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Abstract
In texture analysis, stationarity is a fundamental property.

There are various ways to evaluate if a texture image is station-
ary or not. One of the most recent and effective of these is a stan-
dard test based on non-decimated stationary wavelet transform.
This method permits to evaluate how stationary is an image de-
pending on the scale considered. We propose to use this feature
to characterize an image and we discuss the implication of such
approach.

Introduction
In texture analysis, a stationary texture image is defined as

an image containing only one type of texture [1]. From this defi-
nition, we can see that the stationarity of texture has two conno-
tations. The first one is related to perception, where an image is
said to have one type of texture when it is perceived to be homo-
geneous. To apply this definition to texture analysis is, however,
challenging. To this day, the boundaries of what a human per-
ceive as homogeneous texture are extremely fuzzy as it depends
on a vast variety of factors [2]. On the other hand, stationarity has
been precisely defined from a mathematical point of view. A sta-
tistically stationary texture image has the same local properties
everywhere in it [1].

The concept of stationary processes is widely used in vari-
ous fields, and it is mainly related to time series. In texture anal-
ysis, stationarity is a fundamental assumption for the application
of global texture models, i.e. Markov random fields, the Fourier
transform and the autocorrelation function. However, these tech-
niques face challenges when applied to non-stationary images.
Ideally, this problem can be easily solved with a segmentation
algorithm, which autonomously partitions a digital image into
multiple homogeneous sub-regions. As discussed in [1], in or-
der to decide if the segmentation is necessary, we would need to
know if the image is stationary.

Numerous stationarity evaluation methods have been pro-
posed. One of the most promising ones is based on locally sta-
tionary wavelet fields [3] [4], addressing the stationarity at mul-
tiple scales. Nonetheless, there, the average of the wavelet field
over multiple scales is eventually used, without discussing their
relationship with the nature of the texture. Being the dependence
of texture parameters on the scale a fundamental problem for tex-
ture analysis, this coincides to neglecting elements which could
be fundamental for human appearance modeling. In fact, differ-
ent scales could influence in distinct ways the perception of the
homogeneity of a textured image, i.e., the perceived stationarity.

Taylor, et al. [4] proposed a wavelet-based stationarity test,
developed strictly in the mathematical sense. Even though its
nature is strongly multiscale, as discussed in the paper, it does
not explicitly provide stationarity measures for individual scales.
However, it is known that the human visual system takes both
local and global spatial information [5]. With the end goal of
linking mathematical stationarity to its perceptual context, in this
pilot study, we modify the test in order to allow the numerical

analysis of individual scales. We start by discussing in detail the
foundations of the texture stationarity test. Then, we describe its
proposed modification, in which we assess stationarity for each
scale of an image instead of providing a single global index. We
then apply the proposed test to a subset of the Amsterdam Library
of Textures (ALOT) texture database [6].

Definitions
Stationarity

A discrete time series Xt ∈ Z is defined as strictly sta-
tionary if the joint distribution of (Xt1 , . . . ,Xtn) is identical to
(Xt1+τ , . . . ,Xtn+τ ) ∀ti,n,τ ∈ N. However, this definition is usu-
ally too strict for applications, therefore in signal processing the
concept of weak stationarity is generally used, instead: a time
series is weak-sense (or second-order) stationary if it has con-
stant mean and covariance between two time coordinates t1 and
t2 function only of their difference (KXX (t1, t2) = KXX (τ,0),τ =
t2 − t1,∀t1, t2 ∈ N). These formalizations mean that the joint
probability distribution generating the series is constant in time.
They both can be easily expanded to image processing by in-
troducing the bidimensional pixel coordinates (u,v). This paper
focuses on the weak-sense stationarity, since it is a common as-
sumption in many texture analysis methods.

In particular, we want to verify if an image is stationary or
not. In order to achieve that, various stationarity testing tech-
niques have been recently developed. Some of them are not suit-
able to our purposes, e.g., one was introduced [7] and tested [8]
aiming to detect acoustic sources in shallow water. To do that,
the fact that the matrix form of the second order spatial cumu-
lant spectrum is diagonal in case of weak-stationarity was used,
i.e. the Fourier transform of the cross-correlation function of the.
The problem with this method is that it requires multiple real-
izations of the same process, and it is therefore not applicable to
single texture images. Different but analogous issues also appear
in other proposed methods [9], [10], [11].

