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Abstract 
This paper implements an appearance rendering workflow 

using the iccMAX architecture with the aim of reproducing the 

directional appearance of surface colours on a display. In 

previous work, the prints were measured bidirectionally using 

an image-based measurement setup, and the bidirectional 

reflectance distribution function of the materials was estimated 

using the well-established Ward reflectance model. This function 

was applied in a colour managed workflow using the ICC.2 

architecture to render the appearance of the prints on a display. 

The seven used as samples to the renderings.  

Introduction 
Colour management is increasingly concerned with the 

rendering of appearance rather than solely colorimetry. While 

3D rendering softwares like Mitsuba renderer is able to apply 

sophisticated models to generate realistic simulations, there is a 

need to integrate appearance reproduction into existing colour 

management frameworks that can be implemented in production 

and process control. 

Modeling the appearance of a material/object surface 

should take into account the directions of incident light and 

viewing, together with the optical properties of the material. A 

reflectance model such as Cook-Torrance or an empirical Ward 

model is commonly used in computer graphic to model material 

reflectance properties and estimate the bidirectional reflectance 

distribution function (BRDF) [1]. Reflectance models can be 

classified into physical or phenomenological models. Physical 

models use optics and physics to define the function using the 

micro facet theory, while phenomenological models use 

analytical models to fit measured data and estimate reflectance 

[1].  

A series of directional measurements can be used to 

optimize reflectance model coefficients which can then be used 

to estimate material BRDF at a given incident and viewing 

direction. Bi-directional reflectance can be measured with a 

goniospectrophotometer but this can be relatively time 

consuming [2]. To overcome this limitation, image-based 

measurement setups have been proposed and used [2-4]. 

Marschner et. al. [3] demonstrates such a measurement setup to 

measure a variety of different samples like paints, and human 

skin. A similar setup was used by Sole et. al. [5,6] to measure 

packaging print materials and estimate material BRDF by 

optimizing the coefficients of the Cook-Torrance [7] and the 

isotropic Ward [8] models. In [5], a printed sample that is 

wrapped around a cylinder of known radius is illuminated using 

a point light source and the resulting radiance from the curved 

sample is measured using an RGB camera as detector. Figure 1 

shows the schematic of the measurement setup used by Sole et. 

al [5, 6].  

The measurements thus obtained were used to optimize 

reflectance model coefficients to estimate the full BRDF of the 

measured samples [2, 6]. These optimized reflectance model 

coefficients can be used to obtain a rendering of the materials at 

different illumination and viewing directions.  

A software renderer such as Mitsuba [10] can apply 

different reflectance models to generate realistic simulations 

either spectrally or in the sRGB domain. Integrating the renderer 

into existing colour management frameworks however can be a 

challenge. The ICC.2 (iccMAX) architecture [16] recently 

introduced by the International Color Consortium (ICC) 

incorporates a stack-based scripting language that makes it 

possible to encode a functional transform such as BRDF [11] 

within the profile. 

 
Figure 1. Image-based measurement setup [9]. 

In this paper, we use the BRDF coefficients calculated by 

Sole et. al. to optimize the isotropic Ward reflectance model. The 

coefficients were used as input data to the Ward model encoded 

in an iccMAX profile, which was then used to compute the 

colorimetry of a sample at different incident and viewing 

directions. 

The objectives of the work presented in paper are: 

1. to show a BRDF workflow is possible using iccMAX 

2. to describe the implementation, performance and 

limitations of this workflow. 

Image-based measurement 
The samples used by Sole et al [5] were wax based inks 

printed on a matte coated white paper. They were pasted as strips 

on a circular structure with a marked angular ruler at the bottom 

as shown in Figure 1. Seven different colour samples namely, 

white, red, cyan, Pantone 10309C, magenta, Pantone 10213C 

and Pantone 10253C were printed using an OCE ColourWave 

600 printer. These samples were measured using the image-

based setup for 10 different illumination angles.  

A tungsten illumination source was configured to 

approximate a point light source and the acquisition system was 

a Nikon D200 DSLR camera. The setup is shown in Figure 1 

where the semi-circle S is the sample with radius R and center O. 

