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Abstract 
Burns previously showed that a chromatic adaptation 

transform (CAT) implemented using spectral reconstruction with 

lightness preserving produces comparable predictive results of 

corresponding color data sets as optimized linear CATs. A fast 

spectral reconstruction CAT based on Wpt (Waypoint) spectral 

reconstruction is proposed that is optimized to take advantage of 

spectral reconstruction improvements without incurring the 

performance cost of using spectral reflectance. Comparisons are 

made, and an implementation using iccMAX profiles is 

demonstrated.  

Introduction 
A chromatic adaptation transform (CAT) relies on visual 

experiments that result in corresponding color data, and 

therefore, a CAT predicts the sameness of color appearance to 

the extent that it can be modeled. Corresponding color 

experiments generally involve asymmetric color matching using 

techniques including haploscopic viewing, short-term memory 

matching, or color estimation techniques.[1-3] In such 

experiments observers are instructed to identify, color in one 

viewing condition that has the same appearance as the color of 

an object in a different viewing condition. 

Various approaches have been proposed to define CATs in 

the literature.[4-7] Color appearance models (CAMs) such as 

CIECAM02 or CIECAM16 utilize linear chromatic adaptation 

transforms (CATs) that adjust tristimulus values from one 

viewing condition to another while preserving appearance. These 

linear CATs first convert tristimulus values to “sharpened” cone 

responses, then perform vonKries white balancing and finally 

invert the sharpening to obtain adapted tristimulus values.  Public 

corresponding color datasets can be used to optimize the 

sharpening filters used to define these CATs. 

Recently Burns proposed a method of defining a CAT that 

predicts results from corresponding color datasets on par with 

linear CATs used by CAMs without using the datasets for 

optimizing the prediction.[8] At the core of Burns’s proposed 

CAT is a new spectral reconstruction method that determines 

plausible spectral reflectances for a set of tristimulus values, 

given normalized color matching functions and a spectral power 

distribution for an illuminant. The proposed reconstruction 

method results in reflectances for tristimulus values that are 

smooth, non-negative and spectrally non-selective for neutrals. 

The CAT proposed by Burns utilizes four basic steps. 

In the first step, spectral power distributions (SPDs) for both 

the source and destination illuminants are reconstructed using the 

proposed spectral reconstruction method given the illuminants’ 

tristimulus values with the equal-energy illuminant used for 

spectral reconstruction.  

In the second step, the spectral reconstruction method is 

used with the source tristimulus values and reconstructed source 

illuminant to construct spectral reflection values under the source 

viewing conditions.  

In the third step, the observer color matching functions and 

destination viewing conditions are then applied to the 

reconstructed spectra to determine tristimulus values for the 

destination viewing conditions. 

In the last step, the destination tristimulus values are scaled 

by the value of the Y of the resulting tristimulus values divided 

by the Y of the source tristimulus values (thus preserving 

lightness of the source colorimetry in the estimated 

corresponding color). Without this final step the Burns spectral 

reconstruction method is not much more than a Material 

Adjustment Transform (MAT) [10] which predicts how 

tristimulus values of an object change due to changes in either 

illuminant and/or observer. It is this final limited optimization 

step that provides a conversion from a MAT to a CAT. 

One challenge that Burns acknowledges is that his proposed 

method is significantly more computationally intensive than 

applying a linear transform CAT.  

In this paper we propose a CAT that minimizes the 

overhead of spectral reconstruction by pre-caching the spectral 

reconstruction and transformation to tristimulus values resulting 

in similar corresponding color prediction as Burns with 

significantly less computational overhead, and can easily be 

implemented as a CAT in iccMAX profiles.  

Wpt based spectral reconstruction  
A spectral reconstruction method has been proposed [9] that 

makes use of the linear relationship between Wpt color 

equivalency [10] and the Chau spectral decomposition. [11]  

The Wpt (pronounced “Waypoint”) color equivalency 

representation utilizes a method that normalizes sensor 

excitation values (either tristimulus values, cone excitations, or 

sensor values) for spectral reflectances of non-selective white 

colors that have constant Munsell Value and Chroma to 

minimize differences due to observer and illuminant preserving 

the perceptual correlates of lightness chroma and hue. The 

determination of Wpt coordinates for an arbitrary indexed 

observer, object, and illuminant (or light source) can be 

expressed by the following equivalencies: 
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Where w represents a Wpt vector for the indexed observer, 

object, and illuminant (having coordinates W, p and t), Ai,k 

represents a Wpt normalization matrix specific for the observer 

and illuminant, si,j,k represents a vector for sensor excitations of 

the arbitrarily indexed observer, object and illuminant, Ci 

represents a matrix defining the sensor sensitivities or color 

matching functions for the ith observer, Oj represents a 

Donaldson spectral reflectance matrix[12] (with reflectance 
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along the diagonal and off-diagonal entries corresponding to 

fluorescence) for the jth object, and lk represents a vector for the 

spectral power distribution (SPD) of the kth illuminant.  

