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Abstract 
Objects in real three-dimensional environments receive 

illumination from all directions, characterized in computer 
graphics by an environmental illumination map. The spectral 
content of this illumination can vary widely with direction [1], 
which means that the computational task of recovering surface 
color under environmental illumination cannot be reduced to 
correction for a single illuminant. We report the performance 
of human observers in selecting a target surface color from 
three distractors, one rendered under the same environmental 
illumination as the target, and two rendered under a different 
environmental illumination. Surface colors were selected such 
that, in the vast majority of trials, observers could identify the 
environment that contained non-identical surface colors, and 
color constancy performance was analyzed as the percentage of 
correct choices between the remaining two surfaces. The target 
and distractor objects were either matte or glossy and 
presented either with surrounding context or in a dark void. 
Mean performance ranged from 70% to 80%. There was a 
significant improvement in the presence of context, but no 
difference for matte and glossy stimuli, and no interaction 
between gloss and context. Analysis of trial-by-trial responses 
showed a dependence on the statistical properties of previously 
viewed images. Such analyses provide a means of investigating 
mechanisms that depend on environmental features, and not 
only on the properties of the instantaneous proximal image. 

Background 
One distinguishing feature of objects is their spectrally-

selective surface reflectance – the proportion of incident light 
reflected from the surface as a function of wavelength, R(l). 
The perceptual correlate of this feature is surface colour, and 
significant effort has been invested in understanding the 
perceptual mechanisms of colour constancy [2-4], which 
describes the extent to which objects retain a constant colour 
appearance despite changes in the spectrum of the incident 
illumination, I(l). Much of the early work on colour constancy 
considered matte surfaces under uniform illumination in a two-
dimensional world [5]. In this limited case, the signals available 
to the viewer for a set of n surfaces, Ri(l), where i=1,…,n, are 
fully characterized by the cone signals from the diffuse 
reflectances, given by the product I(l)Ri(l). More recent work 
has additionally considered surfaces that exhibit specular 
reflection, and has situated these surfaces under complex 
illumination in a three-dimensional world. Under such 
conditions, the proximal image at the eye will be dependent on 
the three-dimensional geometry of the scene, encompassing the 
relative locations of light sources and surfaces, and the 
viewpoint of the observer. The signal at each location, j, in the 
image of a surface, i, is a weighted sum of diffuse and specular 
reflections, ajIj(l)Ri(l)+bjIj(l), which may additionally vary
with spatial variation in the spectral composition of the 
illuminant reaching the corresponding point on the surface, 
Ij(l). Such conditions elicit the percept of gloss, and the image 
of the surface will contain a range of chromaticities (Figure 1). 

Images of glossy surfaces under a single illuminant contain 
chromaticities that are linear mixtures of the chromaticities of 
the diffuse and specular components (Figure 1a). Images of 
glossy surfaces under complex illuminations typically have a 
wider chromatic locus, reflecting the range of spectral 
distributions in the illuminant (Figure 1b). 

In the present paper, we quantify the performance of 
human observers in a task that requires them to identify 
surfaces across different illuminants, on the basis of spectrally-
selective surface reflectance. We adopt a performance-based 
measure of colour constancy [6]. Rather than asking observers 
to match the appearance of two samples across illuminants, we 
measure their ability to identify the same surface across 
illuminants, compared to a distractor that differs in spectrally-
selective surface reflectance. The complexities of matching 
colour appearance for surfaces that contain a range of 
chromaticities has been highlighted before [7]. A performance-
based measure avoids this issue, and measures instead a  

Figure 1. (a) The color distribution of pixels in the image of an object 
rendered either under sunlight or under skylight. (b) The color distribution 
of the same object under environmental illumination. Color distributions 
are plotted with MacLeod-Boynton chromaticity coordinates on the x- and 
y-axes and luminance on the z-axis. Note that the three objects have the 
same surface properties. 
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behaviorally-relevant aspect of colour constancy in terms of the 
role of surface colour in matching objects across different 
illumination contexts. 