Locally stationary wavelet fields
An approach that satisfies the requirements of our applica-

tion is the one introduced in [4]. It analyses the stationarity of
textured images through the wavelet transform, which has been
proven to be more appropriate than Fourier-based ones in the
study of potentially non-stationary signals [3]. Such a perfor-
mance is justified by the localization and multiscale nature of the
wavelet functions [12].

First of all, a wavelet ψ(x) is a compact support func-
tion with oscillatory characteristics, x ∈ R. By shifting and
scaling ψ(x), it is possible to generate a complete functional
basis {ψ j,k,φk}, which can then be used to decompose any
function f (x) ∈ L2(R); in this case, ψ(x) is referred to as
mother wavelet, and j and k are the scaling and shifting in-
dices, respectively. φks are functions generated by scaling the
father wavelet φ(x), which covers the region of frequency space
around the origin. Hence, we can define the wavelet trans-
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form of f (x) as f (x) = ∑k ckφk(x)+∑ j≤J ∑k d j,kψ j,k(x),k ∈ Z,
where ck =

∫
∞

−∞
φ∗k (x) f (x)dx, d j,k =

∫
∞

−∞
ψ∗j,k(x) f (x)dx and J

is the total number of scales taken into account. According
to Ref. [13], this process can be then discretized by starting
from a mother wavelet ψ with the low-/high-pass filter pair
{hk,gk} associated. Once defined Nh as #{hk} 6= 0 and L j =
(2 j − 1)(Nh − 1) + 1, a discrete wavelet at scale j ∈ Z+ is a
vector ψ j = (ψ j,0, . . . ,ψ j,L j−1), where ψ−1,n = gn and ψ j−1,n =

∑k hn−2kψ j,k, ∀n ∈ [0, . . . ,L j−1−1]. It is possible to expand this
framework to a 2D description: given k = (k1,k2), with k1,2 ∈Z,
a two-dimensional discrete wavelet filter at scale j and direction
l can be defined as the L j×L j matrix:

ψ
l
j =


ψ l

j,(0,0) . . . ψ l
j,(0,L j−1)

...
. . .

...
ψ l

j,(L j−1,0) . . . ψ l
j,(L j−1,L j−1)

 . (1)

The direction index l is used to refer to horizontal h, vertical v
and diagonal d 2D fundamental wavelets, which can be defined
as ψh

j,k = φ j,k1 ψ j,k2 , ψv
j,k = ψ j,k1 φ j,k2 and ψd

j,k = ψ j,k1 ψ j,k2 .
The 2D discrete wavelet matrices so defined can be used to

calculate the wavelet coefficients of an image by applying them
on the picture in various pixel positions. While for a compact
description of the image, e.g., in JPEG2000 compression [14],
these positions are chosen so that the minimum number of filters
possible is used, in our case the most complete description can
be achieved by applying each wavelet on every pixel of the im-
age, thus calculating the so-called stationary wavelet transform.
In [3], this bidimensional wavelet basis was used to define the a
random field modeling framework, referred to as locally station-
ary two-dimensional wavelet fields (LS2W). An LS2W process
can be defined as:

Xr = ∑
l

∞

∑
j=1

∑
u

wl
j,uψ

l
j,u(r)ξ

l
j,u , (2)

where l indicates the direction of the wavelet, j its scale and
u its shifting. {wl

j,u} is a set of constant wavelet coefficients,
{ψ l

j,u(r)} of 2D discrete non-decimated wavelets and {ξ l
j,u}

is a zero-mean random orthonormal increment sequence. It is
therefore possible to interpret the definition of Xr as a wavelet
transform with coefficients wl

j,uξ l
j,u, where the ξ s represent the

stochastic component of the field. u,r ∈ [0, . . . ,R]× [0, . . . ,S] are
coordinates of the generated R× S image. From this, it is pos-
sible to define, in analogy with the Power Spectral Density of
a discrete Fourier transform, an evolutionary wavelet spectrum
(EWS) (sometimes also referred to as local wavelet spectrum
(LWS)) Sl

j(u) at scale j and with direction l.
To apply such a model to an existing image means to eval-

uate Sl
j(u). In [3], it was demonstrated that the local wavelet

periodogram (LWP):

