
Linear Histogram Adjustment for Image Enhancement
Jake McVey; University of East Anglia; Norwich, England.

Abstract
Tone curves are one of the simplest techniques for image

enhancement. Specified as a function, a tone curve is a transfor-
mation that maps pixel levels of an input image to new output
levels. Tone curves are the basis of many contrast enhancement
algorithms, including Contrast Limited Histogram Equalisation
(CLHE), which derives a tone curve from a modification of the
image histogram. While these methods can provide good enhance-
ment, they are generally non-linear.

In this paper we show the surprising result that a tone curve
generated by the non-linear CLHE method (and HE) can be
calculated by applying a linear transform to the histogram of the
input image. Experiments validate our method.

INTRODUCTION
Many existing contrast enhancement techniques obtain a tone

curve from the histogram associated with an image [1]. When
applied to an image a tone curve can be simply thought of as a
mapping from input to output intensities. In the context of contrast
enhancement, a good tone curve is one that brings out the details
of the image without introducing artefacts.

Histogram Equalisation (HE) is a well known method that ob-
tains a tone curve from the input image histogram. To formalise
the histogram definition, consider a typical greyscale image I,
with pixel values I(x,y) ∈ [0,255]/255. The histogram represen-
tation for this image is a 256-vector h, where each element, hk,
counts the occurrences of the kth pixel value in the image. The
histogram is generally normalised such that it sums to 1 (a PDF,
or probability density function).

The HE algorithm seeks to find an image with maximum
entropy. As is well known (but see [2] for review) this is achieved
when the cumulative sum of the image histogram is used as the
tone curve. Note then that there should be a direct relationship
between the value of the histogram bins and the steepness of the
tone curve. In fact, since we obtain the curve as a cumulative
histogram sum, the derivative of the tone curve is indeed the
histogram itself. This means that when the bins of a histogram
grow large, the slope of the tone curve at that point will be very
steep. Conversely, small values in the histogram result in shallow
curves at those points. We illustrate this relationship in figure 1.
Note the peak count in the histogram corresponds to the steepest
part of the tone curve.

Figure 1: Left, histogram of an input image histogram. Right,
tone curve obtained as the cumulative sum of the histogram.

Performing histogram equalisation - i.e. transferring an im-
age with a tone curve defined to be the cumulative histogram of
the image, often results in an unpleasant output image. From
an entropy point of view the image has more information, but
the image also often has unnatural contrast and false contours
amongst other artefacts. The reason for this is when the bins of
the histogram are too large or too small, the slope of the tone
curve at those points maps values of the image to, respectively,
a very wide or narrow range. Various methods have been devel-
oped that constrain the level of contrast enhancement through
modification of bins in the histogram [3, 4, 5, 6, 7]. Recalling
the relationship between histogram bin values and slope of the
tone curve, Contrast Limited Histogram Equalisation (CLHE)
[8] directly reduces the level of contrast in the output image by
enforcing an upper-bound on the histogram bins.

Other methods in recent literature have recast histogram mod-
ification as an optimisation problem [9, 10, 11, 12], defining an
objective function with penalty terms to enforce some characteris-
tics on the tone curve. These characteristics - like the relationship
between tone curve slope and level of enhancement - are designed
to ensure the output image presents with a certain quality.

In figure 2a we show a Kodak test image. In 2b and 2c we
show the outputs of applying two tone curves generated using
HE and CLHE (where for CLHE the max and min slopes of the
histogram are set to 2 and 0.5 respectively). Both these output
images show a strong increase in contrast. But, the images are
too punchy and neither are better than the original. In Figure 2d
we show the output of the method we develop here. Specifically
our tone curve is computed by:

t = Mh (1)

where M is a 256×256 linear transform. For this example this
simple linear tone curve generation function clearly outperforms
CLHE and HE.

In section 2 we discuss in more detail relevant recent liter-
ature. Section 3 outlines our method. Experimental results are
reported in section 4, and the paper is concluded in section 5.

Background
In Histogram Equalisation the tone curve, t, - that maps an

input image to an output image that has a uniform histogram - is
simply the cumulative sum of the input histogram (normalised
to sum to 1). As explained in the introduction, in this paper, we
seek to develop a tone curve generation algorithm that can be
written as t = Mh. We can neatly formalise the cumulative sum
as a linear transformation of the input image histogram, h, by the
matrix M, such that Mh = t. In this case M is a lower triangular
matrix, with 1’s on the bottom half, and 0’s elsewhere:
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Figure 2: Tone curves (bottom) applied to an image. A) Original.
B) CLHE. C) HE. D) Proposed method. Brightness calculated
as (R + G + B)/3. Tone curve applied to each RGB channel
independently.

