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Abstract. Evaluating perceptual image and video quality is crucial for
multimedia technology development. This study investigated nation-
based differences in quality assessment using three large-scale
crowdsourced datasets (KonIQ-10k, KADID-10k, NIVD), analyzing
responses from diverse countries including the US, Japan, India,
Brazil, Venezuela, Russia, and Serbia. We hypothesized that cultural
factors influence how observers interpret and apply rating scales
like the Absolute Category Rating (ACR) and Degradation Category
Rating (DCR). Our advanced statistical models, employing both
frequentist and Bayesian approaches, incorporated country-specific
components such as variable thresholds for rating categories and
lapse rates to account for unintended errors. Our analysis revealed
significant cross-cultural variations in rating behavior, particularly
regarding extreme response styles. Notably, US observers showed
a 35–39% higher propensity for extreme ratings compared to
Japanese observers when evaluating the same video stimuli,
aligning with established research on cultural differences in response
styles. Furthermore, we identified distinct patterns in threshold
placement for rating categories across nationalities, indicating
culturally influenced variations in scale interpretation. These findings
contribute to a more comprehensive understanding of image quality
in a global context and have important implications for quality
assessment dataset design, offering new opportunities to investigate
cultural differences difficult to capture in laboratory environments.
Keywords: image and video quality assessment, absolute category
ratings, degradation category ratings, category thresholds, lapse
rates, extreme rating style, statistical modeling, maximum likelihood
estimation, method of successive intervals, cumulative link mixed
effects models, crowdsourcing, national differences
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1. INTRODUCTION
Subjective image quality assessment involves observers rating
sets of images, but beneath the surface lies a complex
interplay of cultural influences on response styles. This
study investigated cross-cultural differences in image quality
assessment by examining whether observers from different
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countries demonstrate distinct tendencies when providing
their ratings.

Several phenomenamay lead to variations in howpeople
interpret and utilize discrete rating scales such as Absolute
Category Rating (ACR) and Degradation Category Rating
(DCR), which are ordinal scales with five categories ranging
from ‘bad’ to ‘excellent’ for ACR and from ‘imperceptible’ to
‘very annoying’ for DCR.

We developed and applied statistical models to explore
nation-based differences in the use of the 5-level ACR and
DCR scales for image and video quality assessment. Our
study was based on data collected from observers of diverse
countries who rated the same images or videos. Our objective
was to uncover whether cultural nuances play a role in how
observers tend to assign stimuli to given quality categories
and to what extent extreme ratings are chosen.

Many subjective image and video quality assessment
studies were carried out across several countries, either in
different labs or on crowdsourcing platforms. The category
labels for the responses of the subjects were uniformly
presented in English for participants from all countries, or
may have been adapted to the respective languages. In either
case, the interpretation of the category labels may depend on
the cultural background of the participants.

For example, an Italian observer might rate an image
as ‘mediocre’ (level 2) on the Italian language ACR scale
shown in Table I, but rate the same image as ‘fair’ (level 3) on
an English language scale, despite the primary meaning of
‘mediocre’ being ‘poor’ (level 2). This is because ‘mediocre’
can also be translated as ‘moderate’ indicating ‘average in
quality’, i.e., something that is neither particularly good nor
particularly bad, which is just how ‘fair’ quality can be
defined.

Thus, the interpretation of the terms for perceived
quality on ACR and DCR scales can be influenced by
language and culture. This was already investigated nearly
30 years ago in several studies using a technique known as
graphic scaling. In [16], for example, subjects placed amarker
for each of the terms on an interval scale with a length of
7.1 inches. Table I shows abridged results, demonstrating
that the terms are anchored at different positions by two
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Table I. Graphical scaling for the CCIR (Consultative Committee on International Radio)
quality scale terms in two populations with different languages. Data from [16].

ACR US Italy
Ordinal Name Value Name Value

5 Excellent 6.5± 0.6 Ottimo 6.4± 0.6
4 Good 4.9± 0.7 Buono 5.5± 0.7
3 Fair 3.5± 0.8 Discreto 4.3± 1.0
2 Poor 1.4± 0.6 Mediocre 1.9± 1.5
1 Bad 1.1± 0.6 Cattivo 1.5± 1.3

study groups of US and Italian citizens.Moreover, the labeled
positions of the ACR categories are not evenly distributed on
the interval scale. Other studies have confirmed this, e.g., for
the Dutch-language terms [29].

Moreover, subjects from different cultural backgrounds
may give different category ratings for the same stimulus,
even when the perceived qualities are identical. For example,
the chances for an image of very good quality to receive a
rating ‘excellent’ could be much larger when asking subjects
from one country than from another one.

Similarly, some people, due to cultural background or
personal style, prefer choosing the most extreme option on
the scale instead of more moderate middle responses. This
is called an extreme response style. It means they are more
likely to pick ‘bad’ or ‘excellent’ on the 5- point ACR scale
rather than a mid-point response like ‘fair’ [6, 7, 9].

An extreme response style is not inherently positive or
negative. However, it can lead to biases when comparing
research findings across different cultures. If a particular
group consistently leans towards extreme responses, it
could distort the perceived cultural differences, making
them appear larger or smaller than they truly are. A
thorough understanding of response styles is crucial for
the accurate interpretation of results. Perceived image and
video quality is inherently subjective and cannot be directly
measured. We therefore rely on latent variable models to
infer perceived quality from observable data like subjective
ratings. These models assume that an underlying latent
variable, representing the viewer’s perceived visual quality
of a stimulus, drives the observed ratings. This latent
variable is influenced by objective factors like resolution
or color fidelity. The observer’s judgement can also be
shaped by subjective factors, including individual preferences
and cultural background. Our study focuses on uncovering
how cultural influences affect these judgements, leading to
systematic differences in how viewers from different cultures
interpret and use rating scales.

Our study is presented as follows. In the next section,
we provide a brief overview of related work on cultural
differences that focused on the use of rating categories.
We then explain our main modeling tools, namely discrete
models derived from quantized continuous models of
perceived quality on a latent scale, which we adapt to
examine national differences in rating behavior. We then

explain the two computational approaches for these models,
i.e., maximum likelihood estimation and cumulative link
mixed effect models that are usually solved by Bayesian
estimation. In Section 4, we present the previously published
large datasets that we selected for our study and explain
how we created more balanced subsets of them. Moreover,
we provide details of the analysis of the complete datasets
and their subsets using different models and reconstruction
techniques. Section 5 presents the computational results of
ourmodels, focusing on adaptive country-specific thresholds
for the rating categories and probabilities for extreme ratings.
Before concluding, we point out the limitations of our study.

