
Generative inter-class transformations for imbalanced data
weather classification
Apostolia Tsirikoglou, Marcus Gladh, Daniel Sahlin, Gabriel Eilertsen, Jonas Unger, Linköping University, Sweden.

Abstract
This paper presents an evaluation of how data augmenta-

tion and inter-class transformations can be used to synthesize
training data in low-data scenarios for single-image weather
classification. In such scenarios, augmentations is a critical
component, but there is a limit to how much improvements can
be gained using classical augmentation strategies. Generative
adversarial networks (GAN) have been demonstrated to gener-
ate impressive results, and have also been successful as a tool
for data augmentation, but mostly for images of limited diversity,
such as in medical applications. We investigate the possibilities
in using generative augmentations for balancing a small weather
classification dataset, where one class has a reduced number of
images. We compare intra-class augmentations by means of clas-
sical transformations as well as noise-to-image GANs, to inter-
class augmentations where images from another class are trans-
formed to the underrepresented class. The results show that it
is possible to take advantage of GANs for inter-class augmenta-
tions to balance a small dataset for weather classification. This
opens up for future work on GAN-based augmentations in sce-
narios where data is both diverse and scarce.

Introduction
Although machine learning (ML), and in particular deep

learning, over the last decade have shown great success and po-
tential, it is becoming more and more apparent that one of the
most pressing challenges is the data used in the training and eval-
uation processes. It has been shown that solutions based on deep
neural networks, [15], can solve computer visions tasks with high
accuracy and performance, outperforming traditional algorithms.
However, their performance is limited by the training data used
in the learning process. The fundamental problem is that there
is a lack of both: the availability of training data with accurate
ground truth annotations, as well as robust methods for capture
and generation of such data in most application scenarios. Ac-
cess to unbiased data relevant to the task is recognized as one of
the central challenges in ML and promising approaches for data
synthesis have recently been proposed [26].

A common difficulty is that the training data is imbalanced,
i.e., the number of data points for a specific class is significantly
lower compared to other classes due to, e.g., difficulties in col-
lecting or annotating the data for a specific class or a scenario.

This paper focuses on class-imbalanced weather classifica-
tion, in which we train a supervised classifier to determine which
weather condition an image represents, {Sunny, Foggy, Rainy,
Snowy}, in a low data availability scenario. The goal is to inves-
tigate how different augmentation and data synthesis strategies
can be applied to improve classifier performance when one of the
classes is represented by a significantly lower number of training
samples compared to the others, see Figure 1. Although synthe-
sis using direct computer graphics simulation is possible [30, 16],
the complexity in the scenes makes it an intractable approach as
it would require highly sophisticated modelling and rendering
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Figure 1: shows (top) example images illustrating the four dif-
ferent classes {Sunny, Foggy, Rainy, Snowy}, and (bottom) the
augmentation strategies considered for class-balancing.

techniques and skills; only accessible to the very high-end vi-
sual effects, computer games and image production companies.
Inspired by recent work in style transfer for training data, [20],
we instead turn to generative models, in particular generative ad-
versarial networks (GANs) [7, 11, 34], and evaluate their perfor-
mance as a tool for data synthesis. Generating new training im-
ages using a noise-to-image GAN has been demonstrated useful
in medical applications [1]. However, for natural images, where
the image diversity is significantly more complex, it is difficult
to generate new images that are of sufficient quality for training,
especially when data is scarce. Instead, we consider inter-class
transfer by means of Cycle-GANs [34], mapping, e.g., sunny im-
ages to the underrepresented foggy class. This approach has two
distinct advantages over a noise-to-image GAN: 1) it is a simpler
task to modify an already existing image instead of generating a
completely new image, and 2) diversity can be increased by con-
sidering images from other classes, i.e., where image generation
is not restricted to using the images of one particular class.

