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Abstract
Non-regular sampling is a well-known method to avoid ali-

asing in digital images. However, the vast majority of single
sensor cameras use regular organized color filter arrays (CFAs),
that require an optical-lowpass filter (OLPF) and sophisticated
demosaicing algorithms to suppress sampling errors. In this pa-
per a variety of non-regular sampling patterns are evaluated,
and a new universal demosaicing algorithm based on the fre-
quency selective reconstruction is presented. By simulating such
sensors it is shown that images acquired with non-regular CFAs
and no OLPF can lead to a similar image quality compared to
their filtered and regular sampled counterparts.
The MATLAB source code and results are available at:
http://github.com/PhilippBackes/dFSR

Introduction
To be able to capture coloured images, digital single sensor

cameras mostly rely on an array of colour filters (CFA) in front
of the panchromatic sensor elements. The most common is the
Bayer CFA, a regular matrix with two green and one red and
blue filter each (Figure 1(i)). Colour is represented by at least
three values, therefore the missing values must be interpolated
in the subsequent image processing steps. This process is called
demosaicing and has been subject to extensive research [1].
Image capture by means of a regular pattern is prone to aliasing.
Due to subsampling by the CFA the highest reproducible fre-
quency is even lower and consequently the question about effect-
ive resolution of these sensor types arises. Camera manufactur-
ers rely on limiting the incoming signal by an optical lowpass
filter (OLPF) and highly optimized demosaicing algorithms to
avoid aliasing. However, it is known that non-regular sampling
is an effective method to prevent visually disturbing impairments
due to aliasing. The compromised areas appear as less annoy-
ing high frequency noise rather than apparent moiré artefacts
[2]. Although there is research on alternative CFAs and universal
demosaicing for arbitrary CFAs, most commercial effort is con-
centrated on improving demosaicing algorithms for Bayer CFAs.
This paper is divided into three topics. At first a simulation
for evaluating arbitrary sampling structures is presented. The
second part provides a small insight into the design aspects of
non-regular CFAs. Finally a new universal demosaicing method
is presented.
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sampling density: 25% 33% 50% (luminance / green channel)

Figure 1. sampling patterns: (a) randomQuarter, (b) randomICIP, (c) gauss25, (d) condat, (e) random, (f) randomQrgb, (g) randomICIPrgb, (h) gauss50, (i)

Bayer grbg

Related Work
Most of the existing work on the design of CFAs and demo-

saicing use image databases such as the Kodak PhotoCD [3], the
IMAX Collection (also known as McMaster Dataset) [4] or the
TECNICK image set [5], which either consist of scanned film
or multi-exposure images. Even though there have been con-
cerns about the applicability of those image sets regarding con-
trast and saturation [6], only a few questioned whether these sets
can be taken into serious account at all. For example, demosa-
icing is usually applied to linear encoded and raw sensor data of
high tonal resolution, yet all of the databases above provide dis-
play encoded, somehow colour-processed and, in case of Kodak
and IMAX, 8-bit quantized images. The ARRI-ImageSet [7] in-
troduced a new set consisting of twelve high-quality raw 16-bit
sensor data sequences. With one exception this dataset consists
of regular Bayer CFA sampled images and thus cannot be directly
used in testing different CFAs. In order to test arbitrary sampling
structures with raw sensor data a new approach is needed.

CFA Design and Universal Demosaicing
Since Bryce E. Bayer presented the Bayer colour sampling

matrix in 1976 [8], there has been a lot of effort in researching
alternative layouts and filter colours [9]. The challenge in design-
ing a new CFA is that every improvement in one quality aspect
entails a downside in others. In terms of CFA layout e.g., a bal-
ance must be found between efficient image reconstruction, im-
munity to aliasing, optical or electrical crosstalk, and sensor im-
perfections. While e.g. a cost-effective demosaicing process can
be more easily implemented for periodic CFAs, regular sampling
is vulnerable to aliasing and colour moiré [10].
Hence, a significant number of random or pseudo-random
sampling structures and universal demosaicing algorithms for
arbitrary CFAs has been presented and shown worthwhile res-
ults [11]. The main challenge in designing non-regular sampling
structures is to create a random yet uniform pattern. Random
to avoid aliasing and uniform to yield a good location-invariant
reconstruction [12].