C is the position of the sensor (camera) placed normally from the 

mid-point of S at a distance dC from O. L is the position of the 

light source at a distance dL from O. The RGB intensities were 

taken from the raw images of the samples and the incident and 

reflected angles at each pixel (P) were calculated from the 

illumination angles (θL). (Full details can be found in Sole et. al. 

[5, 6]). The captured RGB intensities were converted to XYZ 

using the matrix M derived using the camera spectral sensitivity 

and the CIE 2° observer colour matching function [12].  

The cyan and magenta samples were measured by Sole et. 

al. in [5] using a telespectroradiometer. These measurements 

provide a reference for analysis of the colorimetric output from 

the ICC profiles implemented in the present study. 
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Ward Model  
As the samples are isotropic and planar, the isotropic Ward 

model was used to fit the measured reflectance data [5]. The 

equation for the isotropic and planar Ward model in this case is 

given by equation 1. 

 
 

where Ip is the camera colorimetric output (XYZ) at pixel P 

with incident angle θi and reflection angle θr. Ii is the incident 

light intensity, Rdx, RdY and Rdz are the spectral diffuse reflectance 

components, ks is the specular coefficient of the sample and cosδ 

= cos((θi – θr)/2) at pixel P [5].  

Obtaining Ward Model coefficients 
Reflection coefficients Ks, Rdx, RdY and Rdz and m were fitted 

and optimized using the Nelder-Mead downhill simplex 

algorithm [13], with ∆E00 colour difference as the objective 

function [5]. 

Method 

Workflow using iccMAX 
A colour management framework applies a series of 

transforms in order to connect the source values to a destination 

colour space. In our case we wish to connect input data to a 

simulation of the directional appearance on a display. The 

connection from source device to XYZ, and from XYZ to display 

device, can be handled by device profiles, and so the core task 

addressed in this paper is to transform from XYZ representing 

the diffuse reflectance to an adjusted XYZ representing the 

appearance of the material once the angles of illumination and 

viewing have been taken into account.  

Implementing the Ward model as described above is not 

possible within the colour management architecture defined by 

ICC.1 [14, 15] since this specifies a point-wise transform with a 

limited set of transform elements (curve, matrix and look-up 

table), and the Profile Connection Space (PCS) is defined to 

represent a matt, diffusely reflecting planar surface measured 

with a 0:45 geometry, and with a D50 illuminant. 

ICC.2 [16], however, extends the ICC.1 architecture and 

provides a much richer support for colour management of other 

types of material and other geometries of measurement and 

viewing. Of relevance to our application, ICC.2 supports a wider 

range of transform elements, and fully directional illumination, 

measurement and viewing geometries. 

ICC.2 incorporates the curve, matrix and LUT elements of 

ICC.1, but with fewer restrictions - unlike the fixed element 

sequence in ICC.1 transforms, they are defined more flexibly and 

can be applied in any number and order. ICC.2 also includes an 

option to use the 'calc' element, a script language which makes 

transforms fully programmable. 

There are two basic modes in which BRDF data can be 

incorporated in an ICC.2 profile. Where it is expected that an 

external application, such as 3D rendering software, will perform 

the processing, BRDFStruct tags allow parameters for a BRDF 

model to be provided with the image data. Such an example was 

outlined by Vogh [17]. Where it is desired that the colour 

management module (CMM) use the device data and BRDF 

parameters to compute PCS values representing the appearance 

of a material at a given illumination and viewing angle, the 

required processing can be performed by the ICC.2 CMM. In this 

case the transform must be defined by the profile creator, since 

while ICC.2 includes tags which allow angular geometry to be 

input with the image data, a conforming CMM is not required to 

have the ability to apply a BRDF model. 

