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Abstract

Spectral reconstruction (SR) aims to recover high resolu-
tion spectra from RGB images. Recent developments - leading by
Convolutional Neural Networks (CNN) - can already solve this
problem with low errors. However, those leading methods do
not explicitly ensure the predicted spectra will re-integrate (with
the underlying camera response functions) into the same RGB
colours as the ones they are recovered from, namely the ‘colour
fidelity’ problem. The purpose of this paper is to show, visu-
ally and quantitatively, how well (or bad) the existing SR mod-
els maintain colour fidelity. Three main approaches are evalu-
ated - regression, sparse coding and CNN. Furthermore, aim-
ing for a more realistic setting, the evaluations are done on real
RGB images and the ‘end-of-pipe’ images (i.e. rendered images
shown to the end users) are provided for visual comparisons. It is
shown that the state-of-the-art CNN-based model, despite of the
superior performance in spectral recovery, introduces significant
colour shifts in the final images. Interestingly, the leading sparse
coding and the simple linear regression model, both of which are
based on linear mapping, best preserve the colour fidelity in SR.

1. Introduction

The colour signal (i.e. physical radiance) coming from the
scene contains spectral information of the light source and object
surfaces within visible range, and by human eyes or consumer
RGB cameras this signal is captured in 3 separate colour chan-
nels (red, green and blue). Clearly, this ‘colour image formation’
process loses a significant portion of spectral information. In-
deed, the continuous spectra are recorded with just 3 values per
pixel. Consequently, having only RGB data on hand, our ability
to predict colours in different viewing conditions (e.g. different
lighting and/or sensors) is limited. This limitation has been re-
ported in several colour applications including colour correction
[9], colour constancy [1] and device characterisation [7].

It is well known that hyperspectral imaging devices, which
measure the colour signal at high spectral resolution, are able to
provide very accurate colour predictions. For example, camera
RGBs can be accurately simulated by integrating the measured
spectra with the spectral response functions of the underlying
camera. However, these devices are costly and/or bulky and of-
ten suffer from long integration time, low light sensitivity and/or
low spatial resolution.

Instead of building new devices for capturing hyperspec-
tral information, spectral reconstruction problem (SR) studies
the mapping from RGB data to its hyperspectral counterpart. It
is hoped that the RGBs - which are taken by a single camera
(and often under confined illumination conditions) - can recover
spectra which can predict colours in other desired viewing con-
ditions. Despite of its highly ill-posed nature, this SR problem
has been solved with increasing accuracy over the years. Mal-
oney and Wandell [15] first proposed a 3-dimensional linear char-
acterisation of reflectance spectra, which suggests a simple lin-
ear transformation between the RGBs and the 3-dimensional re-
flectances. Followed by the development of least-squares regres-
sion [11] and Bayesian approach [6] which further improve the
performance of spectral recovery. In the recent literature, highly

Figure 1. Spectral reconstruction (SR) and the colour fidelity problem

data-driven sparse coding [2, 4] and deep neural network models
[5, 18] are considered the leading methods for SR.

The main concern of this paper is the colour fidelity of the
SR algorithms. While the ongoing developments seem to blindly
focus on lowering the spectral error of the recovery, they do not
clearly guarantee that the recovered spectra are colorimetrically
accurate, that is whether they can be re-integrated into the RGBs
they are recovered from. In fact, the very issue has been ad-
dressed (and solved) for several primitive SR models including
3-dimensional reflectance model [3], linear least-squares regres-
sion [22] and Bayesian estimation [16]. Yet, it is still under-
estimated in the recent development of SR. Indeed, as a fact to
be presented in this paper, the state-of-the-art SR model [5, 18]
introduces significant colour shifts in the re-integrated RGB im-
ages. Ironically, this tells that the best SR models cannot even
predict colours correctly in the original viewing condition.

Figure 1 illustrates spectral reconstruction and the problem
of colour fidelity. Following the red solid arrows in the graph, a
ground-truth spectrum in the scene (the image on the left, and the
red solid curve in the plot) integrates with the camera response
functions giving the ground-truth RGB (green patch on the right).
Then, the SR algorithm recovers the spectrum (following the bot-
tom blue arrow) as the dotted blue curve in the plot. The colour
fidelity of SR - which is the main arguing point of this paper -
studies that, when the recovered spectrum is re-integrated with
the same camera (the top blue arrow), to what extent will this
re-integrated colour differ from the ground-truth RGB.