Frequency Selective Reconstruction
Originally presented to conceal local connected losses of

image information, e.g. due to transmission errors, the Fre-
quency Selective Reconstruction (FSR) has proven useful
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in reconstructing non-regular sampled images as well [13,
14]. The basic idea behind the FSR is to iteratively generate a
model

g[m,n] = ∑
(k,l)∈K

ĉk,lφk,l [m,n] (1)

of the unknown signal (size M×N) by superimposing weighted
basis functions on the known samples. With φk,l[m,n] being two-
dimensional Fourier basis functions and ĉk,l the expansion coef-
ficients to be determined. The set K holds all chosen basis func-
tions. In every iteration the weighted residual energy is calcu-
lated, a suitable basis function to maximally decrease the resid-
ual is selected, and the coefficient is updated. The characteristic
of the local weighting is determined by the decay factor ρ̂ , the
coefficient update is controlled by the orthogonality deficiency
factor γ , and the selection of the basis functions is influenced by
a frequency weighting in favour of lower frequencies. The para-
meters and their impact are explained in detail in [13, 14].
The FSR usually reconstructs an image block-wise, whereas a
difference is made between the area to reconstruct (reconstruc-
tion size) and the area around used to generate the signal model
(block size). Lastly the size of the FFT employed and thereby
number of basis functions, is of importance.

Methods
Sensor Simulation

To simulate different types of CFAs and evaluate demosa-
icing algorithms a reference image with true, full RGB colour
samples at every pixel is usually masked by the CFA in ques-
tion, reconstructed and compared to the reference. Because of
the concerns about existing image sets and their image acquis-
ition, a method is proposed to simulate an ideal single sensor
capturing full RGB samples at every pixel. Therefore the raw
sensor data of a high resolution camera is resampled to a smaller
grid of pixels with full RGB values. In short: the loss of spatial
resolution is used to gain colour depth. To reduce complexity,
sensor characteristics such as fill factor and micro-lenses are left
aside in this basic version of the sensor simulation. Mimicking
an OLPF and generating different CFAs is considered more im-
portant. A simple Gaussian-blur filter is used to limit the spatial
frequencies of the input image, even though real OLPFs are more
complex. In order to further improve the simulation the input im-
age is demosaiced before resampling.

Verification
To validate this approach an experiment was set up, wherein

a low resolution camera (Canon D30, 3.2 MP) with and without
OLPF was mounted on a tripod, and several reference images
were shot. Subsequently the reference camera was replaced with
a high resolution camera (Canon 77D, 24MP) of same sensor size
and optic. The high resolution images were then processed as de-
scribed above, and the reference images were simulated. The in-
put for the OLPF-simulated images were filtered by a Gaussian-
blur with a standard-deviation of 1.6. The resulting raw images
of both cameras were then demosaiced using the same debayer-
ing algorithm and compared.

Evaluation of CFAs and Demosaicing
The image set to evaluate the different sampling structures

and demosaicing algorithms presented in this paper consists of 15
images. The first eleven images are from the ARRI-ImageSet but
resampled with the sensor simulation by 2/3 to 1920x1080 px.
The 12th image is an unaltered full RGB image from the 12th se-
quence of the ARRI-ImageSet. The last three images were made

during the sensor simulation experiments with a Canon 77D, and,
like the first eleven images, resampled with the sensor simulation
by 2/3. The image set is created with (Gaussian-blur, std. = 1)
and without OLPF.