This article builds upon and extends our previous
work presented in [23], ‘‘National differences in image
quality assessment: An investigation on three large-scale
IQA datasets,’’ at the 16th International Conference on
Quality of Multimedia Experience (QoMEX 2024). In that
study, we investigated nation-based differences in image
and video quality assessment using large-scale crowdsourced
datasets and adaptive quantized metric models. We explored
country-specific variations in rating thresholds and extreme
response styles usingmaximum likelihood estimation (MLE)
on the full datasets. We extend that study to the present
one in several key aspects. First, recognizing potential
biases due to the unbalanced nature of the full datasets,
we introduce carefully constructed balanced subsets of
KonIQ-10k, KADID-10k, and NIVD. This allows for a more
controlled comparison of rating behavior across countries.
Second, in addition to MLE, we employ cumulative link
mixed effects models (CLMMs) with Bayesian parameter
estimation, offering an alternative robust and nuanced
approach to analyzing ordinal rating data while accounting
for dependencieswithin the data. Finally, we refine the taxon-
omy and presentation of the different modeling approaches,
providing a clearer and more comprehensive overview of the
methodologies employed.

Frequently used acronyms
ACR Absolute category rating
DCR Degradation category rating
VAS Visual analog scale
MOS Mean opinion score
NIVD Netflix International Video Dataset

KonIQ-10k Konstanz Image Quality Dataset
KADID-10k Konstanz Artificially Distorted Image Quality

Database
MLE Maximum likelihood estimation

CLMM Cumulative link mixed effects models

2. RELATEDWORK REGARDING CULTURAL
DIFFERENCES IN PERCEPTUAL RATING
CATEGORIES

Cultural effects are expressed in international image quality
assessment studies using CCIR terms (Consultative Com-
mittee on International Radio, founded 1927). However,
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little work has been done to extract national differences.
An international study [21] did not determine any apparent
influence of language or culture on the Mean Opinion Score
(MOS) from ACR of audio-visual stimuli.

Scott et al. [25] investigated how personality and cultural
traits influenced the perception of multimedia quality. Their
study used a dataset of 144 video sequences rated by 114
participants from diverse cultural backgrounds. Analysis
showed that personality and cultural traits accounted for
9.3% of the variance in perceived quality, a significant
proportion compared to system factors. Specifically, cultural
dimensions like individualism, masculinity, uncertainty
avoidance, and indulgence showed correlations with per-
ceived quality and enjoyment, highlighting the impact of
national cultural differences on subjective video quality
experiences. The study underscored the importance of
considering individual and cultural factors in multimedia
quality assessments.

Recently, Bampis et al. created a much larger video
quality dataset (NIVD) by collecting ratings from 12,812
people of four countries [1]. The work focused on how
different spatial video resolutions and screen sizes affected
perceived quality. Few scatter plots showed that there were
nation-based differences. The authors suggested develop-
ment of better subject models to reduce cross-national
biases, which would aggregate the data across countries
appropriately. Their NIVD dataset has been made publicly
available and has been used in our study.

Extreme response styles can vary across cultures. For
example, participants from individualistic cultures, like the
US, are often more inclined towards extreme responses than
those from collectivist cultures, like East Asian countries [4,
5, 10]. Even within the US, there are differences in extreme
response styles among different ethnic groups [6, 11]. In
a study by Zax and Takahashi (1967), it was determined
that US respondents were 41% more likely to select the
extreme responses compared to Japanese respondents (19.2%
versus 13.6% respectively). Conversely, Japanese respondents
selected the neutral response 33% more frequently (23.2%
versus 17.4%) [34].

In another study by Chen, Lee, and Stevenson (1995),
respondents from four cultures were found to make dif-
ferential use of certain points on scales. Japanese and
Chinese students were more likely than US and Canadian
students to select midpoints; US students, more frequently
than Japanese, Chinese, or Canadian students, selected the
extreme values [4].

The design of questionnaires can also impact the
prevalence of extreme response styles. Adjustments such
as modifying the number of response options, altering the
phrasing of questions, or changing the response format
can reduce a scale’s sensitivity to a respondent’s cultural
inclinations [6, 13].

Given the large Japanese and American subsamples in
the NIVD dataset, we focus our examination on whether
these previously documented cultural differences in extreme
response styles manifest in these video quality ratings.

3. ADAPTIVE QUANTIZEDMETRICMODELS
By nature, perceived image or video quality is a latent
variable. It cannot be measured directly, but must be inferred
by a mathematical model from responses of subjects who
judge the quality of the stimuli in an experiment. In these
models, latent variables are commonly treated as continuous
normally distributed variables. Suchmodels were introduced
by Thurstone in 1927 [30] and are referred to as Thurstonian.

Likert items, commonly used in research to collect
subjective judgments, provide ordinal data often summa-
rized as a metric model by per-item means and standard
deviations. For example, the five ACR categories are
commonly interpreted as values 1, 2, . . . , 5 on an interval
scale, i.e., the categories are not only ordered but also have
values that are evenly spaced. Themean opinion score (MOS)
is the average of the collected ratings for a stimulus. It follows
that the MOS is the maximum likelihood estimate (MLE) of
the mean of the corresponding normally distributed random
variable [18].

In a recent study, Liddell and Kruschke found for
three top-tier journals in psychology that treated ordinal
data as interval/ratio scale data is the rule rather than
the exception [19]. However, this approach may lead to
erroneous conclusions due to the inherent unequal distances
between categories and the different variances of stimulus
ratings. Metric models combined with statistical tests such
as the t-test may fail to detect existing differences between
stimulus qualities, lead to reversals in the ranking of quality
estimates, and produce unreliable effect size estimates. The
debate about the validity of applying metric models to
discrete, categorical data is not new. It has been going
on for decades in many areas of science, as elucidated by
Seufert [26].

As in psychology, the vast majority of data analyses for
ACR/DCR data in quality of experience research to date
have used the metric modeling approach, i.e. reporting the
MOS values and occasionally the variances. In addition, such
methods are recommended in the published standards of the
International Telecommunication Union [14].

