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Abstract. Naturalness is a complex appearance attribute that is de-
pendent on multiple visual appearance attributes like color, gloss,
roughness, and their interaction. It impacts the perceived quality
of an object and should therefore be reproduced correctly. In
recent years, the use of color 3D printing technology has seen
considerable growth in different fields like cultural heritage, medical,
entertainment, and fashion for producing 3D objects with the
correct appearance. This paper investigates the reproduction of
naturalness attribute using a color 3D printing technology and the
naturalness perception of the 3D printed objects. Results indicate
that naturalness perception of 3D printed objects is highly subjective
but is found to be objectively dependent mainly on a printed object’s
surface elevation and roughness.
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1. INTRODUCTION
Naturalness is a key attribute that is used to assess the
appearance of an object [15]. It is a complex attribute that
involves the interaction of a multitude of other appearance
attributes, mainly color, roughness, and gloss [15]. This
complexity is evident when defining naturalness, which can
be approached in two ways:

(1) Objects that are not manipulated by humans, that is,
possessing the quality of being in accordance with
nature; for example, natural wood versus varnished
wood [19].

(2) Close matching between the understanding of a scene
in the observer’s mind—including (but not limited to)
materials comprising the scene and scene depth—and
thememory of such scenes andmaterials in an observer’s
memory [12].

The main difference between these definitions is that
the first is more restrictive compared to the second. While
the former only considers objects as being natural if they are
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in their ‘‘raw’’ form, the latter relates naturalness more to
the realism of the scene presented. These definitions reveal
a layer of complexity when understanding the naturalness
attribute, and how naturalness perception is dependent on
an observer’s preferences and familiarity with the scenes and
materials involved.

But despite its complexity, naturalness remains an
important attribute to achieve correctly for an accurate and
high-quality reproduction [19, 34]. Studies have shown that
observers react more favorably to natural-looking samples as
opposed to fake-looking replicas. This was the case in the
study by Overvliet and Soto-Faraco [19], where observers
deemed natural-looking wood samples more valuable than
fake-looking samples, as well as in the study by Reinhard
et al. [23], where their ‘‘natural look’’ was essential for
the acceptance of eye prostheses by patients. Interestingly,
naturalness judgment is also considered when evaluating
‘‘unnatural’’ objects, such as 3D printed processed foods.
Groot [10] has shown that when 3D printed food was
consideredmore natural looking, its acceptance by observers
was higher. And still, naturalness is highly sought after in
many other applications such as cultural heritage conserva-
tion/reproduction, interior decor/design, and art [15].

3D printing technology is a process where three-
dimensional objects are constructed layer by layer from
digital design files. It offers many advantages over traditional
manufacturing techniques, such as enabling the production
of complex and customized objects and cheapermanufactur-
ing [6]. 3D printing is an umbrella term for many different
techniques that use different materials, and are employed for
different applications ranging from industrialmanufacturing
to artistic reproduction all the way to building construc-
tion [18]. Of these techniques, PolyJet 3D printing allows for
color 3D printing. A PolyJet 3D printer uses UV-curable col-
ored ink droplets that are jetted from inkheads and cured (so-
lidified) usingUV-light. The positioning of the ink droplets is
determined by an error-diffusion color halftoning step that is
intrinsic to the printing pipeline [38]. This technique is useful
for a certain approach called graphical 3D printing: the re-
production of an object’s appearance using 3D printing [31].
This involves matching the appearance attributes of the
reproduced model with the original so that the reproduction
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looks and feels the same as the original object. As naturalness
is a key attribute in appearance reproduction, it significantly
contributes to the perceived quality of an object.

Although progress has been made in understanding
how humans perceive the naturalness of objects for 2D
and 2.5D applications, research on naturalness perception
for 3D printing applications is still in its early stages.
This is also true for studies investigating the influence
of algorithmically generated surface textures, printed at
different elevations, on the perceived naturalness of 3D
printed objects. Previous research has explored naturalness
perception in various contexts, including 2D images [34] and
2.5D printed reliefs [14, 35]. These studies have identified
appearance attributes such as color, gloss, and roughness
as important contributors to naturalness. These attributes
were linked to technical variables that allow controlling
an object’s perceived naturalness like its roughness, texture
elevation [15, 16], and surface texture profile [35]. However,
the challenges of achieving naturalness in 3D printed objects,
specifically the complex interactions between elevation
levels, texture roughness, and surface texture profiles, remain
unexplored. An investigation into the inherent subjectivity
of naturalness perception by observers, by using adequate
statistical models, is also missing from previous research.

This paper aims to fill in these gaps in understanding
and controlling naturalness perception using color 3D
printing by investigating the influence and interaction
between algorithmically generated surface textures and
their elevation on perceived naturalness. This study also
employs advanced statistical methods to model observer
subjectivity in naturalness perception. We hypothesize that
image processing algorithms can be used to produce more
meaningful surface texture profiles and to control surface
features, such as roughness, as demonstrated by Wang
et al. [35]. These generated surface texture profiles would
produce more natural-looking 3D printed samples, but that
also depends on the texture elevation levels applied. Based on
the findings of Kadyrova et al. [15], we hypothesize that lower
elevation levels enhance perceived naturalness. Finally, we
consider Bayesian analysis to reveal individual differences in
naturalness perception that are not captured by the statistical
methods already used in the previous literature.

We investigate this hypothesis by applying novel texture
extraction algorithms on reference 2D images to produce
semantically meaningful 3D surface texture reproduction
with different elevations. We then conduct a subjective
experiment to qualify the perceived naturalness of the 3D
printed samples. Instead of relying on simple Mean Opinion
Scores or z-scores, we use a Bayesian approach that
accounts for individual observer differences and preferences,
providing deeper insights into naturalness perception.