Although other ICC.2 transform elements could in principle 

be used to specify a BRDF transform, the most direct way to 

encode such a model is to use a calc element. A calc element is 

incorporated in a multiProcessingElement, which can be 

included in many of the ICC.2 transform types. BRDF Function 

tags, for example, provide four channels for specification of 

illumination and viewing angles in terms of both azimuth and 

elevation, in addition to the channels representing the source 

colour space. However, in our application we wish to define five 

optimized parameters for each colour for the Ward BRDF model, 

as described above, and rather than specify illumination and 

viewing angles for each pixel we only define a single set of 

angles for the image. 

The brdfBToA1Tag provides additional channels for 

specification of illumination and viewing angles, but not for 

parameters as defined by the Ward model.  

Other options for defining these parameters include: 

- using an xCLR colour space, where x would be the number 

of source colour space channels plus four, in conjunction 

with an AToB1 tag. 

- using a multiplex connection space (MCS) that supports 

the additional channels. 

Since the model parameters identify the material rather than 

the colour, in this initial implementation we have chosen to use 

an MCS to connect input XYZ data and optimized coefficients 

with the visualization. 

Multiplex Connection Space 
Data representing multiple channels is passed into an MCS 

by a Multiplex Identification (MID) profile. Once in the MCS, 

the channels can be routed through different pathways depending 

on the requirements. A Multiplex Visualization (MVIS) profile 

can be used to connect the channels to a colorimetric or spectral 

PCS, performing any processing needed to convert to this PCS 

[18]. The multiplexTypeArrayTags is defined to assign channel 

names and is used to match channels in and out of the MCS, and 

check channel compliance to any subset requirements between 

profiles. The optional multiplexDefaultValuesTag defines 

default values for channels. A MID class profile uses an AToM0 

tag to provide the transform from device channel data to MCS 

channel data while MVIS class profile can use MToS0 (spectral) 

or MToB0 (colorimetric) tags to provide transform from MCS 

channel data to PCS channel data. Once the source and 

destination profiles are connected, the source MCS channels 

connect to the destination MCS channels with matching names 

[16]. The workflow of MID – MVIS connection with no subset 

requirements is used to encode the Ward model as shown in 

Figure 3. The Ward model is encoded in a calculatorElements 

tag as a main function [19]. 

In this workflow, the BRDF model optimized coefficients 

(Rdx, RdY, Rdz,, ks and m) for each sample are passed through 

‘nc0005’ input channels to the MID profile. These 5 input 

channels are passed to the MVIS profile through MCS 

connection. The desired viewing angles θi and θr are passed in at 

run-time as environment variables (incident and reflection 

respectively) to the MVIS profile, where the Ward model is 

encoded as in Eqn. 1 inside the calculator element tag of MToA0 

tag. The MVIS profile takes the 5 input channels, together with 

the environment variables for incident and viewing angles, and 
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applies the encoded Ward model to output PCS XYZ [19]. This 

workflow was implemented as follows: 

1.  A TIFF file is used to store per pixel the five BRDF 

coefficients Rdx, RdY, Rdz,, ks and m. 

2. A MID profile reads these channels from the TIFF file 

and passes them to the MCS.  

3. An MVIS profile then takes the channels from the 

MCS and applies the BRDF ward model using the parameters 

pixelwise. Finally, a new TIFF file is created with the estimated 

XYZ values for the given incidence and viewing angles. 

 

 

 
Figure 2. MID-MVIS to encode Ward Model workflow. 

Custom PCS 
The measured radiance of the source light used to illuminate 

the samples [5], after normalization, was (0.97, 1, 0.484). Since 

this is different from the standard D50 PCS used in ICC colour 

management, a customToStandardPccTag has to be defined with 

the tag signature ‘c2sp’ as a multiProcessElementType. This tag 

converts from the custom colorimetry to standard D50 

colorimetry. The matrix to be included inside this tag is the 

chromatic adaptation transform matrix from custom white point 

as the source to D50 white point as the destination. Similarly, a 

standardToCustomPccTag using tag signature ‘s2cp’, is required 

to define the inverse of this chromatic adaptation transform 

matrix.  The linear Bradford chromatic adaptation transform was 

used to create the 3x3 transform matrix from custom source 

white point to D50, as recommended in the ICC specification.  A 

spectralViewingConditions tag is also defined to include the 

spectral power distribution of the illuminant, colour matching 

functions (CMFs) of the observer and the lighting levels of the 

surround [16]. 