In this study, we depart from this position and apply
ordinal statistical models derived from quantized metric
models, which are outlined in this section and elaborated in
Sections 4.2 and 4.3.We thus follow the conclusion of Liddell
and Kruschke [19]: ‘‘Because it is impossible to know in
advance whether or not treating a particular ordinal dataset
as metric would produce a different result than treating it as
ordinal, we recommend that the default treatment of ordinal
data should be with an ordinal model’’. Another, equally
important reason is that our adaptive quantized metric
models permit inclusion of country-specific components
that can better explain the differences between groups than
simply comparing their MOS.

As an alternative to MOS, Liddell and Kruschke pro-
posed the use of cumulative ordinal models. In these models,
a continuous cumulative density function of perceived
quality is thresholded at multiple values, which yields the
modeled probabilities of the rating categories.
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Figure 1. The quantized metric model for perceived quality. The
probabilities for the ACR ratings ‘poor’ to ‘excellent’ can be modeled
in a two-stage process. The latent perceived quality is assumed to
be a normally distributed random variable parameterized by its mean
and variance. Second, the random variable is quantized into ACR
categories that correspond to successive intervals on the quality scale
and are separated by thresholds τ1 < · · ·< τ4. The probabilities of an
ACR classification are indicated by the areas under the curve in the
corresponding interval. Here, the mean value is 3.0 and the probability
of a ‘fair’ rating (3) is the highest.

Figure 2. The quantized metric model as viewed in cumulative models
with random effects. The figure shows how a typical person from the US
would rate a typical video in the NIVD dataset. For a concrete video
stimulus, the distribution would be shifted left or right by the value of an
appropriate intercept. The figure is based on code provided by [28].

This approach can also be described as a quantized
metric model based on continuous distributions that model
the perceived stimulus quality on the latent scale (Fig-
ures 1 and 2). The probabilities for the rating categories
are determined by quantizing the corresponding random
variable using fitted thresholds. These thresholds when used
in quantization permit consideration of potential nonlinear
associations between ordinal data and the latent quality scale,
providing a more accurate interpretation of the ordinal data.

There is a fundamental difference between a metric
model and a quantized one: The metric model specifies the
likelihood of a rating as the corresponding density value of

the continuous distribution [14, 18], while the cumulative
ordinalmodel specifies the probability of anACR-type rating
as the integral of the density function over the interval
corresponding to the rating. This integral is equal to the
difference between the values of the cumulative density
function at the boundaries of the interval.

To account for the effect that theACR categoriesmay not
be equally spaced on the quality scale, we let the thresholds
define intervals of differentwidths. For the five categories this
yields a sequence of five successive intervals that partition
the real number line, as shown in Figs 1 and 2. For a given
number of observers and a set of stimuli, the corresponding
statistical model is given by the mean and variance for
each stimulus and the list of thresholds as intercepts in a
cumulative model that separate the category intervals in the
figures.

The quantized metric model was introduced by Thur-
stone in his lectures in the framework of his Law of
Categorical Judgement. It was first reported by Saffir in
1937 [22] titled as Method of Successive Intervals. In the
following years, a number of techniques were developed
to solve the system of equations for the parameters that
arises with the approach, the most prominent ones being
least-squares methods. The standard reference is Torgerson’s
book [31]. (The Law of Categorical Judgement is more
general by letting the thresholds be random variables instead
of fixed numbers. However, this allows the order of the
thresholds to varywhich complicates theory and algorithms.)

A quantized metric model is probabilistic by definition
and gives rise to two natural computational approaches to
estimate their model parameters. The first one is maximum
likelihood estimation (MLE), and the other is Bayesian
estimation. Only when electronic computing machinery
became available, it became practical to consider MLE to
estimate the model parameters. Schönemann and Tucker
were the first to develop this method, in 1967, including an
implementation on an ILLIAC supercomputer [24]. In this
study, we apply both estimation methods.

The quantized metric model as applied for Bayesian
estimation of cumulativemodels with random effects (Fig. 2)
is very similar to the standard one using MLE (Fig. 1).
The probability of observing a given ACR response is the
probability of a value being drawn from the latent zero-mean
distribution within that response’s region. Several factors
such as the stimulus and the subject for the rating may
shift the mean (and additionally change the variance) of
the continuous distribution. In contrast to the previous
models, these effects are taken to be ‘random’, averaging to
zero. Therefore, latent values are spread around zero. For
example, the figure presents our model’s estimates for the
US, accounting for variability across videos and raters. It
shows how a typical person from the US would rate a typical
video in the NIVD dataset. For a concrete video stimulus, the
distribution would be shifted left or right by the value of an
appropriate intercept. The density plot shows latent values,
and the bar graph shows response percentages, with a central
tendency towards rating 3. This visualization highlights the
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model’s ability to disentangle rating tendencies and make
reliable cross-cultural inferences.

Two recent articles have built on this approach to
demonstrate how Bayesian cumulative link mixed models
(CLMMs) can be applied to provide more principled norms
from ordinal rating data [3, 28]. CLMMs extend the
basic cumulative link model by allowing random effects
that capture dependencies in the data due to clustered
observations (e.g. by participants or items). Taylor et al. [28]
posited that CLMMs should be used to calculate rating
norms from ordinal data, rather than taking means of the
ratings directly. Their simulations showed that CLMMs can
determine latent means and standard deviations for items in
a way that is disentangled from overall response patterns and
biases in the ratings.

The CLMM framework offers additional flexibility to
estimate discrimination (i.e. variance) parameters that allow
item differences in latent variance as well as means [3].
CLMMs make fewer assumptions about the shape of
the underlying latent distribution compared to traditional
modeling approaches. Overall, CLMMs provide a powerful
and flexible tool to analyze ordinal data, accounting for
overall response patterns and dependencies to yield more
appropriate item-level estimates [28]. Given the widespread
collection and analysis of ordinal ratings across psychological
research, these advantages ofCLMMs represent an important
methodological consideration.

Similar cumulative models have only been used in few
studies to estimate the quality of experience (QoE). In [15,
27], the effect of several factors such as channel bandwidth,
link capacity, task content, user bias, and gender on QoE was
studied. Another study [8] analyzed the non-linear usage of
ACR scales using CLMMs, but did not investigate changes in
rating thresholds.

In this study, we applied quantized metric models to
investigate potential nation-based differences in perceptual
image and video quality assessment. Specifically, we fitted
such models using maximum likelihood estimation or
Bayesian hierarchical regression to incorporate country-
specific components. People from different cultural or
national backgrounds may associate the rating categories
with different intervals on the scale of perceptual quality.
Thus, our main mechanism to account for country-specific
differences in rating behaviorwas to adapt the thresholds and
intercepts for each country. In this approach, we assume that
the quality of a each image or video stimulus on the latent
scale is a fixed value. Then the differences between countries
in the adjusted thresholds imply different probabilities for
the ACR/DCR categories. In addition, we also adapted other
parameters in a similar way. For example, the variance
parameter (dispersion) of ratings was adapted per country.