The rest of the paper is organised as follows. In section
2, the background of the tested SR models is briefly introduced.
Section 3 begins with the details of quantifying colour differ-
ences and image rendering process, followed by result discussion
and visual comparisons. This paper concludes in section 4.

2. Background
A simple approximation of the colour image formation pro-
cess can be written as:

x=S"r, (€]

where X is the simulated RGB (a 3-dimensional vector), r is the
k-dimensional spectral vector referring to the discrete hyperspec-
tral measurement at k points across the visible spectrum (in this
paper the visible spectrum runs from 400 to 700 nm and the spec-
tral sampling interval is 10 nm, hence k = 31), and Sis a k x 3
matrix with its columns to be the set of 3 camera response func-
tions (spectrally discretised as aligned with the radiance mea-
surements). The premise for this discrete model to work is that
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the spectral measurements must be sampled at a sufficient spec-
tral resolution (k > 3). Conversely, spectral reconstruction (SR)
seeks to estimate r from Xx.

2.1. Regressions

Let us consider the linear (LR) [11], polynomial (PR) [8]
and root-polynomial regression (RPR) [13]. These models lin-
early map the ‘polynomial colour features’ to radiance spectra:

r~Mo(x), @)

where @ : R3 — R? is the respective polynomial transforma-
tion (mainly non-linear except for LR) and M is a k x p regres-
sion matrix to be searched for. With x = (R,G,B)T, the cor-
responding @ (x) for LR, PR and RPR models are summarised
in Table 1. For example, for the 2md grder PR model, o(x) =
(R,G,B,R?,G? ,B*,RG,GB,BR)T and M is k x 9.

To solve for M in the least-squares sense, given m training
pairs {(x;,r;) | j=1,2,...,m}, we are to minimise:

arg min (2 \|z,~—M<p<zj>H%+yuMu%) . 3
j=1

Here v is a regularisation parameter to be empirically selected.

The purpose of this regularisation setting is to stabilise the re-

gression output, that is to prevent drastic change in result at small

perturbations in input RGB. For more information see [11, 20].
Then, Equation (3) is solved in closed-form:

M=R'®@ ®+1,,,) ", )

where R and @ are respectively m X k and m x p data matrices
(rows are matching spectra and polynomial features), and I,
is the p x p identity matrix.

Model | Polynomial Transformation ¢(x)

LR | RG,B

R,G,B,R?,G? B%,RG,GB, BR,
PR R? G3,B3,RG?,GB? ,BR* R*G,G*B,B*R,RGB,
... (higher order terms if applicable)

R,G,B,v/RG,/GB,\/BR,
RPR | VRG?,v/GB2,V/BR2,v/R2G,v/G2B,~/B2R,/RGB,

... (higher order terms if applicable)

Table 1. Polynomial transformations of LR, PR and RPR

2.2. Sparse Coding

The sparse coding approach [4, 2] assumes that all spec-
tra can be approximated by linear interpolations between neigh-
bouring spectral data. In addition, it is assumed that the data dis-
tribution of the real-world spectra and RGBs share similar local
geometries, such that the interpolating relationship among neigh-
bouring RGBs can be an accurate approximation of the interpo-
lations in the corresponding spectral neighbourhood, namely the
neighbour embedding assumption [21].

The training stage of the leading sparse coding model ‘A+’
[2] operates in two steps. First, the algorithm clusters the match-
ing spectral and RGB data, which gives a pair of spectral and
RGB dictionaries (i.e. the collection of ‘centres’ of all clusters),
respectively denoted as ©, and ®; :

J Xyt (5a)

meanwhile the corresponding neighbourhoods (the training data
in the proximity of each dictionary member) are also saved:

SV:{KI'/ Iy, ...y !M}vgx:{KM X2, o

mr:{Rla R2v [RRX] RM}va:{Xh X2a ..

where the rows of R; and X; are matching spectra and RGBs in
the neighbourhood of the ith dictionary member (i.e. r; and X;).
Then, for each neighbourhood the algorithm is bound to find an
interpolation vector w; that derives X; by linearly interpolating
the neighbouring data in X;. That is:

X=X w,. (©)

This vector is optimised by linear least-squares regression:

arg min (H&—X,-T ml\%ﬂl\ml\%) ™

pAL]

and solved in closed-form:

w; = X;(XIX; + 7I3.3) 7 'x; ®)

where 7 is the regularisation parameter as in Equation (3) and
(4), and I3 43 is the 3 x 3 identity matrix.