All stimuli in our experiments were computer-generated, 
rendered images. Lighting was specified using environmental 
illumination maps from an online database [8]. Such maps 
specify, at each pixel in unwrapped spherical coordinates, the 
light incident at a particular point in a scene as a function of the 
direction of incidence (see Figure 1b). In the main color 
constancy experiment, in which participants were required to 
identify surfaces across illuminants, four objects were 
presented, two of which were rendered under one 
environmental illumination, and two of which were rendered 
under a second environmental illumination. Three (distractor) 
objects shared the same spectral reflectance, and the fourth 
(target) object had a different spectral reflectance. The color 
constancy task in this experimental design can be considered in 
two parts. Firstly, to identify the environmental illumination 
containing the odd-one-out the observer must discriminate 
surface reflectance within illuminants, since the environment 
with a non-matching pair of surfaces must contain the target. 
Then, the observer must decide which surface of this pair is 
also presented under the other illuminant, and which surface is 
unique. The experimental design allows separate assessment of 
color constancy performance across illuminants and color 
discrimination performance within illuminants. Importantly this 
allows the experimenter to ensure that task performance is not 
limited by chromatic discrimination, and is instead a true test of 
color constancy. To determine the appropriate levels of spectral 
variation for this experiment, we first we measured thresholds 
for correctly selecting a (colored) target object with a non-
uniform spectral reflectance from (grey) distractors with 
uniform spectral reflectance. This provided ‘discrimination 
ellipses’ for surface color in the context of complex 
environmental illumination. A full account of this 
discrimination experiment is given in Morimoto and Smithson 
[9], and we report here the key results in relation to the main 
color constancy experiment. 

Methods 
All stimuli were computer-graphics generated. The 

geometry of each scene (the three-dimensional surface of the 
objects, the viewpoint and an illumination map) was specified 
using the 3-D modelling software, Blender (Blender 
Foundation). Multispectral images (31 channels, from 400nm to 
700nm with 10nm steps) of the rendered objects were produced 
with the physically-based renderer, Mitsuba [10]. We used 
bumpy spherical objects with one of two levels of specularity 
(matte or gloss). The glossy surface had a specular reflectance 
of 0.20 across all wavelengths, as defined within Mitsuba when 
set to render according to the Ward reflectance model [11] in 
which the image of the surface is a weighted sum of diffuse and 
specular components. We used two environmental 
illuminations from the Vogl database [8]: (1) “Distant Evening 
Sun (Hallstatt)” and (2) “Overcast day at Techgate Donaucity”. 
The environmental illumination maps were originally 
1024×512 images with three channels (RGB) but were 
promoted to multi-spectral images within Mitsuba’s rendering 
process using a method by Smits [12]. This method uses seven 
spectral basis functions, whose positive weights were 
determined to best match the RGB values. The multispectral 
rendered images were converted to LMS cone coordinates 
based on the Stockman & Sharpe 2° cone fundamentals [13] 

and finally converted to RGB values for display on a calibrated 
CRT. We used Rendertoolbox [14] to automate the production 
of the multispectral images and MATLAB (MathWorks) to 
convert the images to RGB. 

Three observers were recruited for the discrimination 
experiment, and seven observers for the identification 
experiment. The studies received ethical approval from the 
Medical Sciences Inter-Divisional Research Ethics Committee 
at the University of Oxford, UK. 

Discrimination experiment 
We measured discrimination thresholds for eight spectral 

reflectances compared to a spectrally uniform reference. During 
each 2-second trial, four objects were presented simultaneously. 
Three objects (the distractors) were assigned a uniform spectral 
reflectance while the fourth (the target) was assigned the test 
reflectance. The observer’s task was to “select the object with a 
different surface color”. The four objects were rendered under a 
particular environmental illuminant (either Environment 1 or 
Environment 2, in separate testing sessions) and presented in a 
dark void with no contextual information (see Figure 2a). Each  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. (a) Stimuli for the discrimination task. Four objects were 
presented simultaneously, and the observer’s task was to find the target 
object (top-right) that had a different surface color from the three 
distractors.  (b) Stimuli for the identification task. Four objects were again 
presented simultaneously, but the two on the left and the two on the right 
were placed under different lighting environments. The observer’s task 
was the same: to find the target object (top-right) that had a different 
surface color from the three distractors. 
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object was presented from one of 20 different camera angles in 
order to prevent observers comparing the colors of specific 
points in images of the objects. 

 To find a representative set of reflectances to test we 
selected reflectances from a database of real surfaces such that 
the chromaticities of the eight samples, when rendered under 
equal energy white, were approximately evenly distributed 
around a hue-circle in MacLeod-Boynton chromaticity space 
[15]. The space was scaled to equate discrimination thresholds 
for uniform discs along the S/(L+M) and L/(L+M) axes. To 
obtain continuous control over discrimination difficulty for the 
reflectance samples, we used weighted mixtures of the 
spectrally-selective reflectance and a spectrally-uniform 
reflectance. Chromatic difference between each sample and the 
reference was therefore parameterised by this weighting, which  
was used as the continuous variable in the adaptive staircases 
used to estimate discrimination thresholds. A single testing 
session comprised eight interleaved staircases (maximum 
likelihood adaptive staircase, as implemented in Palamedes 
toolbox [16]), with one staircase corresponding to each spectral 
reflectance. Each observer completed five repeated sessions for 
each environmental illuminant. 