The main contributions of this work are as follows:

(1) a novel application of texture extraction algorithms for
generating displacement maps in color 3D printing;

(2) a rigorous subjective evaluation of the impact of these
algorithms and varying elevation levels on perceived
naturalness;

(3) the use of a Bayesian statistical approach to analyze
ordinal naturalness ratings, providing a more nuanced
understanding of observer preferences;

(4) identification of key texture features that significantly
influence naturalness perception in 3D printed objects.

This article is organized as follows. A brief literature re-
view of similar works is presented in Section 2. Section 3 de-
tails the methodology, explaining the generation of displace-
ment maps, the design and printing of 3D models, and the
assessment procedure. Results are presented in Section 4 and
discussed in Section 5. Finally, Section 6 concludes the paper.

2. RELATEDWORK
We are interested in the reproduction and assessment of
naturalness using PolyJet 3D printing. As discussed in
Section 1, the naturalness of a sample helps in defining its
worth and quality in a standard observer’s mind. However,
naturalness is affected by a multitude of variables and is
therefore a complex attribute to reproduce. Nevertheless,
the literature identifies several key factors influencing
naturalness reproduction.

2.1 2.5D and 3D Printing
Since our work involves 3D forms, we focus primarily on
findings related to samples with relief, including both 2.5D
and 3D methods. Also called relief printing, 2.5D printing
uses a similar layer-by-layer approach to that of 3D printing.
However, unlike 3D printing, it cannot build true 3D objects
and is only used to print texture variations or slightly
raised surfaces [1]. As 3D printing is also relevant to such
applications, a primary distinction between 3D and 2.5D
printing is the use of support material: support is necessary
for complex geometries in 3D printing but generally not
required in 2.5D printing due to its limited depth [20].

But although 2.5D and 3D technologies are considered
different, they do share some similarities. Indeed, both 2.5D
and 3D technologies can use the same techniques and mate-
rials during printing [20]. This is true for color 2.5D printing
and PolyJet 3D printing for example, where both techniques
use inkjet UV-curable CMYKW ink in their printing process.
This means that findings from studies using one technology
or the other can be generalized interchangeably, as the
printed samples share the same manufacturing process and
the features/biases related to it. Accordingly, we include
findings from studies conducted on naturalness of 2.5D
printed samples as well. In the present investigation, we used
a 3D printer, and so we refer to our samples as 3D printed.

2.2 Naturalness Reproduction Variables
Naturalness assessment for objects with relief is not a
straightforward process for observers, and it depends on a
multitude of factors [14]. An investigation into naturalness
perception of 2.5D samples depicting different materials
such as wood, stone, and so on was conducted by Kadyrova
et al. [15]. They found that surface texture, characterized
by surface elevation and roughness, is a prominent factor
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in judging a 2.5D object’s naturalness. The aforementioned
work was continued in another study [16] only for wood
samples, where reliefs of lower elevations were printed.
Together, the studies found that observers had a preference
for midlevel elevations at 0.5 mm of maximum relief height
to be themost natural looking.VanHoey et al. [32] found that
visual distortions caused by surface texture modifications
on relief samples decreased the perceived quality among
observers. But aside from the visual aspect, surface texture
is also defined by its tactile attribute, roughness. Tymms
et al. [30] demonstrated that the shape and size of the facets
making up the surface of a 3D printed object widely varies
the tactile perception and understanding of the said object.
They also showed that surface texture depends not only on
elevation but also on the positioning of surface facets.

2.3 Texture Extraction and Implementation
Since surface texture depends on the positioning of the
facets, added relief should be meaningful to improve tactile
perception as shown by another study by Tymms et al. [29].
When based on 2D images, relief was added using simple
grayscale images of these colored 2D images [15]. In
contrast, Wang et al. [35] investigated better methods to add
relief to printed samples. They introduced a methodology
that combines texture analysis and semantic understanding
to enable the reproduction of textures in 2.5D prints.
This involves identifying texture features using filters in
the frequency domain [22], such as a high-pass filter or
Gabor filter. Wang et al. [35] concluded that incorpo-
rating semantic understanding into the printing process
produces more realistic and perceptually rich 2.5D prints
that closely resemble the original textures. Furthermore,
Texture-Aware Error Diffusion Halftoning (TAED), like the
algorithm developed by Li et al. [17], may also produce
semantically relevant relief placement. In their investiga-
tion [17], Li et al. demonstrated that TAED outperformed
traditional error-diffusionmethods (Floyd–Steinberg [8] and
Shiau [24]) both objectively (using 2D image quality metrics,
such as the the Sparse Feature Fidelity, Peak Signal-to-Noise
Ratio, Mean-Structural Similarity, and computation time)
and subjectively (via psychometric experiments). Therefore,
TAED offers an innovative approach to digital halftoning
that aims to enhance image quality, particularly in preserving
texture details.

3. METHODOLOGY
Our work in this study is a multistep process that involves
producing samples with varying appearances using 3D
modeling, 3D printing of these models, and then subjectively
assessing their naturalness through observer categorization
and analysis. First, displacement maps are generated from
reference images to produce different surface profiles and
textures for 3D models. Then the 3D models are printed
using PolyJet 3D printing and assessed via a categorical
psychometric experiment where observers categorize the
naturalness of each sample. Finally, the results of the
said experiment are analyzed to determine the prevalent

appearance attributes in naturalness perception of 3D
samples.