Different Sampling Structures
Overall, nine sampling structures with different character-

istics and sampling densities were implemented and tested. To
reduce complexity and focus on the different spatial layouts, only
CFAs consisting of red, green, and blue filters were used.
The first structure is built by sampling from a uniform discrete
pseudorandom distribution without any constraints other than the
ratio of 50% green and 25% red and blue pixels each. This pat-
tern will be referred to as random. In [15] a non-regular sampling
approach is described randomly masking 3/4 of every 2x2 pixel
area. This approach yields only a pattern for one colour chan-
nel or luminance. As a result it is extended and every 2x2 pixel
area is filled randomly with two green and one red and blue filter
each. They will be referred to as randomQuarter and random-
Qrgb. An improvement of randomQuarter is presented in [16].
An iterative process reduces predefined structures such as large
voids or areas with regular sampling. In order to build RGB pat-
terns the algorithm is extended by assigning the optimized struc-
ture to the green channel, whereas the other three quarters are
randomly filled with one red, green and blue pixel each (ran-
domICIP and randomICIPrgb). In [12] successively new pixels
are added to a sampling mask. Each location is determined by a
constantly updated non-uniform discrete probability distribution.
This way a non-regular pattern is created without large voids or
sampling clusters. This strategy is again enhanced to generate
RGB patterns by firstly adding green pixels as described and then
alternating red and blue sampling points (gauss25 and gauss50).
Lastly a pattern presented by L. Condat in [9] is implemented.
Condat suggests that CFAs with blue noise chromatic spectra are
ideal to avoid aliasing. The main objective is to avoid same col-
our pixel neighbours, which in this case is achieved by system-
atically tiling three-pixel blocks of various RGB combinations
together. The sampling pattern used can be seen in Figure 1.

Demosaicing with FSR - dFSR
The FSR has not been primarily used to demosaic images

and nore has been tested on linear encoded image data. Therefore
a few changes have been made in terms of parameters and the
overall procedure the FSR is embedded in. The parameters used
were determined in pre-experiment testing and can be seen in
Table 1.

Table 1. FSR parameters
Reconstruction Size 2 x 2
Block Size 8 x 8
FFT Size 32 x 32
iMin, iMax 32, 512
decay factor ρ̂ 0.5
orthogonality deficiency compensation γ 0.25

They differ from the commonly used settings [13, 14] by a
smaller reconstruction and block size but less sharp decay factor,
which were found to result in more noisy but visually more pleas-
ing images – especially in small areas with high frequencies.
Another difference is that only the original sampling values are
taken into account. The dFSR computes the image block-wise
and in scan-line order.
The dFSR is implemented in three different versions. The obvi-
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ous option is to just apply the reconstruction on each channel
seperately (independent - dFSR). However many demosaicing
strategies exploit the feature of natural images to show a certain
amount of correlation between colour channels [1]. As a result a
constant difference demosaicing version has been implemented.
This first reconstructs the green channel and interpolates the cal-
culated colour difference R-G and B-G afterwards (diff - dFSR).
The last solution presented is based on the assumption that col-
our hue of natural images changes very slowly and therefore can
be interpolated much more smoothly (diffLowC - dFSR). Again,
the green channel is reconstructed by the parameters specified
in Table 1, but the colour difference interpolation is done with
modified FSR parameters. The reconstruction and block size are
enlarged to 4x4 px and 28x28 px, the decay factor is slightly
higher with 0.6, and the frequency weights for selecting the basis
function are altered even more in favour of lower frequencies.

Demosaicing Domain
The dFSR has been tested working with three different types

of encoded data. First with linear encoded images. Secondly
with pseudo-logarithmic encoded data. In the case when im-
ages by ARRI are used, ARRI-LogC as described in [7] is used,
whereas the images originating from the Canon 77D are trans-
formed by the logarithmic-like function

Ilog =

{
99.0256× Ilin, Ilin < 0.0039
log2((65535×Ilin+4))−3

13 , Ilin >= 0.0039
(2)

Lastly, the dFSR is tested with display referred gamma-corrected
images, specified in ITU-R BT. 709-4 [18].

