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Abstract
Previously, a method has been developed to find the best

colour filter for a given camera which results in the new effective
camera sensitivities that best meet the Luther condition. That
is, the new sensitivities are approximately linearly related to the
XYZ colour matching functions. However, with no constraint,
the filter derived from this Luther-condition based optimisation
can be rather non-smooth and transmit very little light which are
impractical for fabrication.

In this paper, we extend the Luther-condition filter optimi-
sation method to allow us to incorporate both the smoothness
and transmittance bounds of the recovered filter which are key
practical concerns. Experiments demonstrate that we can find
physically realisable filters which are smooth and reasonably
transmissive with which the effective ‘camera+filter’ becomes
significantly more colorimetric.

Introduction
Digital cameras measure colours of an image with three sen-

sors and use all three components (e.g. RGB values) to represent
a pixel colour. If colour values produced by a camera can be
linearly transformed to the ground-truth XYZ tristimulus values,
we call the camera a colorimetric device [1]. Exact colour re-
production is ensured if the Luther condition is satisfied, i.e. the
camera spectral sensitivities are a linear transform from the CIE
XYZ colour matching functions [2]. While most cameras can
make reasonable colour measurements - their recorded RGBs,
mapped by a 3× 3 colour correction matrix are plausibly similar
to the corresponding XYZ tristimuli - though they are far from
being colorimetric.

Figure 1 shows a human observer and a camera viewing the
Macbeth ColorChecker under a standard CIE D65 illuminant [3].
The camera triplets (after the linear colour correction) and its
XYZ values of the patch representing light skin colour are given.
Even after the colour correction, the camera records rather dif-
ferent colour values compare to the XYZs. Also shown are the
colour sensitivities of the camera linearly fitted to the XYZ colour
matching functions. Remember a camera is colorimetric only
if the XYZ matching functions are similar to the fitted camera
curves, here they are close but still quite different.

Finlayson et al. [4] found a colour filter through optimisation
such that the new effective ‘camera+filter’ system returns the least
error with respect to the Luther condition and thus makes the
camera much more colorimetric. The filtered camera sensitivities
linearly fitted to the XYZ colour matching functions are shown
on the bottom of Fig.1. And, the resulting measured camera
responses are now similar to the actual XYZs. Also the optimised
filter is shown on the bottom left.

Clearly, from the figure the filter that renders the camera
closest to satisfying the Luther condition has problems. For much
of the visible spectrum it absorbs most of the incoming light.
And, it varies sharply over the spectrum which can mount great

Figure 1: An observer and a camera viewing the Macbeth Chart
under D65. The linearly fitted camera spectral curves are plotted
against the colour matching functions. By applying the optimised
filter, the camera nearly meets the Luther condition with its re-
sponses better approximating to XYZ tristimulus values.

challenge to manufacture it precisely. Potentially, the colorimetric
performance of the filter will be vulnerably degraded to small
perturbation in the fabrication process. Thus the optimal filter ob-
tained from the Luther-condition optimisation will not necessarily
results in the optimal realisable filter.

In this paper, we extend the Luther-condition based filter
design [4] to find a filter which is shaped in a smoothing man-
ner with plausible transmissivity. We take inspiration from the
work of Vora et al. [5] who emphasized the importance of the
smoothness property of the filter transmittance curves for the fab-
rication process. This led Vora and Trussell [6] proposed to use
a sum-of-gaussian functions for constructing a smooth filter set
for colour scanners. In our work smoothness will be enforced by
specifying filters as a linear combination of the first few terms of a
cosine basis expansion. Transmittance constraints are enforced by
reformulating the minimisation as a linearly constrained quadratic
optimisation problem [7].

Experiments demonstrate that we can find highly transmis-
sive and smooth filters that can greatly improve the colorimetric
performance of a camera and thus we can use the ‘camera+filter’
setting for applications where high accuracy of colour measure-
ment is needed.

Background
Image Formation

The colour formation of a pixel, under the Lambertian sur-
face model, can be written as

ρ =
∫

ω

E(λ )S(λ )Q(λ )dλ (1)
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where E(λ ), S(λ ) and Q(λ ) respectively denote the spectral
power distribution of the illuminant, the spectral reflectance func-
tion of the surface and a vector function of camera spectral sen-
sitivities (i.e. R-, G-, and B- channels). The camera response ρ

is a 3-component vector resulting from the product of these three
factors integrating over the visible spectrum ω . The product of
E(λ )S(λ ) is termed as the colour signal, C(λ ). Henceforth, we
will use C(λ ) to represent the spectral product of the light and
reflectance for convenience.

