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Abstract. One central challenge in modeling material appearance
perception is the creation of an explainable and navigable repre-
sentation space. In this study, we address this by training a
StyleGAN2-ADA deep generative model on a large-scale, physically
based rendered dataset containing translucent and glossy objects
with varying intrinsic optical parameters. The resulting latent vectors
are analyzed through dimensionality reduction, and their perceptual
validity is assessed via psychophysical experiments. Furthermore,
we evaluate the generalization capabilities of StyleGAN2-ADA on
unseen materials. We also explore inverse mapping techniques from
latent vectors reduced by principal component analysis back to
original optical parameters, highlighting both the potential and the
limitations of generative models for explicit, parameter-based image
synthesis. A comprehensive analysis provides significant insights
into the latent structure of gloss and translucency perception and
advances the practical application of generative models for controlled
material appearance generation.
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1. INTRODUCTION

The ability of human observers to recognize materials and
their properties only by visual assessment is an ongoing
field of research [1, 8]. Humans are able to recognize
materials across many conditions, such as shape, viewing
angle, lighting direction, spectral power distribution, and so
on [25, 46]. Although this ability is essential to performing
many daily activities, such as determining whether a fruit is
edible, its exact mechanisms remain poorly understood [9,
24, 34]. To understand material perception and to produce
the desired appearance, models are required that can
map this behavior of inferring material properties. This
is a challenging task, as it requires the creation of a
feature representation space that captures the complex
characteristics of different materials [31, 38].

This work focuses on two attributes of material ap-
pearance: translucency and gloss. Gloss is primarily related
to surface reflectance, which makes highlights or images
of the surrounding appear superimposed on the surface
while translucency refers to the degree of light penetration,
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Figure 1. Examples of the shapes and materials from our datasef. A
sphere is thick with highly curved surface, highly glossy and transparent
with litle surface and subsurface scattering. A cube is thick with flaf
surface, translucent with high surfoce and low subsurface scattering.
The bunny covers a range of thick and thin parts with complex surface
geometry, with high surface and subsurface scattering, and translucency
varies with thickness and geometry.

scattering, and propagation in the subsurface of the ma-
terial [18]. Gloss and translucency refer both to the
respective optical as well as perceptual properties of the
material [12]. Although angular reflectance from the surface
as well as subsurface scattering of light can be measured
instrumentally, the link between optical parameters and the
corresponding perception they evoke in humans is far from
straightforward [4, 13]. Recent studies propose that the hu-
man visual system (HVS) relies on a complex combination of
spatiotemporal regularities in the image statistics to interpret
materials’ degree of glossiness and translucency [12]. This
complexity makes it difficult to construct features that can
reliably predict perceptual translucency and glossiness.

Studies of gloss and translucency perception often
involve psychophysical experiments, where real or synthetic
images of different objects and materials are shown to
observers to assess. Observers’ assessments are correlated
with various optical properties and/or handcrafted image
features [28, 29], neither of which offers a sufficiently
robust representation space to fully explain perceptual varia-
tions [12]. Handcrafted features fail to capture the complexity
and subtle nuances of material appearance under different
conditions of varying intrinsic and extrinsic factors [13].

An alternative approach is a data-driven one. Data-
driven methods eliminate the need for deliberate construc-
tion of diagnostic image features that require significant
domain knowledge. Data-driven approaches rely on exploit-
ing the statistical structures inside the images to model the
distribution of the training samples, in turn capturing the
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nature of appearance of the material [3, 40]. The success
of these methods is dependent on the number of samples
provided during the training or fitting process, and hence
benefit from large highly diverse training datasets.

Deep neural networks follow a data-driven approach
that learns patterns from data. They have demonstrated
remarkable performance in many computer vision tasks [5],
including material recognition [2, 35]. Moreover, they have
been proposed as a viable approach for modeling human
perception at the behavioral level [32, 38].