 

Identification experiment 
We measured percent correct on a reflectance 

identification task in which observers were required to identify 
the odd-one-out across illumination conditions, for pairwise 
combinations of nine reflectance samples. During each 3-
second trial, four objects were presented simultaneously, two 
on the left and two on the right. The left-hand pair were 
rendered under one environmental illumination and the right-
hand pair were rendered under the other environmental 
illumination. The left and right environments were separated by 
a vertical gray bar that had the same mean luminance as the 
whole screen in each trial. For each trial, two reflectances were 
chosen (without replacement) from the available set of nine. 
One reflectance was used for three of the objects (the 
distractors), while the other reflectance was used for the fourth 
object (the target). The observer’s task was to “select the object 
with a different surface color”.  

Objects were either presented in a dark void, with no 
contextual information, or in the context of the environmental 
illumination under which they were rendered (see Figure 2b). 
The four objects were each presented in different orientations to 
the camera (preventing pixel-by-pixel comparisons) but, within 
each environment, there was a fixed geometry between the 
environment and the camera so that the two objects received the 
same illumination and, when contextual information was 
present, the same part of the environment map provided the 
context for the two objects. The visible region from a single 
viewpoint extended 76.4° × 41.5° in elevation and azimuth 
angles, respectively, and the region of the environmental 
illumination that was visible was different from each of 20 
possible camera angles. 

We chose nine reflectance functions for Environment 1 
and nine for Environment 2: a spectrally uniform reflectance 
and eight spectrally selective reflectances that were constructed 
using the same method as for the discrimination experiment. 
Based on the discrimination results, reflectances were set to 
produce stimuli whose chromaticities were 2.5 times the 
discrimination threshold from equal energy white. Allowing for 
the possibility of different thresholds under the two 

environments, the scaling in each trial was chosen according to 
the environment under which the target reflectance was 
presented. 

One block continued until the full combination of 9-
choose-2 reflectances (9C2) was tested. Assigning one 
reflectance to the target object and the other to distractor 
objects and vice versa was treated as different, as was placing 
the target object under the left or right environment. 
Consequently, one block consisted of 144 trials (9C2×2×2). In 
each testing session, we ran four blocks, one for each of four 
conditions: two specular levels (glossy, and matte) and the 
presence or absence of surrounding context (context and no-
context). Each observer completed four sessions corresponding 
to 2,304 trials in total. 

 

Results 

Discrimination experiment 
 Average discrimination ellipses for surface colors 

under Environment 1 and Environment 2 are shown in Figure 3. 
Thresholds are plotted as the chromaticity that corresponds to 
the spectrally-selective reflectance on which the staircase 
converged, rendered under an equal energy white light. Both 
ellipses are tilted, and the discrimination ellipse in Environment 
1 is larger than in Environment 2. Both environments exhibit 
anisotropic variation in chromaticity, with the axis of maximum 
variation (red dashed lines) aligning approximately with the 
black body locus (blue dashed lines). The major axis of the 
discrimination ellipses is closely aligned to the axis of 
maximum chromatic variation in the illumination map. The two 
environments differ in their chromatic statistics, indicated in 
part in the pixel chromaticities displayed in the backgrounds of 
the results plots. In particular, the mean chromaticity of 
Environment 2 is displaced from equal energy white, which is 
used as the reference for the discrimination task. This 
separation of mean surface color and mean lighting color may 
have improved surface color discrimination. More detailed 
discussion of these data and of the factors influencing 
discrimination of surface color under complex illumination is 
published elsewhere [9]. The threshold data from this 
experiment were used to inform the selection of appropriate 
spectrally-selective reflectances for the main colour constancy 
experiment, in which observers were asked to identify surfaces 
across illuminants.  
 