Results and discussion 
The profiles created were applied to TIFF files containing 

BRDF parameters to obtain XYZ values for different pairs of 

(incidence, reflection) angles, for each sample. A summary of 

the results is given in Table 1, a selection of reflectance functions 

for cyan and magenta are compared with measured values In 

Figures 3-8, and a visualization of the results is shown in Figures 

9-12.  

Performance of profiles relative to Ward model 
predictions 

Table 1. shows the ΔE2000 calculated between the 

estimated XYZ obtained by applying the ICC profile and the 

estimated XYZ obtained by Sole et. al. [5] and ΔE2000 

calculated between the estimated XYZ obtained by applying the 

ICC profile and the estimated XYZ obtained by isotropic Ward 

model implemented in MATLAB for cyan sample with 

incidence and reflection angles as (40⁰, -10⁰), (40⁰, 0⁰), (40⁰, 
10⁰) and (40⁰, 30⁰). In this paper, reflection angle is synonymous 

to viewing direction. The ΔE2000 calculated between MATLAB 

is negligible while the ΔE2000 with Sole et.al. is less than 1.0. 

 

(θi, θr) ΔE2000   

(a) 

ΔE2000  

(b) 

(40⁰, -10⁰) 0.6407 0.0011 

(40⁰, 0⁰) 0.6644 0.0010 

(40⁰, 10⁰) 0.7157 5.8370e-04 

(40⁰, 30⁰) 0.8636 1.2928e-04 

Table 1. (a) ΔE2000 between estimated XYZ obtained by Sole. et. al. and 

estimated XYZ obtained using ICC profiles and (b) ΔE2000 between 

estimated XYZ obtained using MATLAB and estimated XYZ obtained using 

ICC profiles for cyan sample with incidence and reflection angles as (40⁰, -

10⁰), (40⁰, 0⁰), (40⁰, 10⁰) and (40⁰, 30⁰).Performance of Ward model 

encoded as ICC profile in predicting directional measurements 

In Figure 3, Figure 4 and Figure 5 for incidence angles 30⁰, 

45⁰ and 60⁰ respectively of the cyan sample, the Y values of the 

estimated XYZ using the MVIS profile, estimated XYZ adapted 

to D50, D65 and A illuminants and the reference XYZ with D50 

white point are plotted for reflection angles ranging from 80⁰ to 

-80⁰ in steps of 5⁰. The estimated Y curves predict the specular 

lobe on the left of the y-axis at the correct reflection angles when 

compared to the reference Y curve.  Although in Figures 4 and 

5, as the incidence angle increases the Y values near the specular 

lobe are somewhat underestimated.  

 

 
Figure 3. For cyan sample and incidence angle 30⁰, the reference Y, 

estimated Y, estimated Y adapted to D50, adapted to D65 and adapted to 

A values are plotted in the y-axis and reflection angles from -80⁰ to 80⁰ in 

the x-axis. 

Similarly, in Figures 6-8 for the magenta sample and 

incidence angles 30⁰, 45⁰ and 60⁰respectively, the Y values of the 

estimated XYZ using MVIS profile, estimated XYZ adapted to 

D50, D65 and A illuminants and the reference XYZ with D50 

white point are plotted for reflection angles ranging from 80⁰ to 

-80⁰ in steps of 5⁰. Although in Figure 6 the Y values near the 
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specular lobe are overestimated, in Figures 7 and 8 as the 

incidence angle increases the Y values near the specular lobe are 

largely underestimated.  

 

 
Figure 4. For cyan sample and incidence angle 45⁰, the reference Y, 

estimated Y, estimated Y adapted to D50, adapted to D65 and adapted to 

A values are plotted in the y-axis and reflection angles from -80⁰ to 80⁰ in 

the x-axis. 

 
Figure 5. For cyan sample and incidence angle 60⁰, the reference Y, 

estimated Y, estimated Y adapted to D50, adapted to D65 and adapted to 

A values are plotted in the y-axis and reflection angles from -80⁰ to 80⁰ in 

the x-axis. 