On input of a query RGB x in the reconstruction stage, A+
algorithm searches for its nearest neighbour in ®,, say it turns
out to be the ¢ dictionary member x,,. Based on the neighbour

*q
embedding assumption, the spectral estimate r is calculated by:

r~ Rjw, ~ RIX, (X)X, +713.3) 'x. )

Interestingly, by comparing Equation (4) and Equation (9),
we can clearly see that the A+ algorithm in effect operates linear
regression (LR) locally at the discretised neighbourhoods.

2.3. Neural Networks

Neural network is a powerful approach to solving complex
non-linear mappings. Recent development on deep networks
such as Convolutional Neural Network (CNN) and Generative
Adversarial Network (GAN) further enables patch-based map-
ping in image processing, that is to map image patches to the
desired output. Especially for the SR problem, the hope for
these deep-network approaches is that they can potentially learn
to identify scene contents that might help spectral recovery.

According to the recent NTIRE 2018 Challenge on Spec-
tral Reconstruction from RGB Images [5], all leading models are
based on deep neural networks, among which the CNN-based
HSCNN-D and HSCNN-R are the two best models [18].

3. Colour Fidelity in Spectral Reconstruction

Given the ground-truth and recovered spectra, respectively
denoted as ry and Iy, the expected colour fidelity of an SR
model suggests (see Equation (1)):

S'ry ~8'r,, (10)

where S is the matrix of response functions of the RGB camera
used to take the training images for the SR model.

3.1. Spectral Reconstruction on Real RGB Data

Model Approach
LR Regression
PR6 Regression
RPR6 Regression
A+ Sparse Coding
HSCNN-R | Convolutional Neural Network

Table 2. List of tested SR models

The models listed in Table 2 are tested. The suffix ‘6’ for
PR6 and RPR6 indicates that the respective 6™ order polyno-
mial expansions are used. The ground-truth hyperspectral im-
ages used for training are from the ICVL dataset [4], from which



100 images are randomly selected for training and 50 images for
validation (in different way for each SR approach, which shall be
explained later). The corresponding RGB images are simulated
by Equation (1) (colour image formation) using the response
functions of SONY IMX135. That is, these models are trained to
map the (noiseless) SONY IMX135 raw RGBs to hyperspectral
images. The spatial size of the images is around 1300 x 1392.

The validation process of regression-based models and A+
sparse coding involves searching for the best regularisation pa-
rameter ¥ in Equation (4) and (9), where a set of different y’s
are chosen and the validation images are used to test each de-
rived model. As for the CNN-based HSCNN-R model, the val-
idation images are used to test the intermediate models out of
every training epoch, in order to determine the stopping epoch of
the training process.

In the reconstruction stage, the trained SR models are used
to recover hyperspectral images from 139 selected raw RGB im-
ages from the INTEL-TAU dataset [12] (by far the largest open-
source RGB image dataset for training and evaluating the algo-
rithms for color constancy). All selected images were captured
by SONY IMX135, with the spatial dimension of 2448 x 3264.

Finally, as we are bound to look at the colour fidelity of the
reconstruction, the recovered spectral images are re-integrated
back into raw RGB images with the camera response functions
of SONY IMX135.

3.2. Quantifying Colour Differences

Now, we have on hand the ground-truth raw RGBs (i.e. the
demosaicked raw images from INTEL-TAU dataset) and the re-
integrated raw RGBs (simulated from the SR-recovered hyper-
spectral images). To quantify the colorimetric errors by CIE 1976
colour difference (AE) [17], we must consider how to transform
the camera raw RGBs to their CIELAB counterparts.

The procedure is summarised in Figure 2. The INTEL-TAU
database provides with each raw image the colour correction ma-
trix (CCM) that transforms the image to sSRGB colours and the
ground-truth white point (WP) that is crucial for the transfor-
mation between sSRGB and CIELAB [19]. Then, the AE colour
differences are calculated between the derived CIELAB images
from the ground-truth and re-integrated images.

