (l) HDR-VDP3

(m) ReExposeNet (n) ReExposeNet (o) HDR-VDP3

(p) UCan (q) UCan (r) HDR-VDP3

Figure 2: Sample results shown for two of the evaluation images,

representing severe over-exposure. The third column shows the

HDR-VDP difference probability of detection maps, for the sec-

ond column results.
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