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Abstract
Spectral recovery from measured camera signals based on

deep learning lead to significant advancements of the potential
reconstruction quality. However, most deep learning based ap-
proaches only consider RGB cameras and are targeting object
classification in particular or remote sensing in general as their
final application.
Within this work, we analyze the influence of a joint filter opti-
mization and spectral recovery for multi-spectral image acquisi-
tion with the underlying goal of capturing high-fidelity color im-
ages. An evaluation on the influence of the total camera channel
count on the reproduction quality is provided. Finally, a possible
normalization of spectral data is discussed.

Introduction
Capturing high-fidelity color images typically relies on an

accurate measurement of the incident spectral stimuli. The only
possible alternative are dedicated RGB devices having a spec-
tral response that is within a linear transform of the human color
matching functions [1, 2]. However, such an approach is limited
to exactly one human observer and does not allow for a person
specific calibration of the reproduction. Capturing images at a
high spectral resolution while retaining a reasonable spatial as
well as temporal resolution forms an active field of research. Di-
rectly associated is the question on the amount of camera chan-
nels that are actually needed to obtain a sufficient spectral image
in terms of its color accuracy.
The measurement of spectral images using multi-spectral imag-
ing as well as an adequate signal processing to perform the spec-
tral recovery is a long-standing problem. Classical examples
comprise an approach based on the Wiener inverse [3] or tech-
niques based on basis functions [4]. Recently, a variety of deep
learning based methods was proposed and was found to signif-
icantly outperform non-deep learning based approaches. How-
ever, the focus of the deep learning community was almost ex-
clusively on the recovery of spectral images from RGB signals.
A concise overview can for example be found in [5]. The under-
lying motivation was almost never the aquisition of high-fidelity
color-images.
In contrast to assuming imaging devices as fixed entities, it is also
possible to consider a combined filter optimization for achieving
an optimal spectral recovery. Recent non-deep learning based
examples of such approaches are [6, 7]. Within this work, we
focus on the potential color-accuracy of multi-spectral imaging
systems in combination with deep learning and respectively opti-
mized camera response functions. To the best of our knowledge,
there exist three comparable published approaches: Fu et al. [8]
perform a joint filter and spectral recovery optimization using
deep learning. However, they restrict themselves to RGB imag-
ing. Analogously, Nie et al. [9] succesfully learned a superior
RGB Bayer-style 2x2 filter array and constructed a bi-spectral
camera using their obtained response functions. Finally, Gewali
et al. [10] perform a multi-spectral filter optimization for remote
sensing with the spectral data reaching significantly beyond the

Figure 1: Autoencoder like setup for a joint optimization of a
camera response and the spectral reconstruction.
visible wavelength range.
The contribution of this work is as follows: First of all, a joint
optimization of both the algorithm providing the spectral re-
construction as well as the camera response functions is con-
ducted based on modern deep learning techniques. This opti-
mization is not restricted to RGB imaging, although the amount
of considered channels must be fixed beforehand. An analysis
of the influence of the camera channel count on the accuracy of
the spectral reconstruction is provided. Distinct spectral image
datasets were considered, containing different scenarios ranging
from pure spectral object reflectances to scenes captured in the
wild under different lighting conditions. Finally, a normalization
of spectral data is investigated.

Methods
The process of signal formation is modeled using the dis-

cretized process

~ϕ = (ϕ1, ...,ϕn)
T = R~s, (1)

where R ∈ Rnxq denotes the camera response functions and ~s ∈
Rq a spectral stimulus, assuming n camera channels and q spec-
tral sampling points. Eq. 1 can be implemented as a custom layer
of a neural network [9]. Such a layer receives a hyper-spectral
image as input and computes the corresponding raw camera im-
age, e.g. RGB. We implemented our own version not restricted to
RGB imaging devices and therefore capable of simulating multi-
spectral image acquisition. It will from now on be referred to
as projection network. The projection network precedes an es-
tablished network architecture performing the spectral recovery
from camera signals. Both the projection network and the re-
covery network can then be jointly trained based on spectral im-
age datasets under the premise, that the input spectral image, Iin,
should match the output spectral image, Iout , using the error met-
ric Lspectral(Iin, Iout). The resulting network combination is vi-
sualized in Fig. 1 and can be interpreted as an autoencoder. The
projection network represents the encoder and learns the camera
response functions such that the recovery network, the decoder,
may perform the spectral reconstruction in an optimal way.