A generative adversarial network (GAN) is a type of
neural network that is capable of synthesizing realistic im-
ages [15, 33]. This family of neural networks is also known as
deep generative models. Deep generative models synthesize
high-quality images by learning a latent representation of the
training data distribution. The input images are compressed
to a smaller feature vector that composes the latent space.
This compression of the image forces the model to learn
only the discriminative features and discard the rest. Once
the model is trained, it places feature vectors of similar
looking images together, forming clusters. Navigating this
latent space varies different properties in the resulting output
image, such as size, color, shape, and so on [33]. The
generative models exploit the image statistics and regularities
inside them to form their representation. The HVS is believed
to also perform a similar process for material perception [37].

Few works have explored latent representation space of
deep generative models to understand and create a space
either for perceived gloss or translucency. One of the first
attempts to utilize deep generative models to model the
appearance of materials is by Storrs et al. [36]. They rendered
a dataset of 10,000 images of bumpy surfaces with different
illumination varying from high (glossy) to low (matte) spec-
ular reflectance. The Pixel VAE variational autoencoder [17]
was trained on this rendered dataset in an unsupervised
manner. The model generates images from its learned latent
distribution. Visualizing this learned latent representation,
it was observed that the model had disentangled the
extrinsic properties by placing them into distinct clusters.
A psychophysical study showed that the trained model’s
prediction correlated well with human gloss judgments.

Liao et al. [27] used deep generative models to learn a
latent representation space for translucent objects. Instead of
rendering, they collected a new dataset of 8085 photographs
of soaps with varying translucent appearances, color, light-
ing directions, and other factors. The StyleGAN2-ADA
model [20] was trained on this dataset in an unsupervised
manner, and a layer-wise latent space was constructed based
on the feature vectors generated by the different layers
of the model. They found that it had learned to separate
human-understandable scene attributes such as difference of
materials, orientations, and color.

Finally, Nimma and Gigilashvili [30] trained the
StyleGAN2-ADA model on a very limited set of 132
rendered images of glossy spheres. Analysis of the latent
representation of the model showed that moving in the
primary directions of the 512 dimensional latent vectors
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changed certain visual attributes of the spheres such as size,
roughness, and glossiness. A subsequent psychophysical
study showed that observers were unable to consistently
distinguish between generated and rendered images.

Despite the advancements in the prior works, several
open questions remain. One critical question is whether
StyleGAN2-ADA can generalize to optical parameter values
beyond those used in training. Additionally, while latent
spaces are effective for controlling image generation, the
inverse mapping from a reduced latent space to the original
optical parameters has not been fully explored. Addressing
these challenges is essential to understand the perceptual
validity of StyleGAN2-ADA and its ability to replace
physically based rendering workflows [9, 37].

Deep generative models, especially StyleGAN2-ADA,
were shown to generate a compact feature representation
space of glossy and translucent appearance correlated with
human perception. Considering the previous literature,
this work aims to create and assess a navigable space
for translucency and gloss appearance. StyleGAN2-ADA is
trained on a larger dataset in comparison with that used
by Nimma and Gigilashvili [30]. The dataset includes many
materials with a broad range of gloss and translucency,
multiple shapes, and illumination directions. Unlike Liao
et al. [27], we used rendered images to have a full control of
the range of optical properties and illumination directions
(see Figure 1). The latent space of the trained model
is visualized by reducing the dimension of the feature
vectors from 512 to only 2. Previous work has shown that
high-dimensional appearance spaces are highly impractical
for human use for navigation, appearance manipulation, and
difference measurements [14]. First, we visualize whether the
latent space exhibits meaningful disentanglement of shape,
illumination direction, and various optical properties. Four
psychophysical experiments were then conducted to quantify
perceived translucency, gloss, lightness, and illumination
direction in different regions of this latent space.

To further assess the practical robustness and appli-
cability of our latent representation for perception-aware
navigation of the space beyond the training set, an additional
dataset was introduced, which extends the optical parameters
beyond the original ranges, providing a rigorous evaluation
of the generalization capabilities of the StyleGAN2-ADA
model. Moreover, inverse mapping from latent vectors
reduced by principal component analysis (PCA) back to the
original optical parameters is explored to bridge intuitive
latent-space navigation with explicit parameter-based image
synthesis.