Extreme response style refers to individuals with a
preference for choosing options at the extreme ends of the
rating scales, which are influenced by cultural backgrounds
and personal styles. To examine country-specific extreme
response styles, we extracted the probabilities of extreme
ratings from the results of our models fitted to the data. We

also compared the empirical proportions of extreme ratings
between countries.

An additional, technical contribution is the adoption
of a lapse rate. When reconstructed by MLE, a stimulus of
high quality can result in a probability for the low category
‘bad’ that is almost equal to zero. According to the model,
a ‘bad’ rating is therefore extremely unlikely. In practice,
however, such ratings can occur if subjects are momentarily
inattentive andmake a wrong decision, or if they accidentally
press the wrong answer key even though they had made
a correct decision (a ‘finger error’). These lapses have an
inappropriate influence on theMLE of themodel parameters
and distort the model parameters, which impairs the model
quality. A lapse rate introduces a small prior probability for all
categories, which is then combined with the evidence, i.e. the
ratings in the experiment. This helps to mitigate the negative
effects of lapses. Lapse rates are often used in cognitive
science to fitmodels of psychometric functions [32], but have
not yet been considered for reconstructions by MLE from
ACR/DCR response data.

4. MATERIALS ANDMETHODS
This section details the datasets and the statistical models
used to extract country-specific traits in image and video
quality assessment.

4.1 Datasets
To ensure statistical evidence of our results, we focused on
three datasets with large numbers of ratings from a diverse
range of countries. KonIQ-10k [12] and KADID-10k [20]
were collected via crowdsourcing, attracting participants
from over 70 countries, with the largest contributions
coming from Russia (KonIQ-10k), Venezuela, Egypt, and
India (KADID-10k). The NIVD dataset [1], by focusing
on four key countries (Japan, Brazil, the US, and India)
and having the largest population of observers, offered the
greatest potential for a cross-cultural analysis. Table II lists
the dataset summaries. The first two are image quality
datasets; KonIQ-10k uses no-reference IQA with ACR, and
KADID-10k uses full-reference IQA with DCR. NIVD is
a video quality dataset assessed on a visual analog scale
(VAS). The nationality was unknown for a few subjects, so
we removed their ratings from the datasets.

Table III provides a more detailed breakdown of
the major contributing countries for each dataset. The
‘Other’ category in this table represents the combined
contributions from the remaining countries, which include
various European nations, South American countries, and
other regions of East Asia.

KonIQ-10k and KADID-10k were collected by crowd-
sourcing without restrictions. This means that subjects
from any country were accepted as long as they met the
qualification requirements. For both datasets, subjects from
over 70 countries contributed. For many of these countries,
only very few subjects are included in the dataset. In addition,
there was no fixed number of stimuli that a respondent
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Table II. Overview of datasets. The average number of ratings per image, subject, and country are given.

Dataset KonIQ-10k KADID-10k NIVD
Reference/year [12]/2020 [20]/2019 [1]/2023
Rating type ACR DCR VAS

Full set Subset Full set Subset Full set Subset

Images or videos 10076 168 11085 89 1860 1488
Subjects 1261 351 2212 92 12812 12812
Countries 75 2 72 2 4 4

Ratings/stimulus 107.0 45.4 35.3 23.2 265.3 302.5
Ratings/subject 854.8 21.7 176.9 22.4 38.5 35.1
Ratings/country 14372.8 3810.5 5435.8 1031.5 123368 112543
Ratings total 1077960 7621 391376 2063 493472 450172

Table III. The countries with most ratings per dataset.

Dataset Country Subjects Stimuli Ratings

India 359 10074 423400
KonIQ-10k Venezuela 212 10074 129236
Full set Russia 66 9871 62077

Serbia 62 9884 49428
Other 563 10076 413819

KonIQ-10k India 213 168 3940
Subset Venezuela 138 168 3681

Venezuela 1332 11085 269923
KADID-10k Egypt 97 5980 17326
Full set India 83 5854 11784

Russia 48 5122 9797
Other 652 11070 82636

KADID-10k Venezuela 68 89 1271
Subset Egypt 24 89 792

Japan 3298 1860 129244
NIVD Brazil 3264 1860 127720
Full set US 3287 1860 124308

India 2963 1860 112200

Japan 3298 1488 108164
NIVD Brazil 3264 1488 121620
Subset US 3287 1488 111328

India 2963 1488 109060

could rate. Therefore, the resulting ratings are not evenly
distributed across the test subjects and countries.

A key challenge in analyzing large-scale crowdsourced
datasets like KonIQ-10k and KADID-10k is the sparse and
uneven distribution of ratings. A single image may have
received numerous ratings from one country but none from
another, hindering reliable estimation of country-specific
effects. To address this, we created balanced subsets focusing

on a smaller set of images with more comparable numbers
of ratings across selected countries. This balancing improves
the statistical power for estimating country-specific parame-
ters, enabling more robust cross-cultural comparisons.

For this reason, we considered two approaches in our
analysis of KonIQ-10k and KADID-10k, which differ in the
scope and balance of the ratings between countries and
images. In the first approach, we considered all available
ratings. However, we focused on the four countries that
provided themost ratings and grouped the remaining ratings
into a fifth category labeled ‘Other’. A summary of the
resulting breakdown into five categories is shown in Table III,
which shows that even between the four countries with the
most subjects and ratings, there are significant differences in
the numbers or ratings.

Therefore, in our second approach, we limited the
dataset to only two countries for KonIQ-10k and KADID-
10k, and to obtain a more balanced, albeit much smaller,
subset. To this end, we applied the following criteria to the
first dataset, KonIQ-10k.

(1) Selection of countries. We identified the two countries
with the most ratings: India and Venezuela. To ensure
a balanced representation, we first selected 4500 images
with the most ratings from the country with the second
highest ratings (Venezuela). We then extracted the
ratings for the same images from the country with the
most ratings (India). In this way, we obtained similar
number of ratings for both countries.

(2) Balance. To create a balanced dataset, we attempted
to source an equal proportion of ratings from India
and Venezuela for each image. We calculated the total
number of ratings and the number of ratings from India
for each image. We then calculated the proportion of
ratings from India for each image.