Constraints
A real-world camera response function is subject to several

physical constraints, that were explicitly considered during the
optimization process.
First of all, positivity of the sensor response is enforced by pass-
ing all coefficients of the response function through a rectified
linear unit before performing the actual projection from spectral
space onto camera signal space.
Next, the smoothness of the response functions is considered.
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Especially in the context of camera device calibration, a wide
variety of approaches has been proposed to enforce smoothness
on the spectral response functions. One possibility is to describe
the sensor response in terms of some inherently smooth basis,
e.g. the Fourier basis as proposed by Finlayson [2]. Within a
deep learning framework, Nie et al. [9] recommend using the L2
norm of the response as regularization term. The approach we
found to work best is to introduce a regularization term

Lsmooth =
1
n

n

∑
i=1

~ri
T D~ri, (2)

with
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(3)

and ri corresponding to the i’th row of the matrix R, as proposed
by Paulus et al. [11]. Equation 2 can be interpreted as the sum
of squared differences of adjacent coefficients or as the energy of
the second order derivative of the response function.
Finally, the signal energy of the response function is considered.
The averaged signal energy of the response function needs to be
minimized and is therefore introduced as another regularization
term,

Lenergy =
1
qn

n

∑
i=1

q

∑
k=1

~ri[k]. (4)

These constraints lead to the total loss function that was
used during training:

L = Lspectral +αLsmooth +βLenergy, (5)

where α and β denote individual weighting terms. Within this
work, the values α = 5 and β = 0.1 were used.

Spectral reconstruction
The spectral recovery was performed with a modern con-

volutional neural network that was previously shown to reach
state-of-the-art performance [5]. We chose the architecture pro-
posed by Stiebel et al. [12] since there is an official implementa-
tion publicly available1. It is a U-Net based architecture that was
modified to perform the regression task of spectral signal recov-
ery. The only difference to the original architecture is the amount
of input channels, which was modified to match the amount of
considered camera channels. For all experiments, the model is
trained from scratch using the original settings. In summary, the
relevant hyper-parameters are a patch size of 32, a batch size
of 10 and an initial learning rate of 0.001 using adam optimiza-
tion. The mean relative absolute error (MRAE) was used as the
spectral loss term Lspectral . Given two spectral cubes of spatial
resolution MxN, the error metric is defined as

MRAE(Iin, Iout)=
1

MNq

M

∑
i=1

N

∑
j=1

q

∑
k=1

∣∣∣∣ Iin[i, j,k]− Iout [i, j,k]
Iin[i, j,k]

∣∣∣∣ . (6)

1https://github.com/tastiSaher/SpectralReconstruction

All parameters of the recovery network were randomly initialized
utilizing a uniform distribution. In contrast, all parameters of
the projection network were fixed to the value 1, i.e. the initial
camera response function equals the value 1 for all channels. The
complete model is implemented in Python using PyTorch and the
training was executed on a GTX 1080 TI.

Spectral Image Data
A total of three different spectral datasets are considered,

each of which was subdivided into a respective training, valida-
tion and testing set. Both the CAVE data [13] as well as the
NUS dataset [14] are used offering image data containing pure
spectral object reflectances. The NUS dataset contains a variety
of different scenes. We restrict ourselves to the general scenes
consisting of 52 outdoor and 36 indoor images. Both datasets
were respectively subdivided into three random subsets of ap-
proximately equal size. Additionally, an extended version of the
ICVL [15] dataset as it was used during the NTIRE 2018 recon-
struction challenge [5] is considered2. In contrast to before, the
ICVL data consists of spectral images captured in the wild, con-
taining spectral reflectance functions under unknown illumina-
tion. In general, there is no information on the illuminant within
the ICVL images available.
If not already the case, all spectral images were resampled within
the spectral domain using a spline interpolation such that all im-
ages have a common spectral sampling range from 400nm to
700nm in 10nm steps. Lighting is computationally added to the
CAVE and NUS images assuming the standard illuminant CIE
D65.