I(u) = {Il
j,u}=

{
|dl

j,u|2
}
=

{(
∑
r

Xrψ
l
j,u(r)

)2
}
, (3)

which, in fact, is a biased estimator of the LWS. The correction of
this bias is performed by applying a correction matrix A, which,
as widely discussed in [15], is a J×J array obtained from the au-
tocorrelations of the wavelet functions used. The corresponding
calculation is Ŝ(u) = A−1 · I(u).

Wavelet-based stationarity tests
In the following section, we first describe in detail the sta-

tionarity test introduced in [4], then we propose a novel variation

of this, which gives additional insights on the characteristics of
the image under study.

The standard wavelet stationarity test
The model described in (2) attributes to the random se-

quence ξ l
j,u the spatial variation of the image. Therefore, a pic-

ture is stationary in this framework if and only if its EWS S is
constant on the spatial coordinate u, ∀l ∈ {h,v,d}∧∀ j ∈Z+. On
this basis, Ref. [4] built a novel stationarity test:

H0: Sl
j(u) is a constant function of u ∀l ∈ {h,v,d}∧

∀ j ∈ Z+

H1: Sl
j(u) is not a constant function of u ∀l ∈

{h,v,d}∧∀ j ∈ Z+.

To implement this, a test statistic based on the average variation
of the complete EWS S = {Sl

j(u)} in (4) was defined.

Tave{S}= (3J)−1
∑
l

J

∑
j=1

varu(Ŝ(u)) (4)

Given the lack of knowledge on the original distribution of
Tave{S}, one can perform a parametric bootstrap procedure,
based on the evaluated EWS S and on the assumed model of
statistical innovations ξ . The p-value of the test is eventually ob-
tained by looping over this process B times, and then calculating

p =
1+#{T obs

ave ≤T (i)
ave}

B+1 . Here, B is the number of loops performed by
the bootstrap, which is arbitrary, while obs and (i) indicate the
sample and ith bootstrap synthesis, respectively.

The p-value p is representative of the distribution of the test
statistic under the null hypothesis H0. In its theoretical signifi-
cance, p represents the probability obtaining the observed results
in the test, assuming that the null hypothesis is correct In this
case, this is achieved by comparing the observed T obs

ave with the
corresponding T (i)

aves obtained by assuming a stationary spectral
structure based on the observed process. Hence, as noted in [4],
the p-value can also be interpreted as a measure of how non-
stationary the observed process is.

The p-values’ vector
The previously described test has proven to be a powerful

tool to assess the stationarity of an image [4] [16]. Although
this method is based on stationary wavelets at multiple scales,
none of the references has employed it to assess the variation
of stationarity of textured scenes with the scale. To this end, it
is useful to introduce a parameter which evaluates the departure
from constancy at each scale:

T{S}= {T l
j }= varu(Ŝ(u)). (5)

Note that Ŝ(u) is a matrix that contains the local stationary
wavelet coefficients at each scale j and direction l. This has been
used in [3] for classification purposes, and it was the base of a
second multi-hypothesis bootstrap test proposed in [16]. How-
ever, the properties of such a function have never been discussed,
and it has never been applied to traditional texture databases. In
particular, from T{S} is possible to derive a matrix p composed
by the p-values at each scale and direction: p = {pl

j}, where

pl
j =

1+#{T l obs
j ≤T l (i)

j }
B+1 . p can be used as a estimator for stationar-

ity at each dyadic distance 2 j ∀ j ∈ Z+.
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Results
To test the two methods described in the previous section,

we have chosen a set of images, stationary and not, for which
we derived both p and p. The whole work was developed in
Python, building on a dedicated library PyWavelet [17]. The next
subsections discuss the results obtained with different typologies
of grayscale images. In the final work, we also intend to assess
the results of these tests for artificial non-stationary images.