A simplified schematic representation of the entire
workflow is given in Figure 2. The primary novelty and
contributions of this work are as follows:

(1) We explore the latent-space structure that covers a broad
range of gloss and translucency appearance to analyze
whether and how it disentangles shapes and optical
material properties.

(2) We use psychophysical evaluation to understand the per-
ceptual uniformity of the latent space. Similarly to color
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spaces, uniformity, that is, equal geometric distances
throughout the space corresponding to equal perceptual
differences, would be an important feature for the
appearance spaces to simplify appearance comparison
and manipulation. Several works have attempted to craft
latent representations of either gloss [16, 45] or translu-
cency [26]; however, to the best of our knowledge, this
is the first study to simultaneously explore perceptually
navigable latent-space representations for both gloss and
translucency while also addressing lightness, shape, and
illumination direction.

(3) We test generalization capabilities beyond the training
and test dataset materials.

(4) We evaluate to what extent we can robustly map back to
optical properties from the 3D projection of the latent
space, and hence replace lengthy physically based path
tracing rendering with an interpretable deep generative
model.

(5) Finally, we evaluate whether navigable latent space can
exist in reasonably low dimensions.

2. METHODOLOGY

This section outlines the steps taken to achieve the repre-
sentation space for gloss and translucency appearance. We
first discuss how the image dataset was created and explain
the reasoning behind the decisions in the dataset preparation
process. Afterward, we detail the model selection and the
learning process, followed by dimensionality reduction, and
conclude with the procedures of the psychophysical study.

2.1 Dataset

The first dilemma when constructing the dataset was
between capturing photographs of real-world objects as done
by Liao et al. [27] and rendering synthetic images as done
by Storrs et al. [36] and Nimma and Gigilashvili [30]. On
the one hand, rendered images lack imperfections that are
visible in real-life objects, and we may generate virtual
materials that do not actually exist in real life. On the other
hand, rendering allows a full control over the intrinsic and
extrinsic properties of the scenes and materials. This allows
adding diversity and completeness to the dataset, which is
beneficial for deep generative models to construct a rich
and well-developed latent representation. Photographs of
real-world objects do not allow for fine-grained control
of the intrinsic and extrinsic parameters. It is difficult to
obtain materials of many different combinations of optical
properties with real-world objects without an expensive
fabrication process, which is also less sustainable. Besides,
it is straightforward to link both the latent representation
and the perceptual attributes back to the optical properties
while complex optical measurements would be needed for
real objects to recover their properties.

For those reasons, physically based rendering was
chosen to generate the dataset for training the deep
generative models. The dataset was rendered using Mitsuba
3 Physically Based Renderer [19]. The dataset can be divided
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into two parts: one with fixed lighting and one with varying
lighting direction. The fixed lighting set contains three
shapes: a sphere, a cube, and a Stanford Bunny—consisting
of 8712 images (2904 per shape); the varying lighting set
consists of only one shape—a sphere—including 7920 images
(for five different lighting directions). In total, 16,632 images
were rendered. All images have a resolution of 256 x 256
pixels and were rendered with 16,384 samples per pixel.
It took approximately 6 weeks of constant rendering to
render the whole dataset. Mitsuba’s default tonemapper
was used to tonemap from HDR to SDR PNG images.
Bernhard Vogl’s light probe At the Window was used as
an environment map. The objects were placed on a surface
instead of floating in the air because caustics cast by the
objects have been demonstrated to be important cues to
material appearance [10, 13]. We picked a checkerboard
pattern with high-contrast edges to facilitate judgment of
see-through cues. Mismatch between the direct background
and the illumination may undermine the realism, but we
wanted to keep our results comparable to the previous studies
using the same background [11, 30].