The contribution of this work is a systematic evaluation of
Cycle-GANs as a tool for inter-class transfer for data synthesis
in low data scenarios. Inter-class augmentations are compared to
intra-class augmentations using noise-to-image GANs, as well
as conventional augmentation operations. We also introduce a
modification of Cycle-GAN, replacing instance normalization
with the weight demodulation proposed in Style-GAN-2 [14],
which can alleviate problems with artifacts also in Cycle-GAN.
We evaluate the different augmentation strategies in a range of
scenarios, with different inter-class transformations and with dif-
ferent availability of training data.

Related work
Our approach builds upon a large body of work. The ongo-

ing data for ML challenge has spurred research and development
of techniques for synthetic data generation based on direct sim-
ulation using computer graphics techniques [22, 21, 30, 16], as
well as using generative models, typically GANs, for direct data
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Figure 2: Examples of inter-class augmentations, transforming
from the sunny class (top) to foggy (middle) and snowy (bot-
tom). The examples on the left side have been selected as more
successful transformations, while the right images demonstrate
failure cases.

generation [4] and data domain transfer [20] for different appli-
cations. For an in-depth overview of synthetic data for ML see
the survey by Tsirikoglou et al. [26].

GANs are trained in an adversarial mini-max game, where
a data-generating neural network takes noise as input and pro-
duces, e.g., images as its output, while a discriminator network
is trained with the objective to separate between generated and
real images. The generator’s objective is to produce images that
the discriminator will mistake as real. From the introduction of
GANs [7], intensive research has resulted in models that can gen-
erate photo-realistic images for sufficiently narrow data distribu-
tions [13, 2, 19, 32]. Adversarial training has also been extended
to image-to-image problems, learning to transform images be-
tween different domains, both in supervised [10] and unsuper-
vised settings [34].

Single-image weather classification is a challenging com-
puter vision task, and there are only a few methods not based on
deep learning, which extract features and apply conventional ML
techniques [23, 18, 33]. However, neural networks have been
demonstrated to improve state-of-the-art by a large margin [5],
and there is a number of recent methods that have tested different
variations of CNNs [36, 17, 8]. Methods are usually formulated
to distinguish between 2-5 different weather phenomena, such as
sunny, cloudy, rainy, foggy and snowy, but slight variations in
problem formulation and the need for data, in general, has re-
sulted in that most of the different works have also constructed
new datasets, e.g., by gathering and labeling images from online
sources [18, 36, 17, 8]. Given the different needs, and the still
limited research for single-image weather classification, there is
still a lack of large-scale weather datasets of high quality. Thus,
it is crucial to make the most of the data at hand.

GANs for augmentation of training data has mostly been
considered in medical imaging [1, 6, 9, 24, 31, 27, 28]. Medical
images are typically represented by a narrower data distribution
as compared to natural images, which makes it possible to ap-
ply adversarial image generation using a low number of images.
In applications for natural images, there are only a few attempts
at GAN-based augmentations [35, 29], and learning-based aug-
mentations have instead been more focused on creating optimal
transformations of already existing images [3, 25].

Methodology
This papers focuses on the problem of augmenting a small-

scale imbalanced single-image weather classification dataset by
means of adversarial image generation, and in particular an eval-
uation of different augmentation/transformation methods. The
downstream task considered is to train a classifier that can deter-

mine the weather condition from different classes under the con-
straint that one of the classes is underrepresented in the training
dataset. This is a very challenging task, as natural images present
a large degree of diversity, which means that it is problematic to
train a noise-to-image GAN to produce new image samples (see
Figure 5). Instead, we opt to transform already existing images
from classes that are more well-represented, using a Cycle-GAN,
which is both a simpler problem and can also increase the diver-
sity of an underrepresented class. The difference between clas-
sical augmentations, intra-class GAN-augmentations and inter-
class Cycle-GAN augmentations is illustrated in Figure 1, point-
ing to how inter-class augmentations can feed information from
a source class to the target class.