3.1 Generation of Displacement Maps
Displacement maps, hereafter referred to as DM(s) in the
paper, were generated using RGB reference images (images
obtained fromPixabay [21], an open-source image database).
Considering familiarity and everyday use, these reference
images were selected from four different material categories:
Wood, Stone, Fruit, and Cultural Heritage Object (two from
each category), and are 591 × 591 pixels wide due to the
technical limitations of the 3D printer (refer to Section 3.2
for more details). The cultural heritage images were chosen
for their complex surface ornamentation, which presents a
challenging scenario for texture reproduction, allowing us
to assess the capabilities and limitations of the various al-
gorithms under demanding conditions. The intricate details
of the Alhambra ornamentation, for example, characterized
by fine lines, sharp edges, and subtle variations in depth,
provide a rigorous test for the algorithms’ ability to capture
and reproduce fine details that are crucial to naturalness
perception. However, we acknowledge a potential limitation
associated with the use of the Alhambra image. The
naturalness judgments in our study are based on the
participants’ perception of how well the 3D printed samples
match their internal representation of the depicted objects
or materials. Some participants may be unfamiliar with the
Alhambra and its specific ornamentation. This unfamiliarity
could potentially influence their judgments, as they may
not have a clear mental image of the original structure for
comparison. Although this could introduce some variability
into the naturalness ratings for the Alhambra samples, the
complexity of the image still provides valuable insights into
the performance of the DM algorithms.

DMs are grayscale images used in 3D design software
to physically alter a 3D object’s surface [27]. Physical
alteration of a 3D object’s surface generates more realistic
micro-surfaces, enhancing its appearance through improved
light–surface interaction, resulting in better shading and light
reflection in the 3D model.

DMs are generated from the eight reference images
shown in Figure 1. First, a pixel-wise transformation is
applied to calculate a grayscale DM (Gray DM) from the 2D
RGB image [26]. Thus, for an image with N*M pixels, the
grayscale value at the pixel (i, j) is calculated using Eq. (1).

Yi=1...N,j=1...M = 0.2989×Ri,j+ 0.5870×Gi,j

+ 0.1140×Bi,j. (1)

In Eq. (1), Y represents the grayscale level and R, G, and
B are the RGB values of the corresponding pixel in the 2D
image. This is a standard RGB-to-grayscale transformation
that represents grayscale in a manner aligned with human
vision. Consequently, it assigns a higher coefficient to green,
followed by red, and then blue based on the eye’s sensitivity
to each color [26]. The Gray DM, therefore, serves as a
starting point for texture extraction and DM generation. Six
DMs were generated in MATLAB (version 2023b) using the
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Figure 1. RGB reference images in different categories showcasing different material types. From left to right, the categories are Wood, Stone, Fruit,
and Cultural Heritage Object. Individually, the samples will be referred to later on as follows: (a) Reddish Wood; (b) Natural Wood; (c) Stone Fresco; (d)
Textured Stone Wall; (e) Pomegranate; (f) Orange; (g) Iranian; (h) Alhambra. For the remainder of the paper, as the editing and printing processes are the
same for all images, we illustrate the process for only one image, the Alhambra image.

Gray DM where different appearance attributes like color,
roughness, and gloss were considered. Table I presents the
description of the Gray DM and the six DMs generated.
The DMs were generated using a specific set of algorithms.
These DM-generating algorithms are not the only ones we
could have used but were chosen because they allow us to
have DMs that are related to the content of the image and
therefore reproduce texture in a meaningful way. The choice
of algorithms is part of the novelty of this work because
as far as we know, they have not been used in 3D texture
printing before. Therefore, the choice of algorithms is not
based on a ranking of performance, it is rather based on the
surface texture features we want to control: roughness, fore-
ground highlighting, and edge highlighting. Consequently,
we employ algorithms that enable us to control these features
either individually or in combination. Furthermore, these
algorithms are based on standard image processing functions
that are mostly in-built in widely used image processing
software like MATLAB and Python. For instance, we used
binarization algorithms like imbinarize for image forefront
highlighting. We also employed halftoning algorithms like
Minimized Average Error Diffusion (MAE) and TAED (see
Table I) for pixel-wise roughness addition. However, we
had to limit the number of algorithms due to practical
constraints: a large selection would have resulted in longer
printing times and more complex and time-consuming
subjective experiments for observers. However, although
these algorithms are useful for feature extraction, they also
have disadvantages. These range from information loss due
to halftoning to a reliance on grayscale images, making the
output highly sensitive to shading and gloss variations in
the reference images. Hence, this is by no means a definitive

list of algorithms to always use, and future research might
uncover novel and better ways to extract and control surface
texture from reference 2D images. Thus, the selection of
algorithms for this studywas primarily based on the variables
we wanted to control that are specific to this study.

As an example, Figure 2 illustrates the DMs generated
for the Alhambra image.

3.2 Generation of 3DModels and 3D Printing
The 2D images were converted to 3Dmodels by applying the
DMs using the Displace modifier in the rendering software
Blender (version 3.0) [2]. The midlevel was set to zero,
ensuring that all micro-facets were added onto the surface
rather than being etched into the model. The strength was
adjusted to ensure that the 3D models had three different
elevation levels: 0.75 mm, 1 mm, and 1.5 mm. The models
were exported as .obj files and loaded as such into the 3D
printer software. Figure 3 illustrates the transformation of
the DM into different elevations depending on the grayscale
values according to Eq. (2).

di,j = Yi,j×Ei,j. (2)

In Eq. (2), d is the elevation height,Y is the grayscale value of
the DM at a given pixel (i,j), and E is the maximum elevation
to be printed (forY = 1) in the 3D sample. Figure 4 illustrates
the simulation of a model generated using a DM with three
different elevation levels.

To limit the variables affecting naturalness reproduction
to elevation, roughness, and surface texture, the color
information (in the RGB color space) from the 2D images
was UV-mapped (see Fig. 1) onto the 3D model’s surface
before 3D printing. As we are working with cubes that are
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Table I. Displacement maps and their description.