Example Excel spreadsheets and Matlab code that can be 

used to determine Wpt normalization matrices are available at 

(http://www.rit.edu/cos/colorscience/re_IntroducingWptLab.php). 

Wpt coordinates can be represented in polar form 

describing Wpt chroma (c) and hue (h) as follows: 
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The Chau spectral decomposition is as follows:  

j js g= +O I R  (3) 

Where Oj is a matrix representing an arbitrary resulting 

spectral reflectance, I is an identity matrix representative of a 

“white” that reflects 100% of the light for all wavelengths, Rj is 

a matrix representing a maximally saturated reflectance (also 

referred to as a characteristic reflectance), g is a scalar of spectral 

whiteness, and s is a scalar of spectral saturation. 

Spectral reconstruction from sensor excitations is 

performed in the following steps: 

1. A Wpt normalization matrix is determined for the 

source observing conditions and applied to tristimulus 

values (si,j,k) to get Wpt coordinates (wi,j,k). 

2. wi,j,k is converted to polar notation using equation (2) 

resulting in coordinate values Wi,j,k, ci,j,k, and hi,j,k. 

3. A domain specific function of the hi,j,k (Wpt hue) of 

step 2 is used to determine a characteristic reflectance 

(Rj) for the hue. 

4. Wch values for the characteristic reflectance (Rj) are 

determined using equation (1) and equation (2) 

resulting in coordinate values WR, cR, and hR. 

5. The estimated reflectance (Oj) for the sensor 

excitations starting value (si,j,k) of step 1 is then 

determined using equation (3) with the characteristic 

reflectance (Rj) of step 3 with the scalars g and s being 

determined directly from Wi,j,k and ci,j,k values found in 

step 2 as follows: 

R

I I R

R

1

10

W

W W c

c

g W

s c

−    
=     
     

 (4) 

 

Where MR is a matrix associated with the characteristic 

reflectance Rj which leverages the linear relationship between 

the Wch values associated and Rj from step 4 with the following 

linear regression: 
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Where WI is the Wpt W coordinate for the white point 

(PRD), WR is the Wpt W coordinate for Rj, and cR is the Wpt c 

coordinate for Rj. 

Determining domain specific characteristic 
reflectances from Wpt hue  

One key point that needs further discussion is the domain 

specific function of Wpt hue mentioned in step 3 in the previous 

section. This can be implemented computationally using 

interpolation of a look-up table with the spectral reflectances of 

each hue determined a-priori. This has the advantage that the 

computational overhead of determining Wpt hue-based 

reflectances is separated from the application of these 

reflectances as part of spectral reconstruction. Additionally, 

coefficients in equation (5) can also be determined a-priori as 

well, resulting in a lookup of both hue based reflectances as well 

as values used to perform spectral reconstruction. 

In the domain of color printing the spectral reflectances 

used in the look-up table can come from direct measurement of 

reflectances associated with the reproduction of Wpt hues for the 

most saturated colors (the ‘gamut girdle’) of the reproduction 

gamut. Each is scaled and shifted so the maximum reflectances 

is 1 and the minimum reflectance is zero. Population of 

reflectances for each Wpt hue in the Wpt hue lookup table is 

performed using a search of interpolated reflectances between 

measured hues. 

For the purposes of this paper two methods were used to 

define domain specific reflectances for Wpt based spectral 

reconstruction. The first method used the Munsell reflectances 

with constant Munsell Value and Munsell Chroma that are used 

as part of Wpt normalization. The second method used the 

spectral reconstruction method proposed by Burns for colors 

with varying Wpt h and constant Wpt W and Wpt c (which are 

approximately at the same lightness and chroma of the Munsell 

colors used in the first method).  