Stationary artificial images
As a first performance evaluation, we want to check the test

against theoretical images, for which we know what to expect.
The chosen two are, first, an uncorrelated Gaussian white noise
process generated with a simple normal distribution N(0, 1) (Fig.
1a) and, second, a 2D correlated and scale-invariant Gaussian
random field (Fig. 1b). For the latter, we used a Python imple-
mentation found in [18], for which the correlations are due to a
scale-free spectrum P(k) ∼ 1/|k|β/2 of the image (with β = 3).
Both images had a size of 512×512.

(a) Gaussian white noise (b) Gaussian random field
Figure 1: Two stationary processes to test p and p.

We determined the mean stationarity p-value of the images
with the test described in the previous section. We used bsim =
100 bootstrap simulations. Following [4], it is reasonable to fix
the significance level at 5%. The resulting p for Fig. 1a is 0.34,
while for Fig. 1b is 0.99. This difference between results can
be connected to the lack of correlation in the first process, which
affects the second order stationarity of the single realization.

Figure 2: p-value of the stationary test for images in Fig. 1,
shown for all directions l: horizontal (H), vertical (V), and diag-
onal (D). The axis of abscissa represents finer to coarser dyadic
scales.

(a) 155 (b) 181

(c) 182 (d) 185
Figure 3: Subset of images from the Amsterdam Library of Tex-
tures (ALOT) texture database.

This conclusions are consistent with what can be obtained
with the second approach. The p vectors recovered with this are
shown in Fig. 2. The x axis of the plot accounts for the scale
j of the p j, and it goes from finer to coarser. From this figure,
it is clear that the p js of the white noise process are generally
smaller than those of the Gaussian random field one. In the latter
case, the high number of p j = 1 ensures a strong stationarity at
multiple scales, as can be expected by the same scale-invariant
property of the model used.

Real-world grayscale texture images
Finally, we applied the two methods to the grayscale images

shown in 3, chosen to represent a wide range of textures from the
Amsterdam Library of Textures (ALOT) [6].

The results of the standard stationarity test are reported in
Table 1. It can be seen that Fig. 3a is the only image classified
as non-stationary. These results can be clarified by the multi-
scale analysis, whose output is reported in Fig. 4: for exam-
ple, Fig. 3a is stationary at fine scales, but p is strongly in-
fluenced by the lack of stationarity at larger scales. The direc-
tion of analysis l can also give additional insight on the nature
of the texture, such as for Fig. 3d. Results from more images
can be found at https://gist.github.com/micheleconni/
abe79a8b90357559563d7bc8e4a4fb9c.

Table 1: p-values resulting from the application of the bootstrap
stationarity test to the ALOT images.

155 181 182 185 193 204 212 241
p 0.01 1.00 0.79 1.00 0.78 0.96 0.52 0.10

Conclusions
The results obtained confirm that it is suitable to use the p

value introduced in [4] to characterize the statistical attributes of
a textured image. Furthermore, it is clear that the p vector can be
an interesting tool to fathom these attributes at different scales.
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Figure 4: Results of the p vector analysis for Fig. 3. The vector
was obtained for dyadic scales, which are shown in the abscissa,
for the horizontal, the vertical and the diagonal direction, which
in figure are indicated with the H, V and D label, respectively.

As discussed, for now this tool is limited to a dyadic scaling, but
it would be interesting to develop a corresponding continuous
function, so to have a more precise idea of how this value varies
through different scales. It would be also interesting to examine
the classification capabilities of this system, since that is a usual
benchmark for novel texture features.

An extension of this approach can also be introduced and
developed for the multivariate image domain. In this regard, we
note that one has been developed based on the stationary wavelet
transform [16], taking on an integrative multi-channel color tex-
ture analysis approach [19]. Therefore, it gets computationally
very expensive when the number of channels of the image in-
crease, making it unsuitable spectral imaging applications.

Another possible application is the development of a tex-
ture analysis routine based on p. Noting that various analysis
techniques are better for non-stationary texture or vice versa [1],
it would therefore be possible to employ different techniques at
different scales, depending on the structure of p. Finally, since
stationarity is fundamental mathematical property, it would be
interesting to consider its relationship with human perception,
by matching p with the results of proper psycho-physical tests.
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