Identification experiment 
The task in the identification experiment can be considered 

in two parts: first a discrimination task to find the environment 
that contains two different reflectances, then a colour constancy 
task to decide which of these reflectances matches the stimuli in 
the other environment. For the analysis, we included only trials 
where observers successfully performed the discrimination task 
(i.e. chose correctly the side that contained the target object). 
Therefore, chance performance for the colour constancy task 
corresponds to 50% and not 25%. Importantly, this approach 
ensures that performance is limited by failures of colour 
constancy rather than the limits of chromatic discrimination. 
The success rate for chromatic discrimination was 95.6%, so 
the excluded trials were only a small proportion of all trials, and 
there was no systematic difference between trials when the 
target appeared under Environment 1 or Environment 2. 
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Figure 3. (a) Averaged discrimination ellipse across three observers for 
objects under Environment 1, “Distant Evening Sun (Hallstatt)”. Stimuli are 
plotted in MacLeod-Boynton space, in which the x- and y-axes represent 
L/(L+M) and S/(L+M) respectively. The eight coloured circles are 
chromatic discrimination thresholds, relative to the black plus symbol that 
denotes the chromaticity of equal energy white from which the threshold 
was measured. The black cross symbol shows the mean chromaticity 
across all pixels in the environmental illumination. The black solid line 
shows the ellipse that best fits the thresholds. The small coloured dots in 
the background of the plot show the chromatic distribution of the pixels in 
the environmental illumination (not all pixels are shown within the axis 
limits). The red dashed line shows the axis that exhibits the maximum 
variation in chromaticity of the environmental illumination. The blue 
dashed line shows the black-body locus. (b) Averaged discrimination 
ellipse across three observers for objects under Environment 2, “Overcast 
day at Techgate Donaucity”. The format of the plot is the same as in (a). 
Note however that the mean chromaticity of Environment 2 plots beyond 
the axis limits (L/(L+M) = 0.686, S/(L+M) = 1.19) so this panel has no 
black cross symbol. 
 

Figure 4a shows percentage correct, averaged across 
reflectance pairs and across observers, for each of the four 
conditions (two specular levels (glossy and matte) and the 
presence or absence of surrounding context (context and no-
context). A two-way repeated measures ANOVA revealed a 

significant main effect of the presence of surrounding context 
(F(1,6) = 30.5, p = 0.00148), while the main effect of specular 
reflection (glossy or matte) was not significant (F(1,6) = 2.95, p 
= 0.137), nor was the interaction (F(1,6) = 4.16, p = 0.875). T-
tests show that the effect of context is significant both for matte 
and glossy objects (t(6) = 4.981, p = .00249; and t(6) = 4.748, p 
= .00316, respectively). 

Figure 4b shows performance for individual pairs of target 
and distractor reflectances. Each cell of the matrix refers to a 
specific pair of target and distractor reflectances, according to 
the key presented at the top and left of the matrices in which 
reflectances are ordered by hue angle when rendered under 
equal energy white. The lower left and upper right triangle of 
each matrix shows trials in which the target was presented 
under Environment 1 or under Environment 2, respectively. 
Performance is highly symmetric for the two environments. 

The overall improvement with contextual information is 
evident, but there are also systematic patterns of performance 
for specific reflectance pairs. When two reflectances have 
similar hue angle (represented by cells close to the negative 
diagonal), the trials are more difficult. The structure of the 
matrix also indicates a tendency to fail when both target and 
distractor fall within the blue-lilac-pink range, or within the 
green-yellow-orange range, but to succeed when target and 
distractor are drawn from different ranges, which is consistent 
with the smaller range of effective (threshold-scaled) hue 
angles for these two clusters of reflectances (shown in Figure 
3). Finally, the bottommost row and rightmost column of the 
matrix show data for trials in which the target or distractor has 
uniform reflectance and is compared to one of the spectrally-
selective samples. If performance in these trials followed the 
within-illuminant discrimination performance, each 
combination would elicit the same performance. Variation in 
performance between these combinations indicates a further 
interaction with the chromatic properties of the environments 
that are being compared. 

 

Discussion 
The chromatic statistics associated with an image of an 

object are markedly different when the object is viewed under a 
single illuminant or under environmental illumination (Figure 
1). The present experiment quantifies performance-based color 
constancy across different environmental illuminations. 
Specifically, we tested the ability to identify an object with a 
target spectral reflectance amongst distractors when objects 
were presented under different environments. Under conditions 
where performance was not limited by chromatic 
discrimination within illuminants, we found mean performance 
on the color constancy task ranged between 70 and 80%. 
Performance was significantly poorer when object images were 
presented in a dark void compared to when they were presented 
in the context of the environmental illumination under which 
they were rendered. The specularity (glossiness) of the surface, 
despite changing the chromatic statistics of the image of the 
object and potentially providing direct information about the 
illumination [17], had no effect on performance.  