Dataset - In this study we use the publicly available weather
classification dataset published in [8]. We define two sets of ex-
periments of intra- and inter-class augmentations: 1) for the four
classes of {Sunny, Foggy, Rainy, Snowy}, where class Cloudy is
removed due to possible overlap with Rainy, and Foggy, and 2)
for the three classes {Sunny, Foggy, Snowy} where {Rainy} is
additionally removed due to possible overlap with {Foggy}. The
classes {Sunny, Foggy, Rainy, Snowy} each consists of 1100 la-
beled images. The 4400 images are first divided 80:20 into class
balanced training and test sets, such that the training set contains
880 images and the test set 220 images from each class. The
training sets were further split to also provide a validation set us-
ing a 90:10 ratio and the images were cropped to a 256×256 tile
around the center. Examples of the represented classes are illus-
trated in Figure 1. For the evaluation experiments, we randomly
remove images for one of the classes, so that the underrepre-
sented class in the imbalanced dataset contains 25%, 50%, or
75% of the original images. This is done for the classes {Foggy,
Snowy} respectively. To balance the dataset for training the
weather classifier, the underrepresented class is filled in with im-
ages synthesized using different GAN architectures. The GANs
are trained to transfer images from the source domain {Sunny} to
one of the target domains {Foggy, Snowy}, and the resulting syn-
thesized images are inserted into the training set. We also include
a reference scenario where we copy images directly from the un-
derrepresented class either as they are, i.e., duplicates, or trans-
formed through geometric (zooming, rotation, shifting, shearing,
and flipping), and pixel transformations (brightness, noise, and
color).

GAN data synthesis - We compare three different GANs:
Progressively Growing GAN [11] (denoted PG-GAN), Cycle-
GAN [34] (denoted C-GAN), and Cycle-GAN extended with
weight demodulation inspired by Karras et al. [14] (denoted C-
GAN-WD). The PG-GAN (mapping random numbers to image)
and C-GAN (mapping image to image) are the vanilla architec-
tures as described in [11, 34] respectively. For the C-GAN-WD
we extend C-GAN by removing instance normalization, and re-
placing the convolution operation in the generator block with a
custom one that includes weight demodulation. This modifica-
tion is suggested to potentially improve problematic areas in im-
ages generated, identified as noise or the droplet effect [14].

For the C-GAN and C-GAN-WD generated images we in-
vestigate two selection protocols. The first one is a random se-
lection, while the second one is based on the discriminator score
(D-score). In this case, the complementary images, needed to
balance the underrepresented class, are selected in a descending
D-score order. This aims to ensure that the most convincing as
real images to the network are included in the augmentation set.

Weather condition classifier - The classifier is, for effi-
ciency, built around a simple architecture consisting of three con-
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Figure 3: Inter-class augmentations with varying number of im-
ages in the target domain.

C-GAN C-GANC-GAN-WD C-GAN-WD

Figure 4: Differences between vanilla C-GAN and C-GAN-WD,
for transforming between sunny and foggy images.

volutional layers and two fully connected layers. The classifiers
are trained with Adam optimizer for 50 epochs, out of which the
best model is selected. To avoid additional complexity in the
analysis we do not perform on-line augmentations.

Evaluation and results
We first discuss the characteristics of the GAN generated

images, followed by an evaluation on the classification perfor-
mance with varying data scenarios and augmentation strategies.

Image synthesis results - Figure 2 shows some examples of
images generated using inter-class transforming C-GANs. While
there are many examples where the transformations work well,
there are also cases with less successful transformation. For the
snowy case, the C-GAN often resorts to producing images with-
out colors. The foggy transformation has a higher success rate,
but fails for close-up shots where fog is a less pronounced phe-
nomenon. Figure 3 shows the differences when training with
different amount of images in the target domain. The foggy
transformation can be learned with very small amount of training
data, while the snowy transformation is more likely to show fail-
ure cases in the low-data scenarios. The differences between the
vanilla C-GAN and C-GAN-WD are most often subtle, but the
weight demodulation can help in reducing the amount of droplet
or color smearing artifacts, as demonstrated in Figure 4. The
noise-to-image GAN, in our case using PG-GAN, is very diffi-
cult to train on the low amount of diverse images presented by
our scenarios. In most cases, it resorts to trying to reproduce
the training images, as demonstrate in Figure 5, and there are se-
vere problems with mode collapse. However, even if PG-GAN
mostly produces distorted versions of the training images, these
could still be beneficial for augmentations, so it is of interest to
compare this approach to the inter-class transformations.

