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Abstract

In this work we propose a method for single image dehaz-
ing that exploits a physical model to recover the haze-free image
by estimating the atmospheric scattering parameters. Cycle con-
sistency is used to further improve the reconstruction quality of
local structures and objects in the scene as well. Experimental
results on four real and synthetic hazy image datasets show the
effectiveness of the proposed method in terms of two commonly
used full-reference image quality metrics.

Introduction

With the increasing demand for self-driving cars and high-
fidelity cameras, the task of removing haze to improve the overall
visibility of the subjects depicted in the scene has gained a lot of
attention in the field of computer vision. Haze is the effect of
several atmospheric events and consists of small-diameter parti-
cles having a density similar to that of the air, causing their float-
ing. The presence of these particles causes an irregular deviation
and the attenuation of the photons, resulting in an odd alteration
of the light flow. Images acquired in such conditions present a
degradation in the structures of the objects depicted and a strong
decrease in contrast.

Two predominant strategies are usually used to restore the
hazy image: the first one is to fit physical models that describe
the hazing effects, while the second one is to perform an agnos-
tic image-to-image restoration. Both strategies led to good re-
sults, indicating that even without directly specifying a physical
model, it is possible to remove the hazing effect. Approaches us-
ing a physical model, however, not only restore the input image
but can infer relevant factors involved in the process such as the
current haze transmittance in the visible range. These side infor-
mation can play a crucial role in determining what the network
is inferring.

A valid physical model that adequately describes the haz-
ing effect has been proposed by Mc Cartney et al. [20]. This
model, namely the atmospheric scattering model, combines the
scene radiance of the haze-free input with the global atmospheric
illumination through the estimation of the haze transmittance as
follows:

I(x) = J(x)i(x) + A(x) (1 —1(x)). €))

Specifically, the hazy image I(x) is composed by a weighted sum
of the haze-free image J(x) and the ambient light A(x). The
transmission map #(x) defines the combination weights and is
defined as:

1(x) = e PdX), )

where f3 is the scattering coefficient of the atmosphere, and d(x)
is the distance between the object in the scene projected at the
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spatial location x and the camera. Ambient light A(x) has three
channels while the transmission map #(x), which acts as a gat-
ing function, has only one channel. Several methods [6, 7, 12]
consider the ambient light as uniform. In this case, A(x) has the
same value for each location of the scene. He et al. [14] makes
use of the dark channel prior to improve the contrast. The hy-
pothesis behind this prior states that in non-sky regions of out-
door images there are some spots (the dark pixels) with very low
intensity. The value of the dark pixel is directly affected by the
airlight, therefore it directly provides an accurate estimation of
the haze transmission. Beside physical-model-based methods,
there are several other algorithms that learn a direct mapping be-
tween hazy image and their haze-free counterpart. These meth-
ods are usually trained using a perceptually-relevant metric such
as [13], which uses Retinex, [24] which uses SSIM and finally
HR-Dehazer [9], which uses a multiscale version of perceptual
loss, all in a supervised fashion.
The main contribution of this paper is twofold:

e A method treating the dehazing problem as an image de-
composition problem, where the hazy image is separated
into its underling haze-free image and the obscuring foggy
layer by predicting the atmospheric scattering parameters,
namely the transmission matrix and the atmospheric illu-
mination map;

e The estimation of a non-uniform atmospheric illumination
map which considers local atmospheric color changes.

Proposed Method

In this work we treat the dehazing problem as an image de-
composition problem, where we attempt to separate the hazy im-
age into its underling haze-free layer and the obscuring foggy
layer, respectively. We achieve this goal by predicting the at-
mospheric scattering parameters, namely the transmission matrix
and the non-uniform atmospheric illumination map.