(3) Optimization. We defined an objective function that
calculated the absolute difference between the mean
proportion of Indian ratings and 0.5 (the target value for
a perfectly balanced dataset). Using a genetic algorithm
(package GenSA [33]), we optimized the selection
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Figure 3. Histogram of ratings in NIVD, showing the quantization of the
percentages of the VAS to the five ACR categories.

of images to minimize this objective function. The
optimization process was aimed for 200 images but the
result was a subset of 168 images with amean proportion
of Indian ratings close to 0.5.

(4) Final dataset.The optimized subset of 168 images, along
with their respective ratings from India and Venezuela,
formed the final balanced dataset for analysis.

For the KADID-10k dataset, we proceeded similarly but
achieved less balance between the countries. The resulting
balanced subsets are also listed in Table III.

In contrast to the first two datasets, the Netflix
International Video Dataset (NIVD) was developed to
capture country-specific differences by collecting an almost
equal number of ratings from only four selected countries.
The ratings in NIVD were acquired using the SAMVIQ
scheme, i.e., a visual analog scale was used together with tick
marks and the descriptive ACR labels positioned at 0, 25, 50,
75, and 100% of the interval scale.

However, despite the continuous nature of the data col-
lection on an interval scale, the resulting score distributions
could not be considered normally distributed. This is evident
from the overall histogram of all ratings together, which
is shown in Figure 3. This histogram shows pronounced
peaks at positions 0, 25, 50, 75 and 100 percent of the VAS
scale, indicating that the subjects generally preferred theACR
labels that were printed at these positions and gave a discrete
ACR scale rating instead of a continuous interval scale rating.

Therefore, we quantized the continuous VAS scores into
integer ACR scores, as shown in Fig. 3, using thresholds
midway between the tick marks, i.e., at 12.5, 37.5, 62.5 and
87.5 percent of the scale. We then applied the same methods
of discrete data analysis as for the other two datasets.

The NIVD dataset showed an excellent balance between
the countries and the video stimuli. However, there were
several videoswith fewer ratings. Removing these stimuli and
only keeping thosewith over 200 ratings created the balanced
NIVD subset summarized in Table III.

To summarize, we compiled three large datasets, each in
two versions. The first version consisted of the full datasets
with grouped countries that submitted fewer ratings than the
four most common ones. The second set consisted of subsets
that weremore balanced butmuch smaller. (The anonymized
datasets are available, with annotations by subjects and their
nationalities, at database.mmsp-kn.de/vqacountry-database.
html.)

For data analysis of ACR/DCR data, we applied MLE of
the parameters for our models to the larger versions of the
datasets. For the smaller, more balanced datasets, we applied
CLMMs with Bayesian parameter estimation. Bayesian
estimation for themodels of the complete datasets withmore
than 10,000 parameters would have been computationally
intensive to apply.

4.2 Adaptive Quantized Metric Model with Lapse Rate
The common statistical models for the perceived quality
of sensory stimuli assume a one-dimensional latent quality
scale of real numbers that is shared by all subjects, but
not directly observable. The actual responses in a subjective
experiment are also influenced by the decisional process
that is modulated by personal and cultural influence. In
addition, a third layer given by errors in the physical action
of communicating the decision by, e.g., a mouse click, may
distort the decided rating (so-called finger errors or lapses).

A stimulus j corresponds to a particular value ψj ∈ R
on the real latent quality scale. The quality as perceived by a
subject is modeled by a random variableUj. In themost basic
model, Uj is chosen with a normal distribution centered at
the latent quality value ψj and with a global variance σ 2 that
applies to all stimuli. With this setting, we have

Uj =ψj+ σW (1)

where Uj is the random variable producing the observed
opinion score for stimulus j, and W is a Gaussian random
variableW ∼N (0, 1). σ > 0 is the standard deviation of Uj
and determines the spread of the random variable uj.

To account for the finite discrete nature of ACR-type
data with K = 5 categories, we sort the real values of Uj
into K successive intervals. For this purpose, we introduce
a monotonic sequence of thresholds τ = (τ0, . . . , τK ),

−∞= τ0 < τ1 < · · ·< τK−1 < τK =∞, (2)

and define the quantization function Qτ : R→ {1, . . . ,K }
by

Qτ (u)= k ⇐⇒ τk−1 ≤ u< τk. (3)
Given a metric model for the j-th stimulus in the form of a
continuous random variableUj, we define the corresponding
quantized metric model by the discrete random variable
Qτ (Uj). In addition to the quantization, we take into account
a small lapse rate 0 ≤ λ� 1. This yields a discrete random
variable Vj that determines the probability of a rating for
category k as

Pr[Vj = k] = (1− λ)(Gψj,σ (τk)−Gψj,σ (τk−1))+
λ

K
(4)
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where Gψj,σ denotes the Gaussian cumulative density
functionwithmeanψj and varianceσ 2. Thus, with zero lapse
rate, Pr[V = k] is just the area under the Gaussian between
the thresholds τk and τk−1, as shown in Fig. 1.

The abovemodel cannot yet distinguish between ratings
from different nationalities. To achieve this, we adopted
the following parameters separately for each country: the
rating spread σ , the lapse rate λ, and the category thresholds
τ1, ..., τ4. Thus, the total number of parameters was equal to
the number of stimuli plus six times the number of countries.

For optimization, we applied an interior point algo-
rithm, implemented in the MATLAB function fmincon.

4.3 Cumulative Link Mixed Effects Models
For the larger datasets KonIQ-10k and KADID-10k, we had
over 10,000 parameters to estimate from about one half to
a whole million ratings. For problems of this size, Bayesian
estimation takes a very long time (several days on a personal
computer or laptop). Therefore, for Bayesian estimation,
we computed the parameters only for the smaller balanced
subsets.

Cumulative ordinal models are designed for ordered
categorical data like ratings, where the intervals between
categories may not be equal. They model the cumulative
probability of a response being at or below a certain category,
e.g., the probability of a rating being ‘poor’ (2) or ‘bad’ (1).
This approach respects the ordered nature of the datawithout
assuming equal spacing between categories, unlike metric
models. In our Bayesian framework, we used these models
to estimate the probabilities of each rating category and the
thresholds separating them on the underlying latent scale.

It also evaluates group-level effects, which include
random intercepts for items, permitting each item to have its
unique distribution along the latent dimension. Additionally,
it can incorporate random intercepts for raters, addressing
individual biases in how raters map their assessments onto
the ordinal scale.