Evaluation - Table 1 shows the results from experiments where
the underrepresented class has been extended with duplicates,
augmented duplicates, and images generated using the GAN
methods described above. Each classifier was trained 20 times
and the table reports the mean accuracy and its standard devi-
ation for the individual classes and the overall mean accuracy
computed over all three or four classes; a total of 1960 trained
models. We show the results for the {Foggy, Snowy} classes
where the first is easier for the GANs to learn.

A first observation is that the accuracy for the fully rep-

Figure 5: Real image (left), and PG-GAN images found to repro-
duce this when trained on 25%, 50% and 75% foggy data, respec-
tively. Mirror augmentations have been applied during training,
which explains why the replicated images can be mirrored.

resented classes increases in many cases when the underrepre-
sented class is performing poorly, see for example the imbal-
anced trainings (first row in each section) or when only duplicates
are used. One can also see that this pushes up the overall, total
mean accuracy so that it in some cases meets and even slightly
exceeds training with the full dataset. This can be explained by
that the variation, or feature richness, is low in the underrepre-
sented class and that this leads to a stronger emphasis on the
full classes during training. Studying the mean, total accuracy
it is evident that all transformation and augmentation methods
improve the overall performance significantly for all scenarios.
Starting from a large relative improvement compared to the im-
balanced case at 25% data the relative performance increase is
gradually decreasing as more data is added to 50% and 75% data,
approaching the performance of the full dataset (top row).

The impact of the different GAN methods is most evident
looking at individual classes and in particular the underrepre-
sented class. For both the {Foggy, Snowy} classes, the GAN
based inter-class transformation methods consistently produce
better results compared to duplicates and augmented duplicates.
The best performing C-GAN reaches 85% and 83% accuracy al-
ready in both 25% cases in the 4 classes experiment and remains
consistent also in the scenarios with 50% and 75%, and overall
also in the 3 classes experiment. The performance of the inter-
class GAN methods is overall comparable, but consistently better
as compared to the intra-class augmentations. For scenarios with
more data, e.g., 75% the duplicates with classical augmentation
performs almost as good. This is expected due to the overall in-
crease in available training data and the augmentation strategy
used. PG-GAN is overall the worst performing GAN in both the
4 and 3 classes experiments. The reason is likely that it is trained
to map random numbers to images in the PG-GAN training set
only. This leads to a smaller feature variation as compared to
the C-GANs which transform images from the source domain
{Sunny} to the target domains and thus introduces a larger vari-
ation in the training data. Although the C-GAN-WD can reduce
some of the artifacts produced by the vanilla C-GAN, as illus-
trated in Figure 4, it does not improve the classifier performance
significantly. This is most likely due to the fact that the GAN
images produced contain artifacts that are more severe than the
noise and droplet artifacts salvaged by the weight demodulation.
Similarly, the selection of GAN produced images based on the
D-Score does not improve the performance in comparison to ran-
dom selection for the experiments conducted. Further investiga-
tions are necessary in both directions.

Conclusion and future work
This paper presented an investigation of data augmentation

and inter-class transfer for generating class-balanced training
datasets for image-based weather classification. In addition to
classical augmentation, the study included three different GAN
approaches, PG-GAN [11], C-GAN [34], and C-GAN-WD in
which the C-GAN has been extended with the weight demodu-
lation described in [14]. The evaluation showed that the classi-
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Experiment 1: 4 classes — Mean Accuracy±stddev (%) — Experiment 2: 3 classes