Practically, this continuous integration can be well approx-
imated by the summation of the product of discretely sampled
data:

ρ ≈
λn

∑
λi=λ1

C(λi)Q(λi)∆λ (2)

where the wavelength range from λ1 to λn are divided by the
equal width ∆λ [8]. In this paper we take the visible spectrum
over which the summation in Eq. (2) is made from 400 nm to 700
nm and using the commonly accepted sampling rate of ∆λ = 10
nm therefore makes 31 sampling points for a spectrum.

Equation 2 can be written in the vector-matrix formula:

ρ =CT Q (3)

where T denotes the matrix transpose operator. Q is an 31× 3
matrix with each column denoting the sampled sensor spectral
sensitivity curve (and the sampling distance is incorporated within
Q). C is a 31-dimensional vector denoting a sampled colour signal
spectrum.

Let X represent the sampled CIE1931 XYZ colour match-
ing functions. The XYZ tristimulus response to a colour signal
spectrum C is written as:

x =CT X (4)

Luther Condition
The Luther-condition is fully satisfied when the spectral

response curves of the camera become exactly a linear transform
from the CIE XYZ colour matching functions. Mathematically,

X = QM (5)

where M is a 3×3 mapping matrix.
If a camera meets the Luther-condition, for any two colour

signals produced the same values by the camera sensors, they
should also make the same XYZ stimulus values:

CT
1 Q =CT

2 Q M
=⇒ CT

1 X =CT
2 X (6)

and thus are indistinguishable to the observer. Here we gives a
precis of the Luther condition. Readers are referred to [1] for
details.

Luther-condition Based Filter Optimisation
Let the vector f denotes the spectral transmittance of a colour

filter. Placing a colour filter in front of a camera can be modeled
as, at each sampled wavelength, the product of the filter and
the camera response curves. This is mathematically written as
diag( f )Q where diag() turns the filter vector into a diagonal
matrix with its values on the main diagonal.

The Luther-condition based filter design proposed previ-
ously [4] is to specify the spectral curve of a filter when placed
in front of a given camera that best maps the new effective cam-
era spectral sensitivities—after a linear correction—to the colour

matching functions. The filter and the correction matrix that best
satisfy such condition are found by minimising:

min
f ,M
‖ diag( f )QM−X ‖2

F , s.t. f > 0 (7)

where ‖ ‖2
F denotes the square of the Frobenius norm (i.e. the sum

of the squares of all elements in the matrix). Note that the filter
is also constrained to be positive since a physical filter should
have non-negative transmittance. This modified Luther-condition
optimisation aims for the best f and 3×3 linear transform M that
return the least errors between the two spectral sensitivities sets.

Luther Filter Optimisation under Constraints
Let us denote the minimum and maximum filter transmit-

tance bounds as:

fmin ≤ f ≤ fmax. (8)

Under such constraints, the filter transmittance should fall within
the range of the upper threshold fmax and the lower threshold fmin
over the whole spectrum. For a physically realisable filter, it can
transmit maximally 100% of the incident light while in the ex-
treme case, it can absorb all the lights (and therefore transmits 0%
light). Our desire is to let the filter overall transmit as much light
as possible. This is achieved by raising up the lower boundary
fmin while keeping fmax = 100% (as fully transmissive).

We also would like to modify the filter design optimisation
so that the solved-for filter is smooth. Let us represent the f as
belonging to a linear basis:

f = Bc (9)

where B has size of 31×m where basis vectors are aligned up
column-wisely and vector c contains the coefficients for each basis.
In this paper, we adopt the discrete cosine series expansion [9] and
take linear combinations of the first m orthonormal basis to make
smooth filters. Because the individual terms of the cosine basis
are smooth, any linear combination of this basis is also smooth.

Now let us rewrite the filter optimisation in Eq. (7) under
constraints as

min
c,M
‖ diag(Bc)QM−X ‖2

F s.t. fmin ≤ Bc≤ fmax (10)

Solving the Minimisation
The optimisation in Eq. (10) has no closed-form solution.

Fortunately, the coefficient vector c and matrix M can be solved
individually in closed form of least-squares regressions. Thus,
we use the Alternating Least-Squares (ALS) technique to solve
for the optimisation. Promisingly the alternating least-squares
method is guaranteed to converge (although not necessarily to the
global optimum) [10].

Algorithm 1 presents the workflow of using the ALS method
to find the filter and correction matrix. Specifically, we solve
for the filter f by holding the matrix M fixed (see step 4) and
alternatively using the newly solved filter to solve for the matrix M
(see step 5) and the process will continue updating both matrices
in turn until it converges to a predefined error threshold (see step
7).