Spectral Data Normalization
We found that working with multiple and distinct spectral

datasets poses a non-trivial challenge for deep learning. A sig-
nificant issue of the different spectral datasets is a difference in
their signal value ranges. We therefore normalized every spectral
dataset, respectively, to a zero mean and unit standard variation

~sn =
(~s− e~1)

σ
, (7)

where e denotes the average signal value across all channels and
images of a single dataset and σ the respective standard devia-
tion. Solely the normalized data is used for training. We will
now show that normalizing the data in the proposed way does
not have any influence on the learned response functions:

~ϕ = R~s

= R(σ~sn + e~1)

= σR~sn + eR~1

~ϕ− eR~1 = σR~sn

(8)

The neural network is effectively learning Eq. 9 when using the
normalized spectra as input,

~ϕn = Rn~sn. (9)

The analogy is directly apparent when comparing Eq. 8 and
Eq. 9. In contrast to learning the original response function, a
normalized version is learned, Rn = σR, that only differs up to
scale. However, this is not even a concern, since we are usu-
ally interested in the relative response function anyway (and the

2available at http://icvl.cs.bgu.ac.il/ntire-2018/
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Dataset Metrics 2 3 4 5 6 7 8

ICVL
RMSE 17.3 11.3 9.48 9.32 9.40 9.15 8.86
MRAE 2.27 1.28 1.13 1.08 1.06 0.999 0.964
GFC 0.99957 0.99986 0.99989 0.99989 0.99989 0.99991 0.99991

CAVE
∆E00 3.8 1.3 1.1 0.92 1.1 1.2 1.2

RMSE 1.66 0.827 0.704 0.632 0.709 0.679 0.7
MRAE 20.5 15.0 13.6 12.9 13.5 13.7 13.6
GFC 0.98434 0.9944 0.99556 0.99567 0.99536 0.99533 0.99523

NUS
∆E00 4.1 2.0 1.5 0.89 0.78 0.62 0.77

MRAE 11.1 8.14 6.15 5.05 4.49 4.24 4.33
RMSE 2.18 1.72 1.14 0.919 0.789 0.748 0.721
GFC 0.99279 0.996 0.99778 0.99856 0.99881 0.99891 0.99894

Table 1: Average reconstruction quality over the channel count.
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Figure 2: The spectral reconstruction error over the camera chan-
nel count for the ICVL data.
scaling factor is even known). Rn retains all major properties of
R. Of greater interest is the introduced constant offset,~c = eR~1,
of the camera signal values, which might be interpreted as a
weighted ideal white point. In the final application, the decoder
network will be used as a stand-alone for only performing the
task of spectral reconstruction from camera images. Any poten-
tial input signal, ~ϕ , must be modified beforehand according to

~ϕn = ~ϕ−~c. (10)