Figure 1 summarizes the proposed method for single im-
age dehazing. Given a hazy color image I(x), first its RGB
channels are projected into the monomial basis through a poly-
nomial transformation, the resulting image is then fed into an
encoder-decoder network which predicts the unknown parame-
ters of the atmospheric scattering model, namely the transmis-
sion matrix #(x) and the non-uniform atmospheric illumination
map A(x). Finally, the haze-free image J(x) is obtained by
computing the inverse function of the atmospheric scattering
model. Inspired by [10], given an input image, the (xg.xG.XB)
components of each pixel x are projected into the monomial ba-
sis (1,xR,xG,xB,xRxG,xRxB,xGxB,x,%,xzc,x,z;,...,xg,xg,xg) for a set
of degree D. The result of this operation, named “polynomial
expansion”, is an image of (D +3) channels. We use the same
encoder-decoder network defined in [9] for simultaneously pre-
dicting the transmission matrix and the non-uniform atmospheric
illumination map. The first network output is a single-channel
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Figure 1: Pipeline of the dehazing process. The input hazy image I(x) is expanded by using a polynomial transformation, then the
resulting image is fed into an encoder-decoder network for the estimation of the transmission #(x) and the atmospheric light A(x) maps.
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Figure 2: Cycle-consistency. Given the input hazy image I(x),
the transmission #(x) and the light A (x) maps are predicted to ob-
tain the haze-free image J(x) that should be equal to the ground-
truth one J(x). Conversely, given the previously predicted maps,
a hazy image I(x) equal to the input image I(x) should be ob-
tained by inverting the transformation.

image, while the second one is a three-channels image. In or-
der to obtain the enhanced haze-free image, we apply the inverse
atmospheric scattering model equation:

J(x)= . 3

given the input hazy image I(x), the transmission matrix 7(x)
replicated for each channel, and the non-uniform atmospheric il-
lumination map A(x).

Training procedure

We train the encoder-decoder network by employing the
multi-scale training proposed in [9] in order to both consider
the semantics of the whole input image and to impose coherence
among local structures. The network is optimized by minimizing
the following loss:

&L =ML yele + M La+ 13 2p, “

where A;, A, and A3 are three coefficients weighting the con-
tribute of each loss. £ is the cycle consistency loss [25]A(see
Fig. 2) which enforces the bond among the translations J — [ and
I — J (we remove x for the sake of simplicity). The loss is de-
fined as ZLiycre = I — J| + 11|, where the first term represents
the mean absolute error (MAE) between the pixels of the ground-
truth haze-free image J and the corresponding dehazed image J,
while the second term measures the MAE between the pixels of
the input hazy image I and the inverted hazy image, I. %, min-
imizes the MAE between the dark channel prior of [14] and the
predicted atmospheric illumination map A. Given that the dark
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Table 1: Overview of the considered databases. The columns
report: the number of images, whether images are captured in-
door “in” or outdoor “out”, if image pairs are available (because
the haze-free reference image is given), and finally if the haze is
real or synthetically generated.

Dataset #lmg Context Paired Haze
Dense-Haze [3] 125 in/out v real
I-HAZE [2] 35 in v real
IVC Waterloo [19] 25 in/out real
O-HAZE [4] 45 out v real
P-Haze [9] 17125  in/out v synth
RESIDE-HSTSr [18] 10 out real
RESIDE-HSTSs [18] 10 out v synth

channel prior provides the global image illumination represented
as an RGB triplet, we replicate it along spatial dimensions in or-
der to be compared with the predicted atmospheric illumination.
Finally, the perceptual loss .£p [16] estimates the mean square
error between the features extracted from both the ground-truth
haze-free image J and the corresponding enhanced haze-free one
J using a VGG19 trained on ImageNet dataset.

Experimental Setup

In this section, we describe the datasets along with the set-
tings used for experiments. Then, quantitative and qualitative re-
sults achieved by the proposed method are compared with state-
of-the-art dehazing algorithms.