Experiment Foggy Rainy Snowy Sunny Total Foggy Snowy Sunny Total

Full training set 85.9± 1.2 73.8± 2.9 85.0± 2.8 79.2±3.6 81.0±1.2 91.4±1.5 90.7±1.5 87.6±1.7 89.9±0.7

Foggy 25% Imbalanced 0.0±0.0 82.3± 2.9 89.3± 1.7 83.1± 2.5 63.7±1.0 53.2±36.0 94.2±1.7 90.3±2.4 79.2±11.6
Duplicates 75.9±3.1 76.6±3.0 86.5±2.1 80.5±2.7 79.9±1.1 85.0±2.6 92.1±1.8 90.0±1.8 89.1±1.0

Dupl.+Augmentation 78.0±3.9 69.7±3.3 83.7±2.3 79.0±3.4 77.6±1.2 86.1±3.3 88.5±1.7 86.9±3.3 87.1±1.4
C-GAN (rand.) 85.0±2.2 71.8±3.2 84.7±3.1 80.4±2.8 80.5±0.9 90.1±1.6 90.1±2.6 88.1±2.6 89.4±0.7

C-GAN (D-scrore) 85.6±2.4 71.4±2.8 85.2±2.0 81.5±1.8 80.9±0.8 90.0±1.6 89.3±2.4 88.7±2.5 89.3±0.8
C-GAN-WD (rand.) 80.1±2.3 72.8±3.7 87.8±1.7 82.5±2.1 80.8±0.8 87.2±1.6 91.9±1.9 89.7±1.9 89.6±0.7

C-GAN-WD (D-scrore) 80.7±2.4 72.9±3.6 87.5±1.8 81.7±2.9 80.7±1.1 86.0±3.2 92.4±1.7 89.0±1.8 89.1±0.9
PG-GAN 79.2±1.9 76.5±2.9 86.5±2.0 80.9±2.4 80.8±1.1 86.8±1.9 92.3±1.4 88.9±2.3 89.3±0.9

Foggy 50% Imbalanced 64.3±3.3 77.1±4.9 88.6±2.5 80.6±3.9 77.7±7.0 86.1±2.9 93.2±1.4 88.8±1.9 89.4±1.2
Duplicates 82.1±2.2 75.8±3.7 86.1± 2.4 75.9±1.8 80.0± 4.3 89.6±1.9 91.8±1.9 87.9±1.6 89.8±0.7

Dupl.+Augmentation 84.7±1.9 69.2±3.4 82.1±2.8 80.7±3.5 79.1±0.8 91.2±1.6 86.7±3.0 86.8±2.6 88.2±0.8
C-GAN (rand.) 85.8±1.2 71.3±3.7 84.8±4.1 81.2±3.4 80.8±1.2 91.0±1.6 90.0±2.2 88.6±2.1 89.9±0.6

C-GAN (D-scrore) 84.1±1.9 70.1±3.0 87.5±2.5 80.9±2.8 80.6±0.8 91.1±1.8 89.1±2.2 87.7±1.9 89.3±0.8
C-GAN-WD (rand.) 84.2±1.6 73.5±2.7 85.6±2.5 82.3±1.4 81.4±1.0 88.9±1.7 90.2±1.8 89.1±1.7 89.4±0.6

C-GAN-WD (D-scrore) 84.2±1.8 73.3±2.3 85.9±2.2 80.8±2.3 81.1±0.9 89.3±1.9 90.4±1.7 89.3±1.9 89.7±0.7
PG-GAN 82.7±2.5 75.8±2.9 85.7±2.4 80.0±3.7 81.0±0.7 90.1±1.5 91.9±1.4 87.9±2.0 90.0±0.8

Foggy 75% Imbalanced 82.5±2.1 74.4±4.1 86.1±1.9 81.7±3.1 81.2±1.0 87.8±1.8 91.5±1.9 87.7±2.4 89.0±1.0
Duplicates 84.0±2.0 74.9±2.6 85.3±2.1 80.0±3.7 81.0±1.0 90.2±2.1 91.8±1.7 87.3±3.0 89.8±0.7