DM No. Name Description

1 Gray DM Generated using the standard RGB-to-grayscale transformation presented in Eq. (1). It also served as a starting
point for generating the rest of the DMs.

2 ForeFront DM

A Gaussian adaptive image threshold is applied. It separates the image into two sets of pixels based on a local
threshold. Practically, this separates the image into a binary grouping: the foreground (pixel value= 255) and
the background (pixel value= 0). The binary image is then multiplied by the original grayscale values to
preserve the 8-bit range of pixels (instead of having a binary 1-bit output). Unlike general image threshold
techniques that apply the same threshold all over the image, adaptive techniques calculate the thresholds locally
in a set neighborhood of pixels, which leads to a better separation of pixels [3]. ForeFront enables control over
relief height, thereby adding more sharpness to the printed sample.

3 1bit_TAED DM
This DM is a halftoned (21 = 2 gray levels, black and white) image, where the texture is considered in the dot
placement. We are interested in applying this DM because it allows us to add roughness to our samples because
of its halftoned output.

4 2bit_TAED DM
Similar to the 1_bit DM but with multilevel halftoning. This means that the DM is not simply black and white but
also contains two intermediate grayscale levels (22 = 4 gray levels). This allows for a smoother 2.5D surface
variation.

5 MAE DM [13]
Similar to the 1_bit halftoned DM. Unlike TAED, there is no intermediary texture detection step. MAE is a
standard error-diffusion method and serves as a benchmark for evaluating the performance of the TAED
algorithm in 3D.

6 ForeFront-MAE DM

Generated in two steps: (1) the foreground is separated from the background using the Gaussian adaptive image
threshold presented earlier; (2) the separated output is halftoned using the MAE halftoning method. This gives us
a forefront-separated, halftoned DM. This, in theory, allows us to control the elevation and add roughness to the
3D samples.

7 Canny Edge Detection DM [7]
Generated using the Canny Edge detection method, which produces a binary image where the edges of structures
in reference images are highlighted. This method is included to assess whether edge highlighting sufficiently
induces the perception of appropriate physical texture in 3D samples.

Figure 2. DMs generated for the Alhambra image.

rather simple 3D shapes, no complex UV-unwrapping was
needed. We separated the UV-facets of the cube manually.
Then, we identified the UV-coordinates corresponding to
each face of the cube and added the color information to the

corresponding cube face by UV-mapping the reference 2D
image onto the upper face of the cube.

With seven DMs, eight reference images, and three
elevation levels, a total of 168 (7 × 8 × 3) samples were
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Figure 3. Elevation levels corresponding to different grayscale values.

3D-printed. For printing, we used the Stratasys J55 multima-
terial PolyJet 3D printer [25], hereafter referred to as J55 in
the paper, to print the 3D models. The ink used is CMYKW
(cyan–magenta–yellow–key (black)–white) ink belonging to
the Vero family of UV-curable ink [33]. This ink family
is characterized by its translucent, specular, and scattering
optical properties. The J55 can print with a resolution of
300 dpi (dots per inch) in the X and Y directions, and a
resolution of 1354 dpi in the Z direction. This corresponds
to a voxel of 0.08 × 0.08 × 0.018 mm in size. We used
the GrabCAD Print 3D printing software for 3D model
orientation, slicing, and printing. We printed the samples in
high-qualitymode,with a print time of 4.5 h per print project,
with each print project containing 20 samples. To balance
material use, printing time, and the need for sufficient detail
clarity, the 3D samples were designed with dimensions of
50 mm× 50 mm× 5 mm. This size ensured that the printed
features were discernible while minimizing material waste
and avoiding excessively long printing times. Furthermore,
we used translucent materials on the J55 printer, making
it necessary to print thicker samples than usual to obtain
an opaque object. The 3D printed sample dimensions and
the DM pixel dimensions were kept equal to avoid any
automatic stretching or compression of the DM pixels. This
was achieved by maintaining a fixed pixel ratio of the 2D
image before generating its corresponding DM. That is, for
a maximum resolution of 300 dpi for an object of 50 mm
× 50 mm in dimension, the corresponding number of pixels
would be 591× 591. After printing, the sampleswere verified
against the expected outcome through visual inspection. We
also verified that the printed elevations match the theoretical
values by 3D-scanning some of the samples and comparing
the sizes of the 3D models and the scanned models. Figure 5
shows the resulting printed samples of the Alhambra image.

3.3 Evaluating the Naturalness Attribute of 3D Printed
Samples
A categorical judgment psychometric experiment was con-
ducted to evaluate the perceivednaturalness of the 3Dprinted
samples. Fifteen observers (7 female, 8 male, average age =
29 years, standard deviation = 8 years, age range [22, 52])
participated in the experiment. None of the participants is
an expert in 3D printing although all but two had prior
knowledge of color science. The experiment adhered to the
ethical guidelines for the ‘‘Protection of Research Subjects’’
set by the Norwegian National Committee for Research

Ethics in Science and Technology [9]. Participants provided
signed consent before commencing the experiment, and
their anonymity was ensured. Although the number of
participants in this experiment is in the acceptable range [11],
we acknowledge that we are at the lower end of that range.
This should be considered a potential source of bias in our
study, and future work needs to heed this limitation.

For this experiment naturalness was defined as a
matching between the memory of an object in an observer’s
mind and the scene portrayed in each sample in this
experiment [15]. Participants were shown all of the 168 3D
printed samples divided into 8 sets of 21 samples each. Each
set corresponds to the samples derived from each reference
image shown in Fig. 1. The categorization took place in a
Gretag Macbeth Judge II viewing booth under a CIE D50
illuminant. Ambient lighting conditionswere set to darkness.
Five categories, as listed below,were used to categorize the 3D
printed samples.