Datasets

We consider several datasets to evaluate the effectiveness
of the proposed method in enhancing a vast range of semantic
concepts and scenes. More in detail we take into account both
synthetic and real haze databases containing indoor and outdoor
images. The databases we include in the experiments are the fol-
lowing: the two databases (I-HAZE and O-HAZE) used for the
NTIRE2018-Dehazing Challenge [1]; the Dense-Haze database
introduced for the NTIRE2019-Dehazing Challenge [5]; a huge
synthetic database proposed in [9]; a subset of the RESIDE
database [18].

Parameter settings

We implement the proposed method using the PyTorch
package [21]. The proposed model is trained on a workstation
equipped with an NVIDIA Titan X Pascal GPU on the P-Haze
dataset. The degree D of the polynomial used for the expan-
sion is equal to 3, and the loss weights values are the following
A = A, = 0.5 and A3 = 1. All the convolutional weights are ini-
tialized with the method proposed in [15], while all the biases are
set equal to zero.



Table 2: Quantitative comparison with state-of-the-art methods on paired image databases in terms of PSNR and SSIM.

Method Dense-Haze I-Haze O-Haze RESIDE-HSTSs
PSNR1/SSIMtT PSNR1/SSIMt PSNR1/SSIMt  PSNR1/SSIM?t
AOD-Net (ICCV2017) [17] 10.84/0.4654 15.53/0.7622 15.46/0.6076 20.55/0.8973
DehazeNet (TIP2016) [11] 9.48/0.4595 14.58/0.6915 16.65/0.6397 24.48/0.9153
MSCNN (ECCV2016) [22] 9.82/0.4629 15.45/0.7287 17.53/0.6773 18.64/0.8168
HR-Dehazer (CVPRW2019) [9] 16.19/0.6010 13.60/0.7928 21.44/0.6678 17.36/0.8589

Ours 15.37/0.5637

22.41/0.8457

21.58/0.7051 18.19/0.8389

We train the model from scratch by using Adam optimizer
with a fixed learning rate of 0.0001, a batch-size equal to 1,
and a momentum term of 0.5 for a total of 30 epochs. Hyper-
parameters for fine-tuning the model on other datasets are the
same used in training apart from the learning rate which corre-
sponds to 1e-5 and the number of epochs equal to 100.

Results

Table 2 reports the results on paired databases in terms of
Peak Signal to Noise Ratio (PSNR) and the Structural Similar-
ity (SSIM) [23] index, which are the commonly employed met-
rics to evaluate dehazing algorithms on paired images. The pro-
posed dehazing method outperforms the other ones on both the
high-resolution image databases introduced for the NTIRE-2018
challenge. Especially on the I-HAZE, we obtained a PSNR 7dB
higher than the second one which is the AOD-Net. Our method
seems to be effective even if the density of haze is very high,
in fact it ranks second on the Dense-Haze dataset. The worse
performance on RESIDE-HSTSs is motivated due to the low-
resolution of images.

Figure 3 shows enhanced images for all the considered de-
hazing methods. For paired images, we want to highlight that
images dehazed with the proposed method are sharper than the
others. Visibility is increased for all the databases apart from
the Dense-Haze, where some image regions are completely lost
due to the intense haze of the input hazy-image. In this sense
the HR-Dehazer recovers more details thanks to the fact that it is
an image-to-image method and so it can generate contents. On
unpaired images the proposed method looks very powerful for
removing haze and also does not distort colors.

Conclusions

In this work we investigated the use of a physical model for
the task of haze removal. We showed that by introducing cycle
consistency it is possible to reduce the reconstruction error and
obtain more meaningful transmission maps. A logical continuum
of this work can be the exploitation of the cycle-consistency for
the use of this system on unpaired image datasets. To tackle the
lack of a ground-truth, also the investigation of a no-reference
image quality metric [8] should be investigated for measuring
quantitatively the performances and thus the reconstruction qual-
ity. Other target atmosphere light priors could also be investi-
gated.
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