_________________________________________ 

 

  
Figure 1. Example spectral reconstructions using Burns method (top), and 

Wpt-based reconstruction (bottom) for colors varying in units of 10 Wpt 

lightness (W) and units of 5 Wpt chroma (cpt) with a fixed Wpt hue (hpt) of 

215 

Spectral Reconstruction Comparisons 
For comparison purposes spectral reflectances having 

constant Wpt hue under a D65 illuminant for the 1931 standard 

2 observer were reconstructed using both Burns and Wpt 

spectral reconstruction. The characteristic reflectance used for 

Wpt spectral reconstruction was generated for Wch W=40, c=40, 

and h=215 using the Burns method. Then spectra were 

generated for varying Wpt W (in units of 10) and Wpt c (in units 
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of 5) for Wpt h=215 using both methods with results shown in 

Figure 1. 

Notice that the shape of the Burns spectra vary in width 

around the peak while the Wpt spectra share the same general 

shape. 

 One of the interesting characteristics of Wpt spectral 

reconstruction is that reflectances which have the same Wpt hue 

will share the same Wpt hue regardless of the illuminant or 

observer used. For comparison purposes Wpt coordinates were 

determined for the reflectances in Figure 1 under the F11 

illuminant and plotted as Wpt chroma versus Wpt hue in Figure 

2.  

 
Figure 2. Hue variation of reconstructed reflectances of Figure 1 under an 

F11 illuminant with blue (+) marks representing points for Burns spectral 

reconstruction reflectances and black (x) marks representing points for 

Wpt spectral reconstruction reflectances 

As can be seen in Figure 2, the Wpt hue under F11 for the 

Burns spectra shift significantly while the Wpt based spectra 

maintain a constant hue relationship (though it is not 215 under 

F11). The degree of shifting in hue for Burns spectral estimation 

varies based on the starting Wpt hue as can be seen in Figure 3 

showing maximum and minimum relative hue shifts under F11 

for planes of reconstructed spectra having constant Wpt hue 

under D65.  

  
Figure 3. Minimum and maximum variation by hue of Burns reconstructed 

reflectances under F11 for spectra with constant Wpt hue under D65 

Using Wpt based spectral reconstruction in 
a CAT  

A CAT using Wpt based spectral reconstruction generally 

follows the same four steps as proposed by Burns with a 

significant performance optimization. 

In the first step, SPDs are determined. In situations where 

the SPDs of the source and destination illuminant are already 

known then reconstructed SPDs are not needed. For the purposes 

of utilizing corresponding color datasets (where the SPDs of the 

source and destination illuminant are not known), two 

approaches of defining SPDs where used.  

• In the first approach the SPD for the closest daylight 

illuminant or black body illuminant was found varying 

correlated color temperature. Then Wpt spectral 

reconstructions were used to adjust this SPD so that 

tristimulus values for a perfect reflecting diffusor (PRD) 

under the adjusted SPD match the white point’s tristimulus 

values in the data sets for both illuminants. 

• In the second approach the illuminant reconstruction 

method of Burns was used to determine SPDs for the 

illuminants in the data sets. 

The second overall Wpt based adaptation step provides 

significant performance optimization by combining Wpt spectral 

reconstruction (as outlined in previous sections) with the 

conversion to tristimulus values (essentially combining steps two 

and three of the Burns method). This is accomplished by 

combining the sensor excitation conversion indicated in equation 

(1) using the destination illuminant with the Chau spectral 

decomposition in equation (3) as follows: 
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This means that the destination adapted tristimulus vector is 

the sum of the g scaled tristimulus values for the destination 

illuminant and the s scaled tristimulus values under the 

destination illuminant of the characterization reflectance 

corresponding to the Wpt hue of the source tristimulus values. 

Thus, steps 3 through 5 of the Wpt spectral reconstruction 

method are replaced with the following sub-steps: 

3b. The hi,j,k (Wpt hue) of Wpt spectral reconstruction step 

2 is used interpolate a lookup table to determine destination 

tristimulus values and corresponding WR and cR values associated 

with the characteristic reflectance for the hue.  

4b. Use equation (4) and equation (5) with the WR and cR 

values in the final part of equation (6) to determine the 

destination tristimulus values 

The third adaptation step is the same as step four from the 

Burns method where the destination tristimulus values are scaled 

to preserve the lightness of the source tristimulus values. 