In the following, we will demonstrate how to in turn solve
the filter and correction matrix in the least-squares way. Given a
known coefficient vector c for the corresponding basis matrix B,
the correction matrix M can be solved by:

M = [diag(Bc)Q]+X (11)
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Algorithm 1 ALS algorithm for the constrained Luther-condition
filter optimisation

1: i = 0, Q0 = Q
2: repeat
3: i = i+1
4: min

ci
‖ diag(Bci)QMi−1−X ‖2

F , fmin ≤ Bci ≤ fmax

5: min
Mi
‖ diag(Bci)QMi−X ‖2

F

6: Qi = diag(Bci)QMi

7: until ‖ Qi−Qi−1 ‖2
F < ε

8: f = f i and M = Mi

where + denotes the Moore-Penrose pseudo-inverse [11].
To solve for the filter, it is useful to vectorize the minimisa-

tion. The vecterisation, denoted vec(), transforms a matrix to a
vector by stacking its columns on top of one another. By using
the vecterisation, we can rewrite the minimisation as:

‖ vec(diag( f )QM)− vec(X) ‖2
F (12)

Now let us rewrite the diagonal filter matrix as a summation
of each value in the diagonal, fi, with a single entry matrix Di
as diag( f ) = ∑

31
i=1 fiDi. Di is a 31×31 matrix with a single non-

zero entry D(i, i) = 1. By substituting the filter matrix using this
new representation into Eq. (12), we obtain

vec(diag( f )QM) =
31

∑
i=1

fi vec(DiQM) (13)

as the vectorisation operator and summation are commutative.
Denoting V = [v1,v2, · · · ,v31] where vi = vec(DiQM),

Eq. (13) can be expressed more compactly using matrix-vector
multiplication as

vec(diag( f )QM) =V f (14)

Note that DiQM has the size of 31×3, so after vectorisation, vi
is a 93×1 vector which makes V a 93×31 matrix.

Denoting w for vec(X), the Luther-condition filter optimisa-
tion under constraints can be rewritten as

min
c
‖V Bc−w ‖2

F s.t. fmin ≤ Bc≤ fmax (15)

The above minimisation can be solved as a quadratic problem
subject to linear inequality constraints as

min
c

cT BTV TV Bc−2wTV Bc s.t. fmin ≤ Bc≤ fmax (16)

Experiments and Results
The Luther-condition filter optimisation is performed on a

Canon 5D Mark II camera with measured spectral sensitivity
functions [12]. In the first experiments, we are solving for the
best filter of the testing camera using 6, 8 and 10 cosine basis
functions. In these cases, we seek the filters that pass at least
20% of the incident light. For each experimental condition, we
solve for the best filter (equivalently the coefficients for the cosine
basis) and the best correction matrix using Algorithm 1.

The spectral transmittance distribution of the best filters
under these conditions are shown in Fig. 2a. For reference, we
also plot the best Luther filter with no constraint i.e. we run the
original optimisation [5] (see the dashed black line denoted by
‘LUTH’). Evidently, the fewer cosine basis functions we use, the
smoother the filter becomes.
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Figure 2: Spectral distribution of Luther-optimised filters. (a)
filter with no constraint (dotted black line), filters constructed by
6-, 8- and 10-term cosine basis functions with the minimum trans-
mittance of 20% (coloured solid lines). (b) filters with minimum
transmittance of 20%, 30% and 40% composed by 8-cosine basis.

To quantitatively measure the goodness of spectral sensitivi-
ties match between the camera sensors and XYZ colour matching
functions (after linear transform), we calculate the normalised
root-mean-square error (NRMSE). This error metric is defined as

NRMSE =
‖ QM−X ‖F

‖ X ‖F
(17)

where Q and X are camera sensitivities and colour matching
functions. The best least-squares fit between two sets of spectral
sensitivities can be found using Moore-Penrose inverse, i.e. M =
Q+X = (QT Q)−1QX . Similarly, for the ’camera+filter’ system,
denoting Q = diag( f )Q, the best mapping can be found as M =

Q+X = (QT Q)−1QX .
NRMSE gives a number between 0 and 1 meaning, respec-

tively, not colorimetric at all and fully colorimtric. The goodness
of the spectral sensitivity fit in terms of NRMSE is given under
the colum of NRMSE in Table 1 (see the first column). The best
linear mapping from camera spectral sensitivities to CIE CMFs
(no filter) is presented as a baseline reference in row 1 denoted
‘Linear’ and together with the optimal Luther-filter with no par-
ticular constraint denoted ‘LUTH’ in row 2. Results for Luther-
condition filters under various smoothing (rows 3-5) constraints
and transmittance boundedness (rows 6-8) are also presented.