Dupl.+Augmentation 86.1±2.2 69.1±3.9 85.0±2.3 80.9±2.7 80.3±1.0 90.7±2.3 88.0±2.0 87.1±2.6 88.6±1.0
C-GAN (rand.) 85.8±1.8 72.8±2.9 85.3±2.6 81.3± 3.2 81.3±0.9 91.6±1.5 91.2±1.6 86.9±1.7 89.9±0.6

C-GAN (D-scrore) 86.3±1.7 71.4±3.3 85.1±2.4 81.6±3.0 81.1±0.7 92.0±1.6 90.5±1.6 87.7±2.1 90.1±0.8
C-GAN-WD (rand.) 84.8±2.5 73.4±3.2 84.9±3.2 80.4±3.0 80.9±0.9 91.8±1.5 90.1±1.4 87.9±2.3 90.0±0.9

C-GAN-WD (D-scrore) 84.5±2.2 72.5±3.0 86.4±2.6 81.5±2.4 81.2±0.7 91.3±1.5 90.5±1.8 87.7±2.2 89.8±0.8
PG-GAN 84.2±1.7 73.9±3.1 85.2±3.1 81.0±2.7 81.1±1.1 90.9±1.8 91.0±1.8 87.8±1.7 89.9±0.8

Snowy 25% Imbalanced 89.3±1.9 79.2±3.8 0.0±0.0 84.9±3.2 63.4±1.0 97.6±1.9 00.0±0.0 96.3±1.1 64.6±0.5
Duplicates 85.8±2.0 77.3±3.2 64.7±3.6 85.3±2.2 78.3±1.1 93.3±1.7 77.0±4.3 93.3±1.9 87.9±1.5

Dupl.+Augmentation 87.1±1.8 73.8±4.0 76.5±4.0 82.3±1.7 79.9±1.2 93.3±1.0 83.1±1.9 89.2±1.4 88.5±0.5
C-GAN (rand.) 85.0±1.7 72.1±2.5 83.3±2.8 82.4±2.2 80.7±0.8 90.2±1.6 89.5±2.2 88.7±2.0 89.5±0.8

C-GAN (D-scrore) 84.5±2.1 69.7±2.0 83.7±2.2 81.9±2.9 80.0±0.8 90.2±1.4 88.8±2.6 88.3±1.7 89.1±0.8
C-GAN-WD (rand.) 84.6±1.5 71.3±3.2 72.8±3.6 85.4±2.9 78.5±1.0 89.7±1.6 80.9±2.5 92.7±1.4 87.8±0.9

C-GAN-WD (D-scrore) 84.4±2.3 70.9±3.9 70.4±4.3 86.0±3.7 77.9±1.0 90.6±1.6 79.4±1.8 92.3±1.5 87.4±1.0
PG-GAN 84.4±1.9 74.8±4.2 80.1±3.2 83.1±2.7 80.6±1.0 90.6±2.8 87.3±2.6 90.8±1.6 89.6±1.2

Snowy 50% Imbalanced 89.3±2.3 78.9±2.7 15.2±3.1 84.2±3.0 66.9±7.1 96.0±2.9 38.0±43.1 93.9±2.9 76.0±12.7
Duplicates 85.8±1.4 76.3±2.5 79.2±3.5 83.0±1.8 81.1±1.0 92.5±1.5 86.1±2.8 90.1±2.4 89.6±0.7

Dupl.+Augmentation 86.1±1.5 73.5±2.9 83.1±1.9 82.0±2.3 81.2±0.8 92.4±1.8 87.7±2.7 88.0±2.7 89.3±0.8
C-GAN (rand.) 84.4±1.8 71.5±3.1 85.7±2.0 81.2±3.0 80.7±1.0 89.6±1.8 91.0±1.6 87.2±2.0 89.3±0.7