(1) Very Un-natural
(2) Un-natural
(3) Adequate
(4) Somewhat Natural
(5) Natural

Participants were not provided with any reference
images to aid them in categorizing the samples. Participants
relied on visual assessment of the samples and could also
touch the samples (without lifting the sample from the
booth floor) to feel the surface texture. Each observer
spent approximately 75 minutes completing the experiment.
Figure 6 shows the experimental setup.

To understand how participants categorized the natural-
ness of samples, it would be important to understand their
thought process when judging a sample’s appearance both in
terms of the naturalness definition used and the attributes
considered. Therefore, each session was audio-recorded in
its entirety with the participant’s consent. Participants were
encouraged to describe all the steps they were following
and to describe their thought process when ranking the
naturalness of 3D samples along with a few statements when
they were done categorizing each set of samples. The audio
recordings were then transcribed, and a word frequency
analysis was conducted to determine which attributes the
observers relied on during their assessment.

Raw individual scores were recorded during the exper-
iment and analyzed. With data collected being categorical
and the difference between the categories being variable, we
consider our data as ordinal [37]. This type of data should
not be misinterpreted as interval data, as this can lead to
conceptual and statistical inaccuracies. For instance, it is
not necessarily true that a rating of 4 (Somewhat Natural)
is twice as good as a rating of 2 (Un-natural) or that the
improvement from 1 (Very Un-natural) to 2 (Un-natural) is
equivalent to the improvement from 4 (Somewhat Natural)
to 5 (Natural). Therefore, it is crucial to handle ordinal
data appropriately to avoid misconceptions and incorrect
interpretations. Cumulative Link Mixed Models (CLMMs)
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Figure 4. Illustration of three elevations using the ForeFront DM. It can be observed that with an increase in maximum elevation, the sample surface and
the difference between peaks and valleys become more pronounced.

Figure 5. Twenty-one printed samples of the Alhambra set. The change in appearance attributes (such as sharpness, elevation, roughness, and color)
resulting from variations in surface structure is visible.

are a fitting method for analyzing ordinal data. They operate
under the assumption that the observed ordinal variable is a
categorization of an underlying continuous variable [5]. This
enables CLMMs to provide the probability for each rating
rather than a single prediction. The Bayesian approach,
which can be implemented using the brms package in R, is
used to fit these models [4]. This approach offers several
benefits over traditional frequentist statistics, including the
ability to incorporate prior knowledge, quantify uncertainty,
and estimate complex models. This makes it a powerful
tool for analyzing ordinal data. In this paper, the Bayesian
approach was deemed more appropriate as naturalness

perception and sample categorization can be highly subjec-
tive, that is, incurring random effects [28]. Therefore, we use
it to estimate the likelihood of sample categorization.

Using Observer (referred to as ID), Algorithm, Elevation
Level, and Original Image as variables, seven statistical mod-
els were generated using different variable combinations. We
include these variables because we know from the literature
that elevation [16] and algorithm [35] affect the naturalness
and reproduction quality of 3D printed samples. We also
include the participants and images as variables because, as
shown in the literature [28], these variables incur random
effects that arise from the participants’ understanding of
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Figure 6. An observer taking part in the subjective experiment.

naturalness and image content shown.We beginwith simpler
statistical models that include only a few variables. We
then formulate the said models and test their predictive
performance. After testing, model complexity is increased
by adding more variables or by incorporating interactions
between existing variables. Through this iterative process
and with our selection of variables already determined, we
construct and evaluate various statistical models based on
their predictive power. Once we build a model with strong
predictive power, that is, model prediction values match the
observed data, we use the said model for result analysis.
All variables in this model are expected to influence the
naturalness rating. The effect of each variable on the model
can then be examined to test our initial hypotheses.

We start with models that assume that variables are
independent at first, but we do not neglect the probability of

interaction between the different variables in the naturalness
rating given during the subjective experiment. Therefore, we
also include models that take into consideration this variable
interaction between a select number of variables. Table II
gives a detailed explanation of the statistical models used.

4. RESULTS
These models were evaluated by calculating the Widely
Applicable Information Criterion (WAIC) score. WAIC is
a Bayesian extension of the Akaike Information Criterion,
where a lower WAIC value indicates better performance of
the statistical model [36].

Table III presents the performance of the seven models
based on the WAIC score. The lower the WAIC score,
the better the model fits the data while penalizing for
model complexity by addingmore predictors. The ImageNest
and IDNest models, despite their complexity, demonstrate
good balance between the fit and parsimony. Given the
assumptions underlying WAIC, these models offer the most
insightful understanding of the factors influencing the rating.

Figures 7–11 show the results for the best-performing
models: ImageNest and IDNest. Figs. 7 and 8 illustrate the
model’s prediction performance while Figs. 9–11 illustrate
the change in naturalness perception both globally (across all
observers) and individually across the different variables in
this study.

5. DISCUSSION
Looking at Table III, we see that model performance varies
considerably depending on the choice of included variables.
Models with a subset of variables included perform poorly
compared to those where all variables are accounted for.
This validates our initial choice of variables, meaning that
all chosen variables have an effect on naturalness rating,

Table II. Statistical models and their description.

Model No. Name Description

1 Observer-Image Includes ID and Image as independent variables. Suggests that the rating is influenced by the individual observer and the image
being assessed, where each variable can lead to higher/lower ratings.

2 Observer-Elevation Includes ID and Elevation as independent variables. Implies that the rating is influenced by the individual observer and the elevation
level of the image.

3 Algorithm-Elevation Includes Algorithm and Elevation as independent variables. Suggests that the rating is influenced by the algorithm used and the
elevation level of the image.