Results & Discussion
The joint projection and recovery network was respectively

trained on each dataset with an increasing amount of camera
channels ranging from two to nine. For the evaluation, all im-
ages of the testing sets were processed in the same way. A
simulated multi-spectral image was created using the learned re-
sponse functions. Subsequently, the spectral recovery was per-
formed. The quality of the obtained spectral reconstruction was
evaluated using multiple error metrics. First of all, the root mean
squared error (RMSE), the mean relative absolute error (MRAE)
and the goodness-of-fit coefficient (GFC) [16] are provided to
evaluate the reconstruction within the spectral domain. For both
the CAVE and NUS datasets, the color accuracy was evaluated
based on the CIEDE2000 color difference [17], ∆E00, with re-
spect to CIE D65 lighting.
The average reconstruction errors over the respective test sets are
summarized in Tab. 1. Fig. 2 visualizes the general quality of the
spectral reconstruction vs. the channel count for the ICVL data.
The intuitive result is directly observable: the reconstruction er-
ror decreases the more channels are available. When compar-
ing the 3 channel system trained on the ICVL data to the results
achieved at the NTIRE challenge, a significant performance in-
crease can be observed due to the optimized response functions,
whereas the challenge employed human color matching func-
tions [5]. The high reconstruction errors on the CAVE dataset
can be attributed to its comparably low training data size. For
comparison, the ICVL training data size is approximately 180
times of the size when using the CAVE dataset instead. Still the
trend holds, that with an initially increasing channel count the

reconstruction error decreases. However, the higher the channel
count becomes, the more training data can be expected to be re-
quired due to an increased complexity of the reconstruction. This
is why for channel counts higher than six the reconstruction qual-
ity becomes worse for the CAVE data. The complexity increases
while the underlying dataset size was probably insufficient for
the considered workflow from the start. The achieved results on
the NUS dataset are consistent and within expectation. An exem-
plary image of an achieved reconstruction when using 3 camera
channels and the NUS data is visualized in Fig. 3. Noteworthy
are the color checker charts which appeared to be the most chal-
lenging while the underlying scenes were well reconstructed.
In general it can be summarized, that the major and reliable gain
in reconstruction quality can be found within the first channels.
For example, adding an additional channel to a RGB system has
a significantly higher impact than increasing the channel count
from 7 to 8. It can be stated that the potential improvement is
comparably negligible once five channels have been reached.

Finally, the learned camera response functions are analyzed.
Fig. 4 shows the learned relative camera response functions for
an increasing channel count when trained on the ICVL data. The
learned response functions when instead trained on the CAVE or
NUS data are comparable. At first glance, the learned functions
show a remarkable resemblance to known filter design. They ba-
sically appear as Gaussian-like functions that are equally spaced
over the wavelength range. A major difference to human design
is a lack of uni-modality, although most of the learned response
functions can be interpreted as uni-modal Gaussians. A close
examination reveals that some channels contain multiple band-
passes at once. For common multi-spectral camera design, the
channels usually become the more narrowband the more cam-
era channels there are. This does not appear to be the case for
the learned response functions. Broadband channels appear to be
preferred, even for higher channel counts. A closer examination
will be necessary in order to decide if this is simply an effect due
to the chosen constraints on the camera response functions or if
the broadband characteristic is actually superior, which will be
investigated in future work.

Conclusion
Within this work, we successfully optimized both the spec-

tral sensitivity as well as the spectral recovery from measured
camera signals in a joint fashion for multi-spectral imaging de-
vices. This could be achieved by employing modern deep learn-
ing techniques in conjunction with physically based regulariza-
tion terms. A normalization for distinct hyper-spectral datasets
was proposed, allowing for a general application of deep learning
based approaches without the necessity for any modifications. It
was found that a channel count of 5 is already sufficient for pro-
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Figure 3: Visualization of reconstructed spectral bands for an NUS test image under simulated CIE D65 illumination.
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(b) 4 channel
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(c) 5 channel

Figure 4: Exemplary learned relative spectral sensitivity functions on the ICVL dataset.
viding highly accurate spectral images within the visible wave-
length range, when the spectral recovery is performed using a
state-of-the-art neural network. A further increase of channels
does only slightly improve the accuracy of the spectral measure-
ment. However, it should be noted that depending on the appli-
cation, the used spectral resolution of the ground-truth spectral
images themselves comprising 31 channel ranging from 400nm
to 700nm can be seen as too low. Extremely narrowband spikes
originating from e.g. fluorescent light sources can hardly be ex-
pressed in such a way. The underlying spectral image data should
therefore be considered as rather well behaved and smooth.
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