By modeling these group-level effects, the hierarchical
CLMM accounts for variability from the stimuli and
raters, enhancing the accuracy of threshold estimates. This
facilitates reliable inferences about differences in how the
ordinal rating scale is interpreted across groups.

We utilized the Bayesian BRMS [2] package for R to fit
CLMMs to the ordinal rating data of the smaller data subsets.
CLMMs are hierarchical and can account for dependencies
and variability in the data due to clustered observations, such
as multiple ratings from the same subject, the same country,
or for the same image/video.

For the balanced KonIQ-10k and KADID-10k subsets,
the models were defined as:

rate|thres(4, gr= country)∼ 1+ (1|image)

Thesemodels estimated four category thresholds per country
and incorporated random intercepts for each image, ac-
counting for variations in the perceived quality of different
images.We only estimated the effect of images due to the low
level of ratings from each individual rater.

For the balanced NIVD subset, the CLMM was defined
as:

rate|thres(4, gr=country)∼ 1+ (1|video)+ (1|subject).

This model estimated four category thresholds (separating
the five rating levels) for each country. It also included
random intercepts for both videos and raters, allowing for
variation in rating tendencies across different videos and
individual raters. Note that the total number of parameters,
even for this slightly smaller balanced subset, is larger than
14,000. Therefore, the computations took exceptionally long,
nearly two days.

5. RESULTS
5.1 Data Analysis of the Original Datasets using
Maximum Likelihood Estimation
The results of the data analysis using the quantized metric
models with successive intervals is shown in Table IV and
Figure 4. The scale values for stimuli were also estimated, but
are not shown here to keep the focus on the country-specific
differences.

Clearly, most thresholds τk, and also the standard
deviations and lapse rates, significantly differ between
countries. For example, in the first two rows of the table
for the KonIQ-10k ratings of India and Venezuela, all
parameters differ between the countries without overlap of
95% confidence intervals.

These results are elucidated by considering an example
in detail (Figure 5). In NIVD, the video 964 was scaled by
the statistical model at quality µ = 4.360. The distribution
of the latent perceived video quality corresponded to the
model parameters for Japan and the US (lines 11 and 13
in Table IV). Based on the assumption of a globally unique
perceived quality, we have that for all countries, the mean
of the distribution is at µ = 4.360. The dispersion of the
qualities, the lapse rates, and the ACR category thresholds
are different between countries, though. This implies that
probabilities for the ACR categories also differ between the
countries. These are shown in table included in 5.

The table also confirmed that for this example that the
model presents an accurate fit to the collected ratings. The
corresponding probabilities for the five categories are close
to each other; the measured MOS from the collected ratings
differs from the predicted MOS of the model by only about
0.5%.

The estimated lapse rates generally are very small,
around 1% for the assessment of the two image datasets, and
3 to 5 % for the video dataset. The larger values for NIVD
could be attributed to the more complicated SAMVIQ user
interface that was applied for this dataset [1]. Participants
evaluated the videos in groups of five by interactively
selecting which video to play and rated the visual quality
using four sliders. Moreover, they were also allowed to
modify their votes as many times as they wished.

The country specific differences are even smaller and
probably not influential even though statistically significant
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Table IV. Results for the full datasets with 95% confidence intervals, compare with Figure 4. The most important results are the category thresholds that define the intervals on the
latent quality scale corresponding to the five categories.

Dataset Country Std deviation Lapse rate Category thresholds
σ λ τ1 τ2 τ3 τ4

India 0.5050± 0.0016 0.0039± 0.0004 1.3867± 0.0071 2.3608± 0.0028 3.4061± 0.0022 4.6590± 0.0087
Venezuela 0.4179± 0.0022 0.0078± 0.0011 1.6998± 0.0086 2.5069± 0.0042 3.2330± 0.0033 4.1030± 0.0064

KonIQ-10k Russia 0.3813± 0.0030 0.0038± 0.0011 1.7161± 0.0116 2.5190± 0.0058 3.2646± 0.0045 4.2292± 0.0119
Images, ACR Serbia 0.3811± 0.0035 0.0087± 0.0018 1.7089± 0.0138 2.5043± 0.0066 3.2889± 0.0051 4.1533± 0.0116

Other 0.4132± 0.0012 0.0053± 0.0005 1.6536± 0.0050 2.5007± 0.0023 3.2752± 0.0019 4.2205± 0.0044

Venezuela 0.6372± 0.0024 0.0065± 0.0009 1.7941± 0.0047 2.7047± 0.0036 3.2799± 0.0036 4.1751± 0.0045
Egypt 0.6910± 0.0104 0.0105± 0.0042 1.5611± 0.0218 2.7732± 0.0147 3.2528± 0.0147 4.4835± 0.0211

KADID-10k India 0.6442± 0.0120 0.0144± 0.0056 1.7302± 0.0240 2.8174± 0.0178 3.3726± 0.0179 4.4110± 0.0240
Images, DCR Russia 0.5403± 0.0111 0.0058± 0.0038 1.8995± 0.0221 2.7440± 0.0185 3.3349± 0.0183 4.1006± 0.0208

Other 0.6013± 0.0043 0.0125± 0.0019 1.8659± 0.0082 2.7664± 0.0065 3.3550± 0.0065 4.1922± 0.0080

Japan 0.7028± 0.0038 0.0356± 0.0026 1.8249± 0.0079 2.8243± 0.0054 3.7092± 0.0056 4.5132± 0.0084
NIVD Brazil 0.6343± 0.0035 0.0353± 0.0027 1.8820± 0.0071 2.6355± 0.0049 3.3261± 0.0049 4.1522± 0.0068

Videos, ACR/VAS US 0.7603± 0.0044 0.0543± 0.0036 1.6418± 0.0091 2.4355± 0.0059 3.1706± 0.0055 4.1098± 0.0075
India 0.7467± 0.0044 0.0416± 0.0033 1.5897± 0.0099 2.4910± 0.0061 3.2721± 0.0058 4.2185± 0.0082

Figure 4. Country-specific thresholds estimated with maximum likelihood estimation (MLE). For the numerical values and confidence intervals, see Table IV.
Direct comparisons of countries between experiments are not recommended due to variations in experimental design, including differences in stimuli (videos
versus images) and task formats (ACR versus DCR).

in some cases. Wichmann and Hill [32] have cautioned that
the lapse parameter is, in general, not a very good estimator
of the subjects’ true lapse rate. Thus, we hesitate to interpret
these differences and would recommend for future studies to
use only a single global lapse rate for each dataset.