In each image, the mean and 99 percentile (the worst-case)
AFE errors across all pixels are calculated. Then, the mean and
standard deviation of the above two measures across all images
are calculated, which are provided in Table 3.

Model Mean AE 99 pt. AE
LR 0.69 (+ 0.18) 3.76 (£ 0.73)
PR6 1.21 (£ 2.14) | 13.96 (+ 23.91)
RPR6 0.83 (£ 0.59) 4.35 (£ 3.71)
A+ (£ 0.00) (£ 0.04)
HSCNN-R | 1.73 (£ 0.69) | 7.83 (% 4.23)

Table 3. Mean (+ standard deviation) of the mean and 99 per-
centile AE errors of individual images. Best results are shown
in and the worst results are in red.

3.3. Visual Comparisons

Before showing to the end users, a camera raw image might
undergo, but not limited to: black level and saturation correction,
white balancing, colour correction and gamma correction. As we
are already given the expected end-of-pipe image with each raw
image in the INTEL-TAU database, we can alternatively build a
3D Look-up-table (LUT) which approximates the actual image
processing pipeline.

Figure 2.  The process of calculating CIE 1976 colour difference AE be-
tween ground-truth and re-integrated raw images.

For each image, the LUT is built to relate the colours in
the ground-truth raw RGB image to the colours in the supplied
(expected) end-of-pipe image. This LUT can be optimised - in
a least-squares sense - by lattice regression [10, 14]. To speed
up the optimisation process, the LUT are trained on thumbnail
images (the images are downsampled from the original 2448 x
3264 to 108 x 144), and the colours are binned by 24 x 24 x 24 in
the three colour channels. Then, the full resolution ground-truth
and re-integrated raw RGB images are mapped to their respective
end-of-pipe renditions by applying this pre-built 3D LUT.

Visual comparisons are provided in the top rows of Fig-
ure 3 and 4, where four regions of interest are selected as the
marked areas (by white squares) in the bottom left-most image.
The corresponding AE error maps between ground-truth and the
SR-predicted images are given in the bottom rows of the figures.
It is evident that the extent of colour shifts in the images are well
consistent with the quantitative AE measure.

3.4. Discussion

First, the result in Table 3 teaches that accurate spectral
recovery does not imply colorimetric accuracy. Indeed, the
LR model is expected to deliver the worst spectral recovery [13],
but it shows good colour fidelity. In contrary, with the state-of-
the-art spectral accuracy, HSCNN-R performs poorly in colour
fidelity. Second, it is worthwhile to remark that for the A+ model,
the number of clusters and the size of each neighbourhood should
be properly selected to ensure the colorimetric accuracy of the
algorithm. As an extreme case, we may assume a single cluster
with all the data in its neighbourhood, then A+ becomes LR.

Also, it appears that linear-mapping based LR and A+ mod-
els provide better colour fidelity - those non-linear models seem
to create drastic worst-case performance. Lastly, whether the SR
model is invariant to exposure change [13] may also lead to col-
orimetric inaccuracy, which can be interesting for future study.

4. Conclusion

Spectral reconstruction (SR) seeks the estimation of hyper-
spectral measurements from RGB camera responses. It is well
known that accurate ‘spectral measurement’ guarantees accurate
colour predictions, but can accurate ‘spectral estimation’ give the
same promise? This paper reveals the apparent paradox that the
state-of-the-art spectral reconstruction is actually colorimet-
rically inaccurate.

In this paper, a thorough benchmark on colour fidelity for
three main SR approaches - regression, sparse coding and deep
neural network - is conducted. The results are demonstrated both
quantitatively by CIE 1976 colour difference (AE) and qualita-
tively as visual comparisons on rendered camera outputs. While
the state-of-the-art deep-network model fails to recover spectra



Figure 3. Colour fidelity test on an example outdoor scene. Top row: the rendered images. Bottom row: the corresponding AE error maps.

Figure 4. Colour fidelity test on an example indoor scene. Top row: the rendered images. Bottom row: the corresponding AE error maps.

with good colorimatric accuracy, the primitive linear regression
and the leading sparse coding model best preserve the colour fi-
delity in spectral reconstruction.
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