4 Combined Includes all variables ID, Elevation, Image, and Algorithm independently. Implies that the rating is influenced by all these factors with
no interdependence between them.

5 Interaction Includes an interaction term between Algorithm and Elevation in addition to the variables Image and ID. It suggests that the effect of
the algorithm on the rating is linked to the elevation level and vice versa.

6 ImageNest
Includes Algorithm, Image, ID, and Elevation with a nested structure where Algorithm varies within Image. It suggests that the effect
of the algorithm on the rating may differ for different images, implying there is a dependence between algorithm performance and
image content.

7 IDNest Similar to ImageNest but with Algorithm varying within ID. It suggests that the effect of the algorithm on the rating may differ for
different observers, implying there is an individual preference for certain algorithms between observers.
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Table III. WAIC scores of statistical models. Models ImageNest and IDNest show the
lowest WAIC scores among the seven models.

No. Model name Variables WAIC

1 Observer-Image ID + Image 7890.9
2 Observer-Elevation ID + Elevation 7700.9
3 Algorithm-Elevation Algorithm + Elevation 6405.8
4 Combined ID + Elevation + Image + Algorithm 6169.4
5 Interaction Interaction (Algorithm*Elevation) + Image + ID 6131.6
6 ImageNest Algorithm\Image + ID + Elevation 6018.2
7 IDNest Algorithm\ID + Image + Elevation 6017.3

Figure 7. Model prediction (y ) versus observed data (yrep). Model
performance comparison based on the cumulative normal distribution of
predicted naturalness ratings. The plot displays the cumulative probability
of each naturalness rating category (1: Very Un-natural, 2: Un-natural,
3: Adequate, 4: Somewhat Natural, 5: Natural) as predicted by the
best-performing model (IDNest). The x -axis represents the naturalness
rating categories while the y -axis represents the cumulative probability.
The curve illustrates the overall distribution of predicted ratings, with a
‘‘right-leaning’’ shape indicating a higher probability for lower naturalness
ratings. This aligns with the general observation that a considerable
portion of the 3D printed samples were perceived as relatively unnatural.
The shaded area around the curve represents the 95% credible interval,
reflecting the uncertainty in the model’s predictions.

albeit to varying extents. Furthermore, the variables should
not be treated independently as evidenced by the Interaction
model’s superior performance compared to the Combined
model. With the nested interaction amongAlgorithm, Image,
and ID giving the highest predictive performance, we also
validate our starting hypothesis of observer preference
and image content effect on naturalness perception. With
this initial verification of our choice of variables and
hypotheses, we proceed to extract data from the best-
performing prediction model.

As shown in Figs. 7 and 8, both models perform well,
and the results obtained from the subjective psychometric
experiments can be used for further evaluation. We can
see that the predicted values (y) are close to the observed

data (yrep) both generally and per algorithm. This shows
that our model performs well and that the results from the
said models can be trusted and used for further analysis of
subjective data. The cumulative normal curve (refer to Fig. 7)
being a ‘‘right-leaning’’ curve, the subjective experiment
revealed that lower categories had more counts than higher
categories, indicating that over half of the 3D samples
appeared unnatural to observers. The model estimates are
in accordance with the observed data in general although
with some inconsistencies in the predictions. This may be
due to the ratings being inherently noisy or that there are
still some factors missing from the model. Nonetheless, it is
still possible to rely on our model for further analysis. These
prediction results confirm our first hypothesis concerning
the ability to use more complex statistical tools for more
in-depth analysis of naturalness perception.

To evaluate general trends and observer-specific pref-
erences from the subjective experiment responses, we look
at Figs. 9–11. From Fig. 9 we can see that observers as a
group perceived the Gray DM output as the most natural
and the Canny Edge output as the least natural output
from the seven DM algorithms. It is also apparent that
observers preferred the lowest elevation (0.75 mm) for all
algorithms except for Gray DM, where the 1 mm elevation
was slightly more favorable. Furthermore, the decrease
in observer response scores between elevations was not
consistent across all algorithms. For example, the ForeFront
algorithm shows the steepest drop in scoring, going from
an average score of 3.59/5 at 0.75 mm to 2.49/5 at 1.5 mm,
representing a 1.1-point drop in average score. However,
this sharp decline was less pronounced for some algorithms,
notably the Gray DM (mean score difference = 0.35), and
2bit_TAED (mean score difference = 0.7). So overall, there
is a clear preference for Gray DMs and lower elevations
for naturalness reproduction. These findings confirm our
initial hypothesis that lower elevations are preferred for a
more natural output. Furthermore, the choice of algorithm
used has a significant effect on the naturalness rating and
consequently, its perception. Therefore, we validate our
starting hypotheses from the findings in Figs. 7–9.

These results represent the aggregate responses of all
observers. However, the statistical models reveal that an-
alyzing scoring at the individual level provides a deeper
understanding of the scoring process. To test our final
hypothesis related to the subjectivity of naturalness per-
ception, we look at the findings from nested models (see
Table II): ImageNest, which accounts for the effect of image
content on naturalness ratings, and IDNest, which accounts
for observer preferences. Figs. 10 and 11 illustrate the
rating shift per algorithm for the reference images used and
for observers, respectively. The rating shift represents the
difference between an individual’s score and the average
score for the group. The group average is indicated by the
dashed black line; thus, the rating shift depends on the
positioning of an observer’s scoring curve relative to the
dashed black line. If an observer’s curve for a given algorithm
is above the group average, it indicates that the observer
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Figure 8. Comparison of model predictions (y ) against observed naturalness ratings (yrep) for each of the seven DM algorithms. Each panel displays a
scatter plot where the x -axis represents the observed ratings and the y -axis represents the model’s predicted ratings. The closer the data points cluster around
the diagonal line (y = x ), the better the agreement between the model’s predictions and the observed data. Although some deviations are noticeable,
attributable to the inherent variability in subjective ratings, the general trend indicates that the model adequately captures the overall patterns in the data.
The model shows particularly good agreement for the Gray DM algorithm, which was generally perceived as the most natural, while larger deviations are
observed for the Canny Edge algorithm, which was generally perceived as the least natural.

rated that specific algorithm higher than average and vice
versa. For instance, ID3 is an observer that generally rates
higher than the group (as their rating curve consistently
lies above the group average) while ID10 generally assigned
lower ratings than the group. The same type of analysis can be
conducted to see if there is a preference for an image as well.