5.2 Data Analysis of the Balanced Datasets using Bayesian
Estimation
The results from the CLMMs are shown in Table V and
Figure 6. They confirm that for the smaller balanced data
subsets, the estimated thresholds, which demarcate the
boundaries between successive ordinal rating categories,
vary by country. For example, consider the quality of a video
stimulus from the NIVD dataset for which the probability
is at least 50% to obtain a rating of ‘excellent’. For observers
from the US a video quality of only 1.67 on the CLMM scale
was sufficient for that, while for Japanese viewers, the video
quality had to be at least 2.45. This is a significant difference,
corresponding to roughly one half on the 5-level ACR scale.

The characteristics of the data, such as the number of
observations and the balance of ratings across categories

influenced the precision of these estimates. Notably, the
NIVD dataset, which is well-balanced and has a significantly
larger number of ratings in the balanced subset compared to
the other datasets, yielded the highest precision in estimates.

For the NIVD and KonIQ-10k data subsets, the 95%
CI of the estimates did not overlap in few cases, indicating
discernible differences between the countries. However, for
the KADID-10k data subset, which had the smallest number
of images and ratings, the 95% CI was wider and overlapped,
indicating less precision in the estimates.

To study country-specific differences of extreme rat-
ings we computed their occurrences by (a) averaging the
probability Pr[Vj ∈ {1, 5}] from the Thurstonian model (4)
over all stimuli j per country, (b) the corresponding averages
derived from the CLMM model applied to the balanced
subsets of the full datasets, and (c) the sum of the empirical
proportions of ratings at ACR levels 1 and 5. Table VI
shows the summarized results. Clearly, there are significant
differences between countries. The largest differences were
found for the ACRmodality in KonIQ-10k, in which extreme
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Table V. Results for the reduced, balanced data subsets from the CLMM with 95% confidence intervals.

Dataset Country Intercepts for thresholds
τ1 τ2 τ3 τ4

KonIQ-10k India −3.36± 0.22 −1.45± 0.17 0.69± 0.16 3.09± 0.21
Venezuela −2.97± 0.21 −1.29± 0.17 0.35± 0.16 2.34± 0.18

KADID-10k Venezuela −1.89± 0.31 −0.51± 0.30 0.38± 0.29 1.71± 0.30
Egypt −2.04± 0.31 −0.30± 0.29 0.29± 0.30 2.20± 0.31

NIVD Japan −2.15± 0.08 −0.45± 0.09 1.09± 0.08 2.45± 0.08
Brazil −2.20± 0.08 −0.83± 0.08 0.47± 0.08 1.95± 0.08
US −2.35± 0.08 −1.09± 0.08 0.15± 0.08 1.67± 0.08
India −2.56± 0.08 −1.04± 0.08 0.34± 0.08 1.93± 0.08

Figure 5. Results of the model with successive intervals for the video
stimulus numbered 964 in the Netflix International Video Dataset, shown
for Japan and US. The category thresholds τ2, τ3, and τ4 for the subjective
ratings of the perceived quality in Japan are larger than those in the US.
In effect, according to the statistical model, the sampled US population
generally preferred higher ACR ratings for the video stimuli in NIVD.
The table shows the numerical values of the resulting probabilities of the
ACR categories for this example. Each of the model probabilities is the
corresponding area under the curves plus 1/5 of the lapse rate (0.0356
for Japan and 0.0543 for the US), see Equation (4). For comparison, the
fractions of the collected VAS ratings that were quantized to ACR for this
study are shown.

ratings from Venezuela were nearly three times more likely
than those of India.

Focusing on the Japanese and US subsamples, which
were balanced in our NIVD dataset, we observed clear
national differences in rating patterns in Table VI. The
combined proportion of extreme ratings was about 25% for
the US group versus only about 19% for the Japanese raters.

Our analysis revealed systematic differences in how
US and Japanese participants utilize the rating scales. The
observed shift in category thresholds suggests that a video
typically judged as ‘good’ by Japanese viewers might typically
be judged as ‘excellent’ by US viewers.

We note that the methods of assessment of occurrences
of extreme ratings unanimously agree on the ranking of the
countries according to the frequencies of extreme ratings.
The Thurstonian and CLMMprobabilities were very close to
the empirically measured frequencies.

5.3 Comparison
When comparing the results of this analysis of the balanced
datasets using CLMMs (Table V and Fig. 6) with the previous
ones for the original, large datasets (Table IV and Fig. 4),
the varying conditions used to derive these estimates have
to be accounted for. Besides the differences in the dataset
sizes, the balancing, and the computational methods, the
mathematical models are distinct. With MLE, we included
adaptive standard deviations and lapse rates, while for
the CLMM model we used a subject model for the case
of NIVD. However, the scatter plot of the thresholds in
Figure 7 confirms that the results are similar. In particular,
they indicate that the country-specific differences in the
thresholds as derived from the original large datasets cannot
be attributed to the differing numbers of subjects from the
countries.

6. LIMITATIONS
This study leveraged large-scale, cross-cultural datasets,
but limitations related to sampling and demographic in-
formation require careful consideration. Addressing these
limitations is crucial for appropriately interpreting our
findings and for guiding future research in the field.
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Figure 6. Country-specific thresholds estimated with CLMMs. This figure displays the threshold estimates of image ratings for six countries, derived from
balancing three quality databases. Each point represents an estimate, with horizontal lines indicating the 95% confidence intervals. The model accounts
for variability in rating tendencies across images for all datasets and additionally, raters for only the NIVD dataset, estimating cultural differences in rating
scale usage. We again discourage direct comparisons across experiments due to different designs.

Table VI. Probabilities of extreme ratings. Results of the Thurstonian quantized metric model for the full datasets, the CLMM model for the balanced data subsets, and the empirical
proportions of ratings in extreme categories 1 and 5 together. Rows are sorted according to their magnitudes in the full dataset.