Observers do not have direct access to surface color 
independent of illumination. Robust comparison of surface 
color across illuminants therefore requires compensation for the 
lighting context, which we generically term a ‘color 
conversion’, and we discuss possible color conversions below. 
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Figure 4. (a) Left panel: Averaged percentage correct values across 
seven human observers. Error bars indicate ±S.E.M across observers. 
Asterisks indicate a significant difference between “context” and “no 
context” for both matte and shiny objects (p < 0.05). Center panel: 
Percentage correct values for a computational model that performs a 
white-point correction based on the luminance-weighted mean 
chromaticity of the surrounding context. Note that for the no context 
condition, no correction was performed. Right panel: Performance of a 
model that corrects the influence of illumination based on a spatial-
temporal luminance-weighted mean chromaticity over trials. (b) 
Performance for individual pairs of target and distractor reflectances, 
averaged across observers. Each cell in the matrix represents a particular 
pair of target and distractor reflectances (color-coded along the upper and 
left edges of the matrix), and the shading indicates the average 
percentage correct as defined by the colour bar. The orange cells show 
percentage correct values in the range 40% to 50% and from 30% to 40%. 
Since target and distractor were never assigned the same reflectance, 
cyan cells on the diagonal indicate that there is no data. As shown in the 
subsidiary figure (shown by the black arrow), the lower left and upper right 
triangle of each matrix shows trials in which the target object was 
presented under Environment 1 or under Environment 2, respectively. 

The results suggest that it is unlikely that observers are 
using specular highlights to provide direct samples of the 
illumination and drive the color conversion. This inference 
follows specifically from the lack of performance improvement 
for glossy objects and the disadvantage for the no-context 
condition, even though the glossy objects contain the same 
specular highlights in the no-context condition as they did in 
the context condition.  

The simplest model for selecting the target from 
distractors would be to base the judgement directly on the 
average chromaticity of the object, with no correction for the 
illumination. This is predicted to lead to poor constancy, and 
indeed an observer implementing this process (using the 
luminance-weighted mean chromaticity of each object) would 
achieve only 62.3 and 59.4 percent correct for matte and glossy 
objects respectively (relative to chance performance of 50 
percent correct). Real observers not only do better than this, but 
they also show improved performance when objects are 
presented with surrounding context. A model that considers the 
spatial average of the surrounding context and uses this for 
white point correction of average object color [18] captures 
some general features of the real observer performance, 
achieving 82.2 and 71.6 percent correct for matte and glossy 
objects respectively. 

Data from the present experiment additionally encode the 
observer’s dependence on trial-to-trial variation in viewing 
conditions, introduced primarily by the selection of different 
camera angles for each environment in each trial. A model that 
bases white-point correction on an average over past trials 
achieves 86.8 and 82.2 percent correct for matte and glossy 
objects respectively. This dependence on the past history of 
trials replicates earlier findings with two-dimensional matte 
stimuli under uniform illumination that indicate that temporal 
context is important in achieving color constancy [19] and that 
illuminant correction is not instantaneous [20]. However, 
modelling average performance is not a sensitive test of 
underlying mechanisms, and trial-by-trial analyses indicate that 
none of the white-point correction algorithms discussed here 
provide a very good account of observers’ choices between 
target and distractor reflectances. Indeed, using d-prime to 
summarize the models’ successes and failures in predicting 
human choices shows that the null model, with no correction 
for the illuminant, achieves a d-prime of about 0.5 and that 
none of the white-point correction algorithms do better than a 
d-prime of about 1.0. 

Surface color perception under environmental illumination 
is a primary example of a visual task that requires extraction of 
stable signals from variable inputs. The summary models 
discussed here serve to highlight consistent features of 
performance, and statistical regularities in chromatic statistics 
that could contribute to the overall pattern of effects. But, as the 
d-prime analyses indicate, none of the existing models provide 
a good account of the trial-to-trial variability in observer 
performance. It is possible that this variability is the key to 
further understanding the mechanisms underlying observers’ 
selections of the target object, and surface color perception 
more generally.  

The perception of surface color under environmental 
illumination is a rather different computational task compared 
to surface colour perception under uniform illumination. 
Numerous studies have suggested that observers are indeed 
sensitive to the three-dimensional structure of the scene and 
lighting. For example, surface color judgements are sensitive to 
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the way in which mutual illumination depends on the relative 
orientations of two surfaces [21], and to the way in which 
directional anisotropies in light-fields change the effective 
illumination of a tillable surface [22]. Moreover, phase-
scrambling manipulations that disrupt the interpretation of the 
three-dimensional structure of scene, whilst maintaining the 
chromatic statistics of the proximal image, (e.g. [23]; [24]) 
show sensitivity to scene geometry. A complete description of 
surface color perception will need to explain patterns of 
behavior that depend on these environmental features, and not 
only on the statistics of the instantaneous proximal image. 
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