Corresponding Color Prediction Results 
Several experimental data sets of corresponding colors were 

used to compare the performance of CATs based on HPE[6], 

CAT02[7] and CAT16[5] cone sharpening, Burns’ proposed 

spectral reconstruction CAT[8], several CATs utilizing the 

proposed Wpt-based spectral reconstruction, a proposed CAT 

utilizing a linear Wpt normalization [10] based MAT without 

lightness scaling (Wpt-MAT) as well as a linear Wpt 

normalization based MAT with an additional lightness scaling 

(Wpt-LPMAT) step.  
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Table 1 – Evaluated Wpt spectral reconstruction CATs 

Name 
Characteristic 

Reflectances 

Illuminant SPD 

Estimation 

Wpt-MP 

40 Munsell Reflectances 

with Munsell Value 5 and 

Chroma 6 

Adjust nearest 

black-body / 

daylight illuminant 

Wpt-MB 

40 Munsell Reflectances 

with Munsell Value 5 and 

Chroma 6 

Burns spectral 

reconstruction 

Wpt-BB 

360 reflectances using 

Burns spectral 

reconstruction with Wpt 

W=20, and Wpt c=30 

Burns spectral 

reconstruction 

The differences between the Wpt-based spectral 

reconstruction CATs is in the characteristic reflectances, and 

illuminant estimation with the three combinations chosen for 

comparison purposes shown in Table 1. 

For completeness, comparisons using a Wpt based material 

adjustment transform (MAT) [10] were included. A Wpt MAT 

utilizes a pair of Wpt normalization matrices to predict how 

sensor excitations of an object change with a difference in either 

observer and/or illuminant as found in the following equation: 

( )
1

2, ,2 2,2 1,1 1, ,1j j

−

=s A A s  (7) 

Where A1,1 is a Wpt normalization matrix for the first 

observing condition and A2,2 is a Wpt normalization matrix for 

the second observing condition. The Wpt-MAT transforms 

evaluated represent the use of a direct linear transform that is 

predicted by equation (7). 

Unlike using spectral reconstruction this results in a linear 

approximation of the changes in sensor excitations due to 

changes in illuminant and observer where non-linear 

relationships between the different illuminants and/or observers 

are involved. The proposed Wpt-LPMAT method used for 

predicting corresponding colors in this work first applies the 

MAT in equation (7) and then adjusts the lightness in similar 

fashion to the Burns and Wpt spectral reconstruction methods. 

Table 2 – Mean E94 for corresponding color data set predictions 

Dataset HPE CAT02 CAT16 Burns 
Wpt- 

MP 

Wpt- 

MB 

Wpt- 

BB 

Wpt- 

LPMAT 

Wpt- 

MAT 

CSAJ 4.71 3.66 3.95 3.72 3.83 3.68 3.68 3.72 4.01 

Helson 4.52 3.45 4.00 4.10 4.34 4.30 4.22 4.42 3.60 

Lam & Rigg 4.31 2.97 3.45 3.22 3.35 3.32 3.38 3.90 3.81 

LUTCHI 4.03 3.55 3.43 4.01 4.11 4.07 4.15 4.30 4.84 

Kuo & Luo 4.29 3.30 3.41 2.85 2.91 2.83 2.86 3.19 4.09 

Breneman 6.61 5.70 5.66 5.48 5.44 5.35 5.64 5.88 6.84 

Braun & Fairchild 4.54 4.00 4.24 4.07 4.11 4.08 4.04 4.12 3.81 

McCann 10.83 11.52 10.80 9.78 10.54 10.05 10.09 10.23 10.38 

Mean (all data sets) 5.54 4.87 4.91 4.74 4.91 4.79 4.85 5.05 5.36 

Mean (no McCann) 4.80 3.90 4.04 4.01 4.09 4.02 4.10 4.32 4.74 

 

The mean E94 differences between predicted and 

experimental corresponding colors were calculated for the CSAJ, 

Helson, Lam & Rigg, LUTCHI, Kuo & Luo, Breneman, Braun & 

Fairchild (RIT), and McCann data sets[13-14] for the HPE, 

CAT02, CAT16, Burns, Wpt-MP, Wpt-MB, Wpt-BB, and Wpt-

LPMAT adjustment approaches with results shown in Table 2. 

Performance comparison between Burns 
and Wpt-BB methods 

An evaluation was made compare the relative speed 

performance of the Burns and Wpt spectral reconstruction CATs 

being applied to the same 20000 random XYZ values under D65 

finding predicted results under Illuminant A. Both methods used 

the same reconstructed SPDs for the source and destination 

illuminants, and the characteristic reflectances for the Wpt 

estimation method were determined using the Burns 

reconstruction method. Care was taken to pre-calculate and isolate 

one-time setup aspects for each method with optimized 

application of each CAT.  The Burns method was significantly 

slower (about 82 times slower) than the Wpt-BB method. 

However, the mean E*94 difference in the predicted colorimetry 

between the two methods was only 0.43 with a maximum 

difference of 2.65. 