MHE =



1 0 · · · 0 0
1 1 · · · 0 0

1 1
. . . 0 0

...
... · · · 1 0

1 1 · · · 1 1


where HE denotes Histogram Equalisation. Of course as illus-
trated in figure 2, Histogram Equalisation often produces disap-
pointing results. Yet, it is interesting that this simple algorithm
can be written in the linear framework. Perhaps the linear formal-
ism idea is a good one but a better linear transform (than implied
by Histogram Equalisation) can be found.

As illustrated in figure 2 the CLHE method allows us to
find a tone curve where the maximum and minimum slope of the
tone curve can be limited. The precise details of CLHE are not
important. But, let us give the intuition. Suppose h is a histogram
(that is normalised and sums to 1). Assuming again there are
256 bins and we are thinking of the image having brightness
values in the interval [0,1], then h is a 256 component vector
and each component is in [0,1] and the sum of h is 1. Since the
tone curve t is the cumulative sum of h it follows that the slope
of the bins is equal to (hk)/(1/256) i.e. the derivative of the
cumulative histogram t is the histogram itself and we divide by
the step change (in this case 1/256).

If we wish the max slope to be 2 then this means that
(hk)/(1/256)≤ 2 or equivalently that hk ≤ 2/256 for all k bins

of the histogram. Here 2/256 is sometimes called the “clip limit”.
Clearly if we calculate a histogram as min(h,2/256), the cumula-
tive sum of this new derived histogram meets the max slope limit.
But, the clipping operation means the clipped histogram does
not sum to 1. Thus the clipped values need to be redistributed
(added back into the histogram). This means we may need to clip
again. Indeed, CLHE works by iteratively clipping, redistributing,
and clipping again until the resulting histogram meets the clip
limit and sums to 1. A similar algorithm is adopted for enforcing
minimum slope limits. Moreover, there are a variety of ways to
redistribute the counts in the histograms that have been clipped.

We refer the reader to [8] for a detailed explanation of how
CLHE works. For our purposes here the idea of clipping is a
powerful one which we return to in the next section.

Importantly, CLHE was extended in [9] to impose extra
constraints on the tone curve including smoothness and that the
output images have “good” whites and blacks. This method in
turn was reformulated in [12] as a single global least-squares
optimisation. The method we develop in the next section is general
- and can approximate any method that generates a tone-curve
from a histogram. But, for the purposes of this paper we apply
our method to [12].

Method
Equation 1 in the introduction encapsulates our method. As-

suming h is a histogram that sums to 1 then t = Mh. However,
we allow ourselves a little latitude in the definition of h and our
actual formalism is equal to

t = Mf(h) (2)

where f is a function that can pre-process the histogram. In the
current paper we pre-process the input histogram by running
CLHE for one iteration - i.e. we clip to the max value, a re-
normalise (without redistributing) so the resulting histogram sums
to 1.

g(h) = min(h,max val) (3a)

f(g) = g(h)/sum(g(h)). (3b)

We do this simply make the input histograms robust to large image
areas that have the same value (i.e. those that cause the high slopes
in the tone curve).

Now suppose we have N histograms denoted hi (i =
1,2, · · · ,N) we calculate the corresponding N tone curves ti using
[12] (a closed-form extension of CLHE which produce stable
preferred results). Our hypothesis is that there exists a 256×256
matrix M such that Mf(hi)≈ ti.

To test this hypothesis we solve the following regression

M = min
M

(
N

∑
j=1
||Mh j− t j||22 +λ ||M||22) (4)

Here λ is a user defined penalty term that regularises the
expression. When λ = 0 the expression resolves to ordinary least
squares. The purpose of this penalty term is to guide the prediction
to a more ‘stable’ solution. In the context of our mapping problem,
an unstable prediction is one that maps pixel values in the image
outside of the expected range (e.g. mapping values of an sRGB
image outside [0, 1], remember we are representing image values
as lying between 0 and 1), or a curve that is not strictly increasing.
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From a mathematical perspective regularisation is a method to
deal with sets of equations which we can solve (or approximately
solve here) but where the equation solving process is unstable.
Relevant to the problem at hand, the instability follows from the
fact that the histograms f(hi) taken together do not form (span)
256 dimensional space. The regularisation term in Equation 4 pe-
nalises the norm of the recovered matrix, in effect simultaneously
bounding the variance of the solved-for tone curves.

Figure 3: Plot of M, calculated with Equation 5 with various
different λ values. A) λ = 0. B) λ = 0.01 C) λ = 1.5.

The closed form solution to Equation 4 is

M = (AT A+ γI)−1AT B (5)

where A and B are both N× 256 matrices (where the rows are
respectively corresponding histograms and tone curves), and I is
the 256×256 identity matrix. In Figure 3 we show 3 examples
of M calculated using 3 different values for λ using Equation 5.
Notice that M - with an ill-fitting λ - in 3a and 3b resolves to
(what we previously described as) an unstable solution. The result
in 3c is clearly much more suitable. It is evident that - without
any explicit enforcement on our part - the solved-for curves are
naturally smooth.