Knowing this, we can see from Fig. 10 that there is not
one trend that describes all of the observers’ naturalness
ratings, as all rating shifts are highly different from each other
and from the average group rating. This demonstrates the
impact of subjectivity on naturalness perception as defined in
Section 1. It suggests that observers perceived the naturalness
of the samples differently, likely relating naturalness to their
individual preconceived notions of the materials and scenes
depicted in the samples.

The same can be said for images as well, as we can see
in Fig. 11 that there are multiple curve structures across
the different sets, indicating variability in image preferences
as well. This difference in rating shifts does not appear to
be separated by material category because for example, the
ReddishWood set was rated higher than average across most
algorithms, but the Natural Wood set was rated lower than
average. Consequently, the behavior of these rating shifts for
both observers and images appears to be too subjective to
be explained by a single trend across all algorithms. But we
can still see one defining factor: the Gray DM algorithm is

consistently rated the highest and the Canny Edge is consis-
tently rated the lowest, with the ForeFront and 2bit_TAED
algorithms switching between the second and the third most
preferred algorithm for naturalness reproduction. Despite
the inherent subjectivity of human ratings, this trend suggests
a general inclination to favor the best-performing and
worst-performing algorithms across observers and images.

Therefore, to understand why observers preferred an
algorithm or an image over others, we rely on the audio
recordings of sessions to understand each observer’s thought
process when judging a sample’s naturalness and which ap-
pearance attributes influenced their categorization the most.

Analysis of the audio recordings revealed that partici-
pants used different definitions of naturalness, equating it to
the beauty of the sample or to realism. This might be a point
of contention because some observers would be basically
rating a different attribute compared to others because real-
ism, beauty, and naturalness are subjective concepts. Al-
though observers defined naturalness differently, they pri-
marily used the same descriptors, such as roughness (some-
times referred to as graininess), sharpness, and color to assess
a sample’s naturalness. This indicates a common baseline
among observers when rating the samples even if expressed
using different terminologies.

With this, we proceeded to identify the relevant
appearance attributes using the description given by the
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Figure 9. Grouped subjective naturalness ratings (RatingOrd) for all observers across different DM algorithms and elevation levels. The bars represent the
posterior means of the naturalness ratings derived from the best-performing CLMM (IDNest). The error bars represent the 95% credible intervals, indicating
the uncertainty associated with the estimates. The figure illustrates the overall preference for certain algorithms and elevations. Notably, the Gray DM
algorithm consistently received the highest naturalness ratings while the Canny Edge algorithm received the lowest. Lower elevations (0.75 mm) were
generally preferred across most algorithms except for the Gray DM, where the 1 mm elevation was slightly favored. The figure also reveals that the effect
of elevation on perceived naturalness varied across algorithms. For instance, the ForeFront algorithm exhibited a more pronounced decrease in naturalness
ratings with increasing elevation compared to the Gray DM or 2bit_TAED.

observers for each sample. Color was the first attribute
assessed by nearly all the observers (similar to the findings of
Kadyrova et al. [15]). This was deduced from the description
of the sample as ‘‘looking normal’’ or ‘‘looking regular’’ or
‘‘having nothing weird’’ when first receiving the samples. It
is important to note that color is theoretically not a variable
during the sample creation process because all samples of
the same set were produced with the same color input and
with the surface profile as the only variable. Consequently, we
anticipated that colormay not be the primary determinant in
naturalness perception. Indeed, for the majority of observers
(12 out of 15), the defining factor was the surface finish (the
physical texture reproduction) and its effect on the visual
texture (color + gloss) as illustrated in Fig. 5.However, we can
observe that even with the same color input for all samples,
we get varying color outputs for each sample, which explains
the reliance of the observers on color to rate a sample’s
naturalness.

Overall, observers deemed natural surface finish as
follows: smooth, with minimal roughness, having clear and
smooth details and edges, having physical texture matching
or enhancing the visual texture (primarily gloss), and having
the correct color (based on material comprehension) with
some color uniformity preferably. In simpler terms, smooth
surfaces and clear physical textures that align with the

scene’s visual texture were deemed natural. Conversely,
what was deemed unnatural was the opposite: rough (also
described as noisy/granular) samples where the roughness
overshadowed the visual texture either by creating unrealistic
light reflections and/or by altering the color tint of the
sample. For example, in Fig. 5, we can observe that rough
samples have a yellowish tint that was deemed unnatural
by most observers. Another significant factor contributing
to the unnatural appearance of samples was edge and color
sharpness. In essence, samples were deemed unnatural due
to roughness, color, and edge sharpness and a discrepancy
between visual and physical textures. However, this is a
generalized view over all the observers, and there might be
some preferences for attributes over others, thus explaining
the individual differences seen in Fig. 10. For example,
some observers might prefer a rougher or a sharper sample,
leading them to rate ForeFront-MAE higher than other
observers. But generally, these individual preferences tend to
be overridden when taking the whole group into account.

With this understanding of appearance preference, we
can evaluate the statistical model to interpret the results
obtained for each of the algorithms. Referring to Figs. 2 and 9,
the analysis follows.