 
Figure 6. For magenta sample and incidence angle 30⁰, the reference Y, 

estimated Y, estimated Y adapted to D50, adapted to D65 and adapted to 

A values are plotted in the y-axis and reflection angles from -80⁰ to 80⁰ in 

the x-axis. 

Figures 9 -12 are sRGB images of estimated XYZ at 

incidence angles -30⁰, 0⁰, 45⁰ and 60⁰ for reflection angles from 

[-80⁰,80⁰] in steps of 5⁰ of cyan, magenta, Pantone 10309C and 

Pantone 10213C samples respectively, used by Sole et al [5]. 

These sRGB images are created after adapting the estimated 

XYZ values to D65 and then converting them to sRGB. From the 

images the increased reflectance of the specular lobe can be seen, 

and as the difference between the incidence angle and the normal 

at 0⁰increases, the shades become darker. 

 

 
Figure 7. For magenta sample and incidence angle 45⁰, the reference Y, 

estimated Y, estimated Y adapted to D50, adapted to D65 and adapted to 

A values are plotted in the y-axis and reflection angles from -80⁰ to 80⁰ in 

the x-axis. 

 
Figure 8. For magenta sample and incidence angle 60⁰, the reference Y, 

estimated Y, estimated Y adapted to D50, adapted to D65 and adapted to 

A values are plotted in the y-axis and reflection angles from -80⁰ to 80⁰ in 

the x-axis. 

 
Figure 9. sRGB image of estimated XYZ at incidence angles -30⁰, 0⁰, 45⁰ 

and 60⁰ for reflection angles from [-80⁰,80⁰] in steps of 5⁰ of cyan sample. 

 
Figure 10. sRGB image of estimated XYZ at incidence angles -30⁰, 0⁰, 45⁰ 

and 60⁰ for reflection angles from [-80⁰,80⁰] in steps of 5⁰ of magenta 

sample. 

 
Figure 11. sRGB image of estimated XYZ at incidence angles -30⁰, 0⁰, 45⁰ 

and 60⁰ for reflection angles from [-80⁰,80⁰] in steps of 5⁰ of cyan sample. 
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Figure 12. sRGB image of estimated XYZ at incidence angles -30⁰, 0⁰, 45⁰ 

and 60⁰ for reflection angles from [-80⁰,80⁰] in steps of 5⁰ of cyan sample. 

The results show that the Ward BRDF model behaves as 

expected with a smooth Gaussian output when encoded in an 

ICC profile. These results also show that the performance of an 

ICC profile encoded BRDF rendering is equivalent to rendering 

with other computational tools.  

Conclusions 
Based on a method to obtain fast and low-cost multi angle 

measurements [5], this paper demonstrates how to extract the 

BRDF parameters and perform appearance rendering through 

ICC profiles for any incident light angle and viewing angle pair. 

Using the MCS connection an efficient reflection model 

workflow was implemented to render final colorimetric (of 

device) values for the seven samples with the incident and the 

reflection angles passed at runtime. The BRDF parameters were 

passed pixelwise using a TIFF file. This colour-managed 

workflow gives identical results to the Ward model 

implementation in Matlab for the equivalent adapted 

colorimetry, and agrees well with previous results [5]. 

The Ward model as implemented accurately predicts the 

reflection angle of the specular lobe. While it performs well in 

estimating the measured reflectance at different angles of some 

of the samples, in others it performs less well. This may be due 

to a failure to take the angular reflectance properties fully into 

account in deriving the optimized model parameters. 

In the future, other reflectance models beyond the isotopic 

Ward model should be tested. These preliminary results have 

highlighted some of the limitations and the improvements 

required. Different metrics could be chosen for optimization of 

BRDF parameters, with weighting for different appearance 

parameters such as hue, lightness or chroma, if required. Other 

BRDF measurement setup should be compared to the one 

discussed here. For non-planar surfaces the workflow could 

incorporate incidence and/or viewing angles per pixel in addition 

to model parameters. 
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