From the column of NRMSE in Table 1, it can be seen that
using Luther-condition optimised filters with constraints can still
reduce the spectral mismatch error to half or even a third (when
using 8- or 10- basis) comparing to the native linear correction
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NRMSE
CIELAB error metrics

Mean median 95% max

Linear 0.298 1.72 1.03 5.12 28.39

LUTH 0.062 0.44 0.22 1.48 8.76

Filter transmittance f ≥ 20%

LUTH 6cos 0.160 0.94 0.54 2.84 21.14

LUTH 8cos 0.105 0.62 0.38 2.01 9.53

LUTH 10cos 0.098 0.69 0.42 2.27 10.06

Using an 8-term cosine basis

f ≥20% 0.105 0.62 0.38 2.01 9.53

f ≥30% 0.111 0.69 0.41 2.22 12.69

f ≥40% 0.129 0.83 0.46 2.63 16.62

Table 1: Goodness of sensitivities match error (NRMSE) and
colour measurement results (∆E∗ab Statistics) of using Linear cor-
rection only (without a filter), using linear correction and the
LUTHer-condition optimised filter (without constraint), and us-
ing linear correction and LUTHer-condition optimised filters
under various constrained conditions.

(‘Linear’ ). Encouragingly, the new filters - smoothing and rela-
tively transmissive - are not far from the best performance results
using the optimisation with no constraint.

We also evaluate how good the filtered camera performs
in the colour measurement experiments in terms of perceptual
colour errors – CIELAB colour difference metrics [8]. The colour
correction experiments are performed for a set of 102 illuminants
and 1995 reflectance spectra [13]. We calculate the RGBs of all
reflectance spectra under each illuminant, and find the best 3×3
correction matrices mapping RGBs to the ground-truth XYZs
before converted into CIELAB colour space. Then the overall
mean, median, 95-percentile and max of ∆E∗ab are averaged over
the all test lights.

The colour measurement results are given in Table 1 (see
the columns under CIELAB error metrics). Under the 20% trans-
mittance bound, we can see that the optimal filter linearly com-
posed by 8 cosine basis (see the red line in Fig. 2a denoted
‘LUTH 8cos’) outperforms the other two smoothness conditions:
it reduces nearly two-thirds of the colour errors across all sta-
tistical metrics comparing to those by the linear colour correc-
tion. Although constrained filters perform less well than the
non-constrained Luther optimal filter, it gains greatly on the filter
transmissivity and smoothness.

The best filter for minimum transmittances of 20%, 30% and
40% are also calculated. The spectral distribution of the solved-
for filters are shown in Fig. 2b and their colour correction results
are given in the bottom rows in Table 1. As expected, greater min-
imum threshold will lead to less effective colour reduction. Yet a
filter having a minimum transmittance value of 40% (an overall
of 63% transmittance which is reasonably transmissive) can still
make a camera significantly more colorimetric by reducing nearly
half of the colour errors.

Conclusion
In this paper we extend the Luther-condition filter optimi-

sation by providing a method for incorporating smoothness and

transmittance bounds into the same optimisation framework. We
find that the solved filters which are smooth and reasonably highly
transmissive - and so plausibly manufacturable - provide similar
performance to the prior art of unconstrained minimisation (which
produces a non-smooth filter that transmits almost no light).
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University, China, and École Centrale de Marseille, France, in 2014. She
is working on filter design for accurate colour measurement by digital
cameras.

LONDON IMAGING MEETING 2020 99


	1-31
	2-15
	3-32
	4-30
	5-13
	Abstract
	Introduction
	Background and Related Works

	Proposed Method
	Search Space
	Fitness Function
	Optimization Algorithms

	Experimental Setup and Results
	Datasets
	Parameters
	Experimental Results
	Recommended parameters

	Conclusions
	Author Biography

	6-20
	Abstract
	Introduction
	Definitions
	Stationarity
	Locally stationary wavelet fields
	Wavelet-based stationarity tests
	The standard wavelet stationarity test
	The p-values' vector
	Results
	Stationary artificial images
	Real-world grayscale texture images
	Conclusions
	Acknowledgments
	Author Biography

	7-29
	8-44
	9-26
	Abstract
	Introduction
	Related work
	Chromatic adaptation
	Methods
	Results
	Corrective Model
	Discussion
	Conclusion
	Acknowledgments
	Author Biography

	10-28
	11-3
	12-10
	13-22
	Results and Discussion
	Factor 1: PANTONE Skin Tone Guide
	Factor 2: Suitability of the PANTONE Skin Tone Guide sample set for representing the observers’ skin colour.
	Factor 3: Chosen sample by individuals versus the closest sample among the PANTONE Skin Tone Guide samples.
	Factor 4: Intra and inter observer variability.


	14-19
	15-7
	16-11
	17-12
	18-6
	Abstract
	Introduction
	Previous Works
	Methodology
	Experimental Results
	Summary and Conclusions
	Future Works
	Author Biography

	19-35
	Abstract
	Introduction
	Applications
	Challenges
	Solutions
	Outlook and Future Research Directions
	Author Biography

	20-17
	21-16
	22-1
	23-18
	24-27
	25-2
	26-33
	27-5
	28-47
	29-14
	30-25