DM1 has performed the best. This is because it produces
a full range grayscale image (28

= 255 levels), and the surface
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Figure 10. Individual observer rating shifts for each DM algorithm derived from the IDNest model. Each panel represents a single observer (ID1–ID15),
and the dashed black line indicates the group average rating for each algorithm. The y -axis represents the rating shift, which is the difference between an
individual observer’s rating for a given algorithm and the group average rating for that algorithm. A curve above the dashed line indicates that the observer
tended to rate samples made with that algorithm higher than the average while a curve below the line indicates lower ratings. The figure reveals substantial
interobserver variability in rating patterns, highlighting the subjective nature of naturalness perception. For example, Observer ID3 consistently rated most
algorithms higher than the group average while Observer ID10 generally rated them lower. These individual differences underscore the importance of
considering observer variability in subjective image quality assessment.

change between neighboring pixels is smooth resulting in
smooth surfaces and edges and a physical texture that is
coherent with the visual texture. Although DM1 was evalu-
ated as the best in this particular study, we may have many
cases where it would not be the best option to reproduce
the surface. As Eq. (1) shows, grayscale values depend on
the color of the RGB reference image. Therefore, in cases
where the forefront of an image is dark and the background
is bright, an RGB-to-grayscale transformation alone would
not suffice because the placement would be inverted, thus
requiring an additional step to correct the placement of
objects in the image. However, the surface finish should be
smooth enough to be perceived as natural regardless of the
placement of the foreground and background. It would be an
interesting idea to test out this particularity in future work.

DM7 has performed the worst. This is because it outputs
a binary DM that when applied produces very rough and
granular surfaces. This excessive roughness hides the details
of the samples, makes them unpleasant to touch and to look
at, and creates incoherent physical and visual textures.

DM2 and DM5 perform relatively poorly compared
to other algorithms with increase in elevation. This is
because ForeFront Algorithms exhibit a drastic change in
pixel value in certain parts of the DM, resulting in sharper
samples produced compared to the others. That is also
why they perform much worse at higher elevations because
the higher the elevation, the sharper the edges become.
Consequently, ForeFront DMs appear unnatural at higher

elevations. ForeFront-MAE has the added drawback of being
rough, which explains its poorer performance compared
to regular ForeFront DMs. However, these DMs reproduce
physical texture that is consistent with visual texture, which
is why they are rated higher than Canny Edge DMs.

DM3 andDM4 perform very poorly overall, particularly
at high elevations. Similar to DM7, they generate very gran-
ular surfaces that obscure details and are generally perceived
as unpleasant. However, when we go from 1bit_TAED to
2bit_TAED, where the grayscale range expands from 21

= 2
to 22

= 4, the average score goes from 2.11 to 3.54, which is
an increase of 1.43 score points. This corresponds to a shift
in category from ‘‘unnatural’’ to ‘‘adequate.’’ This highlights
the crucial role of sample surface and edge smoothness in
determining perceived naturalness.

This assessment of appearance preferences also explains
the lack of preference of any image set by the observers. By
relating the rating shift to the ease of reproducing smooth
edges and surfaces from the reference images, we can likely
explain how observers rated the naturalness of the different
image sets. For instance, comparing the Reddish Wood
reference image with the Textured Stone Wall image (see
Fig. 1), we can see that Reddish Wood has a very uniform
surface and color while it is the opposite for Textured
Stone Wall. Therefore, it is much easier to achieve smoother
surfaces and color uniformity in the case of Reddish Wood
than with Textured Stone Wall, where the edges between
sections of the image are already highly pronounced. As can
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Figure 11. Image-specific rating shifts for each DM algorithm derived from the ImageNest model. Each panel represents a different reference image, and
the dashed black line indicates the group average rating for each algorithm. The y -axis represents the rating shift, which is the difference between the
average rating for a specific image and a given algorithm and the group average rating for that algorithm. A curve above the dashed line indicates that
the image tended to be rated higher than the average for that algorithm while a curve below the line indicates lower ratings. The figure reveals that the
perceived naturalness of the 3D printed samples was also influenced by the specific image being reproduced. For instance, the Reddish Wood image was
generally rated higher than average across most algorithms while the Natural Wood image was rated lower. These image-specific variations suggest that
certain image characteristics might interact with the DM algorithms to affect perceived naturalness. The diverse patterns observed across images highlight
the complexity of naturalness perception and the need to consider both individual and image-specific factors.

be seen in Fig. 11, ReddishWood samples are therefore rated
more natural overall while Textured StoneWall samples tend
to be rated as unnatural.

6. CONCLUSION
Eight images were 3D-printed using seven different DMs
at three different evaluation levels to assess the naturalness
perception of 3D printed samples. Each DM highlighted
a different feature of the scene, thereby affecting the
naturalness perception of the 3D printed samples. The
naturalness of 3D prints was evaluated subjectively via a
psychometric experiment. Results from this experiment were
analyzed using a Bayesian statistical model to determine
the general and individual preferences of the observers.
Observers evaluated the 3D printed samples as natural when
the said samples had low elevation, smooth surfaces, and
edges. Conversely, samples were deemed unnatural when
exhibiting high elevation, granularity, and sharp edges. These
findings confirm our original hypotheses concerning the
impact of elevation and texture extraction algorithms on
naturalness perception as well as the subjective nature of
this perception. However, the consensus among observers
when their results were aggregated indicates that despite
the subjective nature of naturalness perception, observers

generally agree on the key characteristics that contribute to
the natural appearance of a 3D printed sample.

To further understand naturalness perception, finding
a relationship between subjective naturalness scores and
objective image quality metrics is an interesting research
direction. Additionally, exploring different texture extraction
algorithms and applying themat varying elevation levels is an
interesting avenue for future research.
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