In Mitsuba 3, the volumetric path tracer with a spectral
multiple importance sampling integrator was used. Mitsuba’s
rough dielectric surface scattering model and homogeneous
participating medium were used for surface and subsurface
scattering, respectively. For both datasets, four parameters
were varied: wavelength-independent extinction coefficient
(or) from 0 to 5 with an interval of 0.5-11 values in
total; subsurface scattering albedo from 0 to 1 with an
interval of 0.2-6 values (it is worth mentioning that when
or =0, change in albedo has no effect on the appearance);
wavelength-independent Index of Refraction (IoR) from 1.1
to 2.0 with an interval of 0.3-4 values for the fixed lighting
set, and from 1.4 to 2 with an interval of 0.3-3 values for
the varying lighting set (surrounding medium was assumed
to be vacuum with IoR = 1); surface roughness (o) from 0
to 1 with an interval of 0.1-11 values for fixed lighting, and
from 0 to 0.8 with an interval of 0.1-9 values in total for the
varying lighting set. Additionally, the illumination direction
was varied in the latter set by rotating the illumination
map from 0 to —90° with an interval of 22.5°, yielding five
different illumination geometries in total. The values are
chosen to maximize the variance in the dataset for training
StyleGAN2-ADA while also keeping the rendering times
feasible.

Each set of shapes was rendered with all possible
combinations of the values of the chosen optical parameters;
for example, when we had 11 o7, 6 albedo, 4 IoR, and 11 «
values, the cartesian product gave in total 2904 combinations,
that is, 2904 distinct images per shape. These specific values
of the optical parameters for the rendering were selected to
maximize the presence of glossy, translucent, transparent,
matte, and opaque appearances in the dataset while also
keeping the size of the dataset and hence the rendering
time within reasonable limits. Figure 1 shows representative
examples from the dataset. More examples can be found in
Figure S.1.1. in Supplementary Material S1.
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Figure 2. A simplified schematic representation of the workflow.

Table I. Optical parameter ranges for training dataset versus additional generalization
dotaset.

Parameter Original range Extended range (unseen data)

Extinction coeff. (o7) 0.0-5.0 (step 0.5)
Albedo 0.0-1.0 (step 0.2)
Internal loR 1.1-2.0 (step 0.3)
Surface roughness (o) 0.0-1.0 (step 0.1)

1.25,3.25,4.75,6.0,7.0
03,07,09,12,13
12,1518,22,24

0.25,0.55,0.85,1.1,1.2

To evaluate the generalization capability of the
StyleGAN2-ADA model beyond the initial dataset, an
additional dataset comprising 625 images was rendered.
This new dataset systematically explores optical parameters
extending beyond the original ranges, effectively acting as
unseen test data through both interpolation and extra-
polation scenarios. The dataset covers wider values for ex-
tinction coefficient (o7), albedo, internal IoR, and surface
roughness («), including parameter combinations never
encountered by the model during training. The specific
original and extended ranges are summarized in Table L.
Each parameter set was used to render images of the
Stanford Bunny under uniform lighting, ensuring consistent
comparisons. This enables quantitative evaluation of gen-
erative accuracy and inverse mapping performance,
benchmarking StyleGAN2-ADA-generated images against
physically based renderings. Examples of rendered images
can be found in Figure S.1.1(d) in Supplementary Material.

2.2 Model Training and Selection

2.2.1 StyleGAN2-ADA

To create the latent representation, StyleGAN2-ADA [20]
was chosen as a deep generative model. It is a GAN consisting
of two convolutional neural networks (CNNs). One is the
generator that synthesizes images from random noise that
belong to the distribution of the training set. The other is the
discriminator, which distinguishes between the real images
of the training set and the fake images generated by the
generator. The generator’s task is to fool the discriminator so
that it predicts that the images synthesized by the generator
are real. In this way, both CNNs participate in a zero-sum
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minimax game against each other. Specifically, the generator
has to maximize the adversarial loss, and the discriminator
has to minimize it. During training, the loss oscillates until
an equilibrium is reached. In this way, the model learns
to capture the distribution of the training images, and the
generator learns to synthesize an image from any point in the
latent space.