Results
The sensor simulation and dFSR is implemented in MAT-

LAB (2019b). Specifically, four metrics are used to measure the
reconstruction or demosaicing performance, the Peak-Signal-to-
Noise ratio PSNR, a value based on the mean squared error, and
the structural similarity measure SSIM [19] as a more perceptual
based quality index. Additionally the images are assessed with
FSIMc [20], a metric based on features such as the phase con-
gruency and gradient magnitude, and the HDR-VDP-2.2 [21],
a visual difference predictor. In terms of evaluating the different
domains, all images are evaluated in display-referred ITU-R. BT.
709 domain. As colour encoding parameter for the HDR-VDP
2.2 ’sRGB-display’ respectively ’luma-display’ is used.

Sensor Simulation
As can be seen in Figure 3, the simulation generates a real-

istic and similar image of the lower resolution camera. Even
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Figure 2. Reconstruction quality of green/luminance channel FSR for different patterns and different domains

Figure 3. Sensor simulation results: reference image on top, simulation

below. With OLPF on the left, without on the right.

though the OLPF simulation may not be as realistic, the result-
ing images look very similar. Yet the comparison of the simu-
lated and reference images without OLPF is of bigger interest.
They both show almost exactly the same aliasing artefacts at the
same locations with the same colouring. The red tint in the refer-
ence image without OLPF is due to the missing infrared-blocking
filter which was removed with the OLPF.

Pattern and dFSR Domain
First, only the green channel or different luminance pattern

and the various encoding domains are tested (Figure 2). As ex-
pected, the sampling density is a key influence for the reconstruc-
tion quality [14]. The improvement in all metrics between more
random patterns (random, randomQuarter) and more structured
patterns (randomICIP, gauss) can be noticed. The Bayer CFA
seems to be superior by a noticeable margin in all metrics, yet
the visual impression is different. Particularly in image areas
compromised by aliasing, the non-regular sampling patterns lead
to far less visible impairments. This is even true for small areas
where a non-regular sampling mask shows regular structures.
The second conclusion drawn from Figure 2 concerns the encod-
ing of the image data. The difference between linear encoded
and more perceptual encoded data is sizeable with respect to all
metrics. This is due to an effect widely known to occur while
working with linear image data. The FSR overestimates the val-
ues on either side of small highlights and sharp edges. As the im-
age processing proceeds this results in holes without information
because values below zero and above the maximum are clipped.
Whether logarithmic or gamma encoded data is more suitable
however, cannot be conclusively determined. It seems that a log-
arithmic domain leads to better results with the PSNR metric in
particular and low sampling densities overall.
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Considering the demosaicing process overall (Table 2), it
seems as if the display-referred encoding is superior. Inter-
estingly, the Condat CFA with an even split sampling density
between all channels performs better in PSNR and SSIM but the
HDR-VDP and FSIMc is closest to the visual impression, the
Condat sampled images being less sharp and showing more chro-
matic noise.

Table 2. Demosaicing performance (diff-dFSR)
Domain CFA PSNR SSIM FSIMc hdrvdp

Q

Logarithmic Condat 37.77 0.983 0.986 68.57
Gauss50 37.67 0.981 0.987 70.35

Rec. 709 Condat 38.43 0.985 0.986 68.85
Gauss50 38.35 0.984 0.987 70.40

dFSR-Versions
The different versions of processing the colour channels are

shown in Table 3. A clear advantage of using inter-channel cor-
relation can be observed, thus both difference-based variants are
clearly an improvement to the independent dFSR. The margin
between the two difference-based methods is relatively small,
but considering that the dFSR parameters used to reconstruct
the colour-difference channel are not yet finally optimized, there
may be room for future improvement.