Full dataset Balanced subset
Dataset Country Prob ACR Prop Prob ACR Prop

Venezuela 0.0662 0.0674 0.0723 0.0736
Serbia 0.0508 0.0505 – –

KonIQ Other 0.0462 0.0479 – –
Russia 0.0428 0.0462 – –
India 0.0220 0.0201 0.0254 0.0244

Russia 0.346 0.375 – –
Other 0.327 0.347 – –

KADID Venezuela 0.322 0.337 0.304 0.307
India 0.260 0.279 – –
Egypt 0.225 0.240 0.215 0.213

US 0.260 0.255 0.255 0.251
NIVD Brazil 0.249 0.238 0.228 0.235

India 0.223 0.213 0.209 0.211
Japan 0.191 0.189 0.184 0.183

Figure 7. Scatter plot of the four thresholds of the ACR categories,
estimated in the large datasets by MLE and the balanced datasets by
CLMM.

Regarding sample size and representativeness, theNIVD
dataset, with 14,450 participants before outlier removal,

represented a significant advancement in multimedia quality
assessment research, exceeding typical sample sizes by order
of magnitude and, to our knowledge, comprised the largest
publicly available cross-cultural video quality study. Though
this large sample size contributes to the statistical power
of our analyses, it’s important to acknowledge that NIVD,
while designed to be representative of targeted age ranges
(18–30, 31–44, and 45–65) and gender within the US, Japan,
India, and Brazil, does not encompass the full diversity
of global populations. Furthermore, the specific sampling
methodology employed by Survey Sampling International
(SSI) is not publicly disclosed, which limits a more precise
evaluation of the sample’s representativeness. Future research
aimed at generalizing findings to broader populations
should prioritize even wider cultural representation and
transparently report sampling methodologies.

Another limitation was the use of country of residence
as the sole proxy for cultural background. While providing
a useful starting point, this approach may not fully capture
the nuances of cultural influences on response styles, as it

J. Percept. Imaging 11 April 2025



Saupe and Del Pin: Uncovering cultural influences on perceptual image and video quality assessment through adaptive quantized metric models

overlookswithin-country variations, such as regional, ethnic,
or linguistic differences. Furthermore, individual factors like
age, gender, education, personality, and other individual
characteristics may interact with cultural factors to influence
how people perceive and rate image quality. Critically, none
of the datasets used in this study (NIVD, KonIQ-10k,
and KADID-10k) made detailed demographic data readily
available, precluding a more thorough investigation of
these potentially confounding factors. Future studies should
incorporate more detailed and multidimensional measures
of both cultural background and individual differences—
and ensure the public availability of such data—to better
understand these complex interactions and their impact on
response styles.

Despite these limitations, the scale and scope of the
datasets employed, particularly NIVD’s unique size and
cross-cultural design, provide valuable insights into the
complex relationship between culture and subjective quality
perception, laying a strong foundation for future work.

We introduced the lapse rate in the statistical model
for ACR/DCR quality assessment. A general analysis of the
advantages and limitations of lapse rates in quantized metric
models is worthwhile, but is beyond the scope of this study.

Though this study focused on cross-cultural variations
in rating scale usage, future research could explore the
relationship between our model’s predictions and traditional
MOS values. Such a comparison could provide further
insights into the practical implications of our findings for
established practices in image quality assessment.

One limitation is the long runtime for calculating the
parameters of quantized metric models if the dataset is very
large. For example, calculating the 10092 parameters for
KonIQ-10k even with MLE took 13 hours using Matlab on
a MacBook Pro (2.6 GHz 6-core Intel Core i7 processor).
However, theMLE for NIVDwith 1884 parameters, took less
than 30 minutes. We did not perform any code optimization
and did not try alternative solvers such as ADAM [17].

7. CONCLUSION: NAVIGATING CULTURAL
NUANCES IN IMAGE QUALITY ASSESSMENT

Our study explored the impact of cultural factors on
image quality assessment by adapting statistical models to
include country-specific components. Across three large-
scale datasets (KonIQ-10k, KADID-10k, NIVD) containing
subjective image and video quality ratings from several
countries, we found significant nation-based differences
in extreme response styles. Notably, our findings indicate
that US observers exhibited a higher propensity to provide
extreme ratings compared to Japanese observers when
evaluating the same video stimuli. We estimated that US
observers employ extreme ratings 35–39% more frequently
than their Japanese counterparts (Table VI). Remarkably,
this observed discrepancy aligns closely with the 41% higher
likelihood reported over five decades ago [34], reinforcing
long-standing cross-cultural research on systematic differ-
ences in extreme response tendencies between individualistic
and collectivistic cultures like the US and Japan.

These results underscore the importance of considering
cultural factors when designing and interpreting subjective
quality assessments. Failing to account for these differences
could lead to biased or inaccurate conclusions about user
experience across different cultural groups.

A key strength of this study was the utilization of
quantized metric models as a unified statistical framework.
Parameters were computed by maximum likelihood esti-
mation for very large datasets and by Bayesian estimation
using cumulative link mixed effects models (CLMMs) for
the smaller ones. Our models explicitly model the ordinal
rating process without assuming equal category spacing.
Furthermore, by incorporating random effects, CLMMs
disentangle stimuli quality estimates from overall rater biases
and response patterns. Their hierarchical structure facilitated
quantifying culture-specific effects like divergent rating
thresholds and extreme tendencies, while simultaneously
yielding posterior distributions for the latent quality of each
image/video.

This approach represents a significant methodological
contribution, merging cross-cultural psychological inquiry
with applied multimedia quality assessment aims, and
provides a rigorous psychometric technique for disentan-
gling cultural influences from true quality perceptions. As
the field increasingly relies on crowdsourced remote data
collection, such principled methods are crucial for reliable
cross-population comparisons and quality predictions.

Our results highlight the importance of considering
cultural nuances in image quality assessment to avoid dis-
torted interpretations. Accounting for differences in response
styles is vital for meaningful cross-national comparisons
of subjective rating data. These findings contribute to a
more comprehensive global understanding of image quality
perceptions and have implications for the collection and
analysis of current and future datasets.

To further refine this understanding, we recommend ex-
ploring the specific cultural factors driving the observed re-
sponse style variations. Potential influences include individ-
ualism/collectivism, values of moderation/expressiveness,
and preferences for direct/indirect communication. Under-
standing these roots can guide designing more culturally
appropriate assessment surveys that minimize the biasing
effects of extreme response tendencies.While we have shown
that datasets can be balanced after data collection, we also
advocate for the proactive balancing of nationalities in these
datasets, as exemplified by the NIVD dataset, when possible.
Ultimately, such adjustments will ensure more accurate
cross-cultural comparisons of perceived quality in our
increasingly globalized multimedia landscape. Additionally,
it may aid in creating more culturally relevant and effective
surveys and interventions.
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