StyleGAN2-ADA is an improvement of the Style-
GAN2 [22] model, which itself is the successor of the Style-
GAN model [21]. StyleGAN improves the GAN architecture
by introducing a mapping network that maps the random
noise vector Z to an intermediate latent representation W
using an 8-layer fully connected network. This mapped
W space better disentangles the different features of the
synthesized image. StyleGAN2 rearranges the modules
in the architecture to improve the quality of synthesis.
StyleGAN2-ADA introduces the Adaptive Discriminator
Augmentation (ADA) technique that allows it to be trained
on smaller datasets. The ADA achieves this by augmenting
the training images with different types of transformations
to increase the size of the effective training set. At the same
time, it prevents these augmentations from leaking into the
latent representation of the model.

The W space of the StyleGAN2-ADA model is the latent
space considered in this work. It is a 512D space that is
inserted into each module of the generator. By manipulating
this vector, the aspects of the resulting image can be changed.
Each latent vector corresponds to an image in the latent
space of the model. The generator will always generate the
same image from a latent vector unless further steps of
backpropagation are carried out.

2.2.2 Model Training

Two StyleGAN2-ADA models were trained: one on the fixed
lighting set (referred to as Model 1) with three shapes,
and the other on the multiple light direction set (referred
to as Model 2) with only spheres. The pretrained weights
from the StyleGAN2-ADA model trained by Nimma and
Gigilashvili [30] were used to initialize both models. Nimma
and Gigilashvili [30] trained their model on a rendered set
of images of spheres with varying optical parameters. Their
images were also rendered using Mitsuba.
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Model 1 was trained on the uniform lighting (i.e., fixed
across the images) dataset for 1000 kimg, and Model 2
was trained on the multiple lighting dataset for 5000 kimg.
One kimg corresponds to the discriminator seeing 1000 real
images. The uniform lighting dataset was able to converge
in 1000 kimg due to using the pretrained weights that were
obtained by training on a similar dataset by Nimma and Gig-
ilashvili [30]. It took 11 hours in total. However, the dataset
with multiple lighting directions needed to be trained for
5000 kimg because it also had variation in the lighting con-
ditions for which the pretrained weights were not optimized.
This model took 48 hours to converge. Two gamma values
were tested. A gamma value of 0.8, which is the default value,
was found to be the best performing one. A gamma value of
10 was also tested, which is the recommended value by Karras
et al. [20], but it did not perform well. The gamma hyperpa-
rameter controls the strength of regularization of the model.
Higher values reduce the chance of overfitting. Furthermore,
the augmentations used by Liao et al. [27] were tested and
found to improve performance compared to the default aug-
mentations. All other hyperparameters were kept as default.

To assess the generalization, Model 1 was used to
synthesize 625 images for unseen parameter combinations.
The resulting pairs of GAN-generated and Mitsuba-rendered
images enabled a controlled evaluation of the models
performance on unseen data.

2.3 Dimensionality Reduction and Visualization
The latent vectors generated by the model are 512-
dimensional. The PCA was used to reduce the dimensionality
to two dimensions. The PCA is a linear unsupervised
dimensionality reduction technique that finds the orthogonal
projection of the data with the highest variance while
reducing information loss. It captures the global structure of
the data, and it is suitable for data analysis and reducing noise
in the data. Other approaches for dimensionality reduction,
such as T-SNE and UMAP, were also considered. The T-SNE
and UMAP are non-linear techniques. Although more so-
phisticated, T-SNE and UMAP are not suitable for analytical
purposes [6, 7, 23]. They are also non-deterministic and thus
the results are dependent on the initialization, which makes
them less reproducible. Furthermore, they require tuning
parameters such as perplexity to produce good results. On
the other hand, PCA is alinear and deterministic approach. It
is explainable, and due to its deterministic nature, the results
are always the same if the input is the same. It also does not re-
quire parameter tuning to produce good results. Considering
these points, PCA was chosen to reduce the dimensionality.
The trained models were used to generate the latent
vectors for the whole dataset on which they had been
trained on. StyleGAN2-ADA provides the tool to find and
then generate the latent vector corresponding to the query
image. It works by generating an image using the generator,
computing a distance loss between the generated image
and the query image, and then using backpropagation to
move in the direction in the latent space that makes the
generated image more closer to the query image until the
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distance becomes very small. The latent vector at the point of
convergence is the latent vector corresponding to the query
image. Once the latent vectors for all 16,632 images were
generated, PCA was applied to reduce the latent vector from
512D to 2D. The datasets of the two models were treated
separately.