Table 3. Demosaicing performance dFSR versions (CFA:
gauss50, encoding domain: Rec. 709) and Bayer-
Demosaicing algorithms

Algorithm PSNR SSIM FSIMc HDR-VDP Q
independent 34.91 0.964 0.981 69.06
diff 38.35 0.983 0.987 70.41
diffLowC 38.61 0.984 0.987 70.49

HQLin 34.87 0.973 0.982 72.28
AHD 37.48 0.982 0.989 72.95
ARI 39.71 0.987 0.991 74.42
HQLin OLPF 35.47 0.974 0.982 70.02
AHD OLPF 35.79 0.975 0.980 68.39
ARI OLPF 36.01 0.975 0.979 68.81

dFSR vs. Bayer-Demosaicing
The newly proposed demosaicing method and the best per-

forming non-regular CFA are compared with the current status
of Bayer CFA and specialized demosaicing algorithms. Three
different algorithms are tested: a high quality linear demosaicer
(MATLAB built-in function), the adaptive homogeneity directed
demosaicing (AHD) [22], and a state of the art demosaicing al-
gorithm referred to as adaptive residual interpolation (ARI) [23].
Even if non-regular sampling and dFSR do not show the best
measured results, it has to be emphasized that this combination
performed better than any OLPF simulated images and superior
in PSNR and SSIM to two of three tested regular demosaicing
methods (Table 3). However the visual difference in sharpness is
clearly visible. The regular sampled and demosaiced images ap-
pear clean with overly sharpened edges, whereas the non-regular
sampled seem to be smoother and more noisy. However, the im-
age areas with possible aliasing are masked and visually less dis-
turbing than the aliasing artefacts shown by all regular sampled
images.

Figure 4. Left to right: dFSR, ARI, ARI with OLPF

To support the calculated image quality metrics, a simple user
study was conducted. The participants could toggle between two
versions of an image and were asked to select the qualitatively
better one. A third option was given in case they were unable
to detect any visual difference. Four different versions of the 15
images were compared: the reference image without sampling
and demosaicing simulation, a version of regular sampling with
and without OLPF and ARI demosaicing and the non-regular
sampled and dFSR demosaiced image. Overall 28 participants
evaluated 1140 image pairs. The images and versions were dis-
played in random order on a Dolby PRM-4200 monitor [24].
The result of the study is consistent with the image quality met-
rics. Most participants chose the reference or the version without
OLPF. This suggests that in direct comparison the perceived
sharpness is a key feature. In case of non-regular vs. regular
sampled images the result is much more evenly split with a slight
advantage towards the regular-sampled version.

50 % 75 %25 %

ARI-OLPF

ARI-OLPF

ARI

ARI-OLPF

ARI

dFSR

ARI

dFSR

dFSR

Reference

Reference

Reference 65.8 20.2 14

47.6 35.3 17.1

88 8.7

34.1 19.2 46.7

78.9 4.1 17

72.4 9.5 18.1

Figure 5. Study results in percent (blue = preference for left algorithm, red

= pref. for right algorithm, grey = no visible difference)

Conclusion and Prospect
Non-regular sampling is an effective strategy to avoid ali-

asing in digital image capture without physically limiting the
incoming signal. To simulate different sampling structures and
CFAs, a sensor simulation has been presented and verified. In
terms of CFA design, the balance between different sampling
characteristics from random to uniform, their advantages and
drawbacks is shown. Lastly a new universal demosaicking al-
gorithm based on the FSR is presented. It is found that the FSR
performs better on non-linear encoded image data.
In future, every aspect presented in this paper can and should
be subject to further research and improvement. Especially the
dFSR can be optimized in terms of parameters and overall pro-
cessing. The combination of FSR and other interpolation tech-
niques is thinkable as well as an enhancement of the dFSR by
additional post-processing steps. Further it is desirable to in-
vestigate the impact of different image encoding domains for the
dFSR and how to better exploit the correlation between the RGB
colour channels.
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