C-GAN (D-scrore) 84.5±1.6 73.3±3.6 84.7±3.1 80.1±2.7 80.6±0.9 89.5±2.0 91.6±1.5 87.0±2.4 89.4±1.0
C-GAN-WD (rand.) 86.9±1.5 71.4±4.1 82.3±3.0 82.4±3.3 80.8±1.0 90.2±2.3 88.4±2.1 90.1±2.0 89.6±0.7

C-GAN-WD (D-scrore) 86.6±1.9 70.8±3.2 83.1±2.3 83.8±1.8 81.1±0.8 90.9±2.0 87.7±3.8 90.8±2.2 89.8±1.0
PG-GAN 85.4±1.5 75.9±3.4 84.0±2.6 81.5±2.2 81.7±0.7 91.4±3.4 88.8±2.0 89.8±1.6 90±1.0

Snowy 75% Imbalanced 87.5±1.6 75.1±2.7 82.4±2.9 80.2±3.8 81.3±1.0 89.8±4.5 86.6±4.7 88.0±2.6 88.1±1.8
Duplicates 85.9±1.7 75.0±3.7 82.3±3.1 81.1±1.7 81.1±1.0 91.2±1.3 89.1±1.7 88.9±1.4 89.7±0.7

Dupl.+Augmentation 85.1±2.1 73.0±4.6 84.6±2.3 81.9±2.0 81.2±1.1 91.1±1.6 90.0±1.7 87.5±2.1 89.6±0.9
C-GAN (rand.) 85.0±1.7 72.5±3.6 85.8±2.6 80.9±2.4 81.0±1.1 90.5±2.0 91.0±1.2 87.5±1.8 89.7±0.7

C-GAN (D-scrore) 85.8±2.5 72.6±3.6 85.4±1.9 81.8±2.4 81.4±0.9 90.8±1.6 90.4±2.0 88.0±2.9 89.8±0.8
C-GAN-WD (rand.) 85.7±1.6 72.3±3.0 85.0±2.8 78.3±3.8 80.3±0.8 91.8±1.8 91.1±1.8 85.5±2.3 89.5±0.9

C-GAN-WD (D-scrore) 86.2±1.3 73.5±2.8 84.9±2.8 78.9±3.1 80.9±1.0 91.7±1.3 91.1±1.9 85.1±2.4 89.3±0.9
PG-GAN 85.0±1.5 75.2±2.8 83.1±3.1 81.8±2.5 81.3±1.0 90.5±1.6 90.5±1.8 88.5±2.1 89.8±0.8

Table 1: The mean accuracy and standard deviation (%) for 20 runs per experiment. The classifier is trained on (left) 4 classes and
(right) 3 classes. The GAN and augmentation strategies are evaluated with 25%, 50%, and 75% of the {Foggy, Snowy} images.

fier trained on data from the GAN methods performed better than
classical augmentation in general and especially for low data sce-
narios. Although the GAN methods mostly performed on-par,
the C-GAN consistently performed slightly better compared to
the others. Based on the evaluation results, we believe that inter-
class transformations using generative models have the potential
to be developed into a tool for data synthesis.

What is encouraging is how it is possible to successfully
use GAN-based training data synthesis in a low-data scenario on
natural images of high diversity, which can be considered very
challenging for GANs. The concept of inter-class generation is a
promising tool for facilitating this problem, by utilizing already
existing information from other classes to augment an underrep-
resented class. There are, however, several venues for future
work. As generated images by visual inspection can be deemed
to be of highly varying quality, one interesting problem would
be to attempt at measuring this quality and use it for weighting

of the loss function in the classification, or for sampling the best
generated images. From our results, a direct use of the discrimi-
nator score does not seem to provide an adequate notion of qual-
ity. There are also recent promising techniques for improving the
quality and diversity of GAN-generated images in low-data sce-
narios [12], and it would be interesting to investigate if this could
be incorporated in a Cycle-GAN. Finally, as it is possible to gen-
erate images with different strategies, it would be of interest to
investigate how these can be combined in the best way possible,
i.e., to have synthetic data generated as a combination of inter-
and intra-class augmentation strategies.
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