The optimal Tikhonov regularisation parameter in Equation
5 was found via grid search on validation data.

Experiments
We evaluate the success of our model by comparing the

closeness of images enhanced with the proposed method and with
those generated by the target enhancement algorithm, in this case
[12]. Closeness in this instance will be quantitatively measured
using CIELAB ∆E* 76 [13]. That is, each image in the test data
set is enhanced with the tone curve obtained from [12] and our
method independently. Then we convert both enhanced images to
the CIELAB color space, and finally obtain a per pixel error using
∆E*. Given this error image we can calculate mean, median, and
99 percentile error statistics for each image.

We test our method on two datasets: the well-known Kodak
dataset [14], and from a randomly selected sub-set of images in
the ImageNet dataset [15]. To build the proposed model we used
20,000 images from the ImageNet dataset as a training set (N in
Equation 4), and 5,000 images for testing. Images from the Kodak
dataset were not used to build the model, but all 24 images from
[14] were used as an independent test set (accessed on 01-06-19).

The mean and standard deviation for these measures across
all test images are calculated and shown in the Table 1. In Figure
4 we show some images for comparison. Left is the original un-
enhanced Kodak image. The image enhanced by [12] is shown
in the middle. Our simple enhancement - where the tone curve
applied is calculated as a simple linear transform of the input
image’s histogram - is shown right. The algorithm [12] produces
pleasing results and our linear transform algorithm provides visu-
ally indistinguishable results, validating our method.

Results and Analysis
The target ∆E* value for image matching is not universally

accepted. In [16] it is argued that a mean ∆E* of less than 2.15
in a complex image is required for close perceptual uniformity,
while in [17] it is reported a ∆E* of 5 is sufficient. In Table 1, we
show that our method is able to satisfy both benchmarks.

Mean ∆E* Median ∆E* 99 pt. ∆E*
ImageNet 1.69 (± 1.68) 1.61 (± 0.95) 3.37 (± 1.49)
Kodak 1.79 (± 0.57) 1.64 (± 0.68) 3.9 (± 1.02)

Table 1: Mean (± standard deviation) of the mean, median, and
99-percentile of ∆E* measured between images enhanced with
[12] and the shown models over shown data sets.

In Figure 4 we show several images from the Kodak data set.
The middle images enhanced with [12] all present with pleasing
contrast, and are better than the input images on the left. On the
right we show the same images enhanced with curves obtained
by our proposed method. The ∆E* for each pair of enhanced
images is also presented. The images in this Figure teach us that
the suggested target ∆E* of 3 is sensible, since even the ‘most-
different’ image in the set - the red door - only begins to show
slight differences upon close observation.

We make two final remarks. First, that the optimisation
framework [12] will generally be a preferred solution for achiev-
ing naturally enhanced images. But, the optimisation uses
Quadratic Programming (QP) that is computationally expensive
and therefore infeasible for many applications. Furthermore, di-
mensionality reduction techniques - like singular value decomposi-
tion (SVD) - can be introduced into the proposed linear framework
to reduce the computational complexity (and perhaps improve ac-
curacy) of our method. Second we note that the proposed method,
that is, a linear regression model for approximation, was chosen
for for it’s simplicity.

A potential advantage of our method is that it will be easier
to analyse how the algorithm works when the input is perturbed.
If the input histogram f(h) is perturbed by a random bin adjust-
ment ε the tone curve, perforce, will be the sum of the two i.e.
Mf(h)+Mε .

Conclusion
Tone curves are often used in image processing to enhance

images: the output image is a tone adjustment of the input im-
age. The first tone-curve adjustment algorithm was Histogram
Equalisation - where the tone curve is the cumulative sum of the
input histogram and which, unfortunately, often provides over
enhanced outputs - and this method has been further developed
to, more reliably, produce preferred image outputs [3, 4, 5, 6, 7].

In this paper we demonstrate the interesting fact that we
can closely approximate Histogram Equalisation based methods
which generate tone curves from the histogram of an image, by a
linear matrix computation. Specifically, the tone curve we propose
applying to an image is found by applying a linear transform to
the input histogram. Further, this transform can be found by
regularised regression.

We conduct experiments to test the effectiveness of our
approximation and present the results quantitatively using the
CIELAB ∆E* difference metric, and visually with enhanced im-
ages for comparison. Almost always (for 10s of thousands of
image) our simple linear algorithm delivers enhanced images that
are indistinguishable from those delivered by more complex non
linear counterparts.
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Figure 4: For each image in the set: First, original image. Middle,
image enhanced with [12]. Right, image enhanced with proposed
method.
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