Implementing Wpt based spectral 
reconstruction CATs using iccMAX 

Advanced color management systems can take advantage of 

features in iccMAX profiles[15]. Two significant advances that 

iccMAX-based color management offers are the ability to work 

with arbitrary observers and lighting conditions, and to directly 

encode transform algorithms as scripts within a calculator 

processing element. When the either the observer is not the 1931 

standard 2-degree observer or the illuminant is not D50, then a 

spectral viewing conditions tag is required that provides the color 

matching functions and illuminant spectral power distribution. 

Additionally, two more tags are required that provide conversions 

of tristimulus values between the custom colorimetry and 

standard D50/2-degree observer colorimetry. Both the 

standardToCustomPccTag and customToStandardPccTag are 

implemented using the multiProcessElements tag type which is 

usually implemented using a matrixElement with a linear 

CAT/MAT. However, one can utilize the calculator processing 

element to perform the transformation of XYZ values between the 

standard and custom observing conditions. These tags are used 

whenever profiles that do not share the same observer and 

illuminant are connected together by an iccMAX-capable Color 

Management Module (CMM). 
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Six iccMAX profiles were created for testing to evaluate the 

predictive capabilities using a CAT02, Wpt-MB, and Wpt-

LPMAT with the CSAJ dataset. A pair of profiles was needed for 

each CAT since connection between non-standard viewing 

conditions requires an intermediate connection through D50 

colorimetry applying the customToStandardPccTag and 

standardToCustomPccTag as needed.  The profiles can be found 

at (ftp://ftp.onyxgfx.com/p2/md1/ICC-CSAJ-CAT.zip). 

Illuminant corresponding to the CSAJ illuminant 

colorimetry were determined using the Burns spectral 

reconstruction method for populating the 

spectralViewingConditions tags in the iccMAX profiles.  

The XYZ values for the CSAJ dataset were applied with the 

iccMAX profiles for each CAT using the iccApplyNamedCMM 

tool from RefIccMAX, resulting in predicted corresponding 

colors for each CAT. The resulting data are compared to the 

corresponding color tristimulus values in Table 3.  

Table 3 – Mean E94 for corresponding color data set 

predictions using iccMAX profiles 

Dataset CAT02 
Wpt- 

MB 

Wpt- 

LPMAT 

CSAJ 3.70 3.74 3.78 

Notice that these values are only slightly different from those 

found in Table 2. This could be due to the additional intermediate 

conversion to standard ICC viewing conditions, or to the 32-bit 

floating point precision in iccMAX profiles relative to the 64-bit 

floating point precision in the Matlab/Octave evaluations. 

Observations and Conclusions 
One of the advantages that Burns points out about his 

purposed spectral reconstruction technique is that it determines 

spectral reflectances that are never negative thus corresponding 

tristimulus values for other observing conditions are never 

negative. The Wpt-based reconstruction method we propose does 

not have the same guarantee that the spectral reflectances will be 

non-negative with the possibility of negative corresponding 

tristimulus values. However, hue relationships are better 

preserved between observing conditions when using the Wpt-

based reconstruction approach. 

It was shown that the Wpt-based reconstruction method is 

flexible in the definition of characteristic reflectances by hue 

showing that domain specific reflectances or reflectances based 

on other reconstruction techniques can be applied. Once 

characteristic reflectances are in place the approach can easily be 

optimized to achieve nearly the same results as using more 

complicated reconstruction techniques. 

One of the more interesting results is that using lightness 

preservation in addition to a MAT as proposed by Burns provides 

a limited optimization that better predicts corresponding color 

thus turning a MAT into more of a CAT which is something that 

has not been done previously when making comparisons between 

Wpt MATs and CATs. 

Using the proposed Wpt-based spectral reconstruction CAT 

approach has at least two sources of improvement - spectral 

reconstruction as an intermediary (eliminating a linear 

approximation of the change in illuminant and/or observer that a 

linear based MAT uses), and lightness preservation.   

However, there does seem to be some variability in whether 

lightness preservation improves the results. In the cases of Helson, 

Lam & Rigg, and Braun & Fairchild datasets the non-preserving 

(MAT) approach better predicts corresponding colors than the 

preserving (LPMAT) approach, and the Wpt-MAT best predicts 

the Braun & Fairchild CC results overall. This may be due to 

variability between the data sets in the meaning of “preserving 

appearance”, or in the experimental methods involved. 

The use of the proposed method of applying Wpt spectral 

reconstruction provides improved processing performance 

without significant average loss in predicting corresponding 

colors with the added benefit that it can easily be incorporated 

using advanced iccMAX color management. 
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