In addition to visualization, the PCA-reduced latent
space also serves as the foundation for inverse map-
ping. Specifically, a 3D PCA representation was used to
project new points and recover the corresponding full 512-
dimensional latent vectors via inverse transformation. These
recovered latent vectors were then mapped to optical
parameters using a trained regression model, enabling the
generation of physically based images in Mitsuba. This pro-
cess allows for a direct comparison between GAN-generated
outputs and physics-based renderings.

The workflow begins by randomly sampling points from
a 3-dimensional PCA space that represents the underlying
structure of gloss and translucency appearance. These
sampled points are processed through two parallel pathways.
In the first path, each PCA sample is mapped back to the
full 512-dimensional latent space of StyleGAN2-ADA using
the inverse PCA transformation, and an image is synthesized
purely from the model’s learned generative prior. In the
second path, the same PCA point is interpreted as a set
of high-level physical descriptors, where a neural network
predicts the corresponding optical parameters, including
ot, albedo, IoR, and roughness «. These parameters are
then passed to the Mitsuba renderer to produce a reference
image based on physical light transport. The resulting images
from both paths are evaluated using objective image quality
metrics (SSIM [44], PSNR [44], LPIPS [47]) to quantify the
perceptual and structural similarity between the StyleGAN2-
ADA output and its physically based counterpart.

2.4 Psychophysical Experiment

Four psychophysical experiments were conducted. The
psychophysical study aimed to reveal how the magnitudes
of the perceived attributes vary in the latent space and
whether those changes are predictable and linear in its
low-dimensional representation. Systematic sampling along
the axes should have revealed whether the change in the axial
coordinates correspond to consistent perceptual variations.
In all experiments, the images shown were generated by the
trained models. All experiments were conducted using the
QuickEval web-based tool [43] on a color-calibrated display
under controlled conditions. Twenty observers participated
in the experiments. They were all graduate students of color
science and took around 50 min to complete all parts.

2.4.1 Psychophysical Experiments 1-3: Scaling Translucency,
Gloss, and Lightness

We conducted three magnitude estimation experiments to

scale perceived translucency, gloss, and lightness in different

parts of the latent space. In total, 160 images were shown

from both models. The observers were asked to rate the

object inside the test image on a scale of 1 to 10, where
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1 corresponds to opaque/matte/dark and 10 corresponds
to transparent/highly glossy/light in the three experiments
separately. Each trial included a reference image illustrating
the different extremes (opaque and transparent; matte and
glossy; dark and white objects). The observers underwent
training before each experiment, where the scaled concepts
were explained and examples were shown. The observers
were explicitly instructed to evaluate only the specific
attribute that the respective experiment was about and to
ignore other appearance factors as much as they could. More
details about the experimental interface can be found in
Figure S.2.1. of the Supplementary Material.

2.4.2 Psychophysical Experiment 4: Determining Light Direc-
tion

This was a category judgment experiment, where 40 images
generated by the model trained on the multiple light
direction dataset were shown. Observers were given four
options to choose the primary direction where the light was
shining toward the object: Left Side of the Object, Behind
the Object on the Left Side, Behind the Object on the Right
Side, and Right Side of the Object. Similarly to previous
experiments, the observers were instructed about lighting
directions and how they are set up inside the renderings.
They were also told that the directions of light vary on the
X and Y axes and not on the Z axis. Here the Z axis refers to
the vertical axis. The observers were also made aware of this.
Two reference images for each extreme were shown both for
glossy and matte objects.

2.4.3 Sampling the Dataset for Psychophysical Experiment
The dataset was sampled to a smaller subset of images to be
included in the experiments.

The number of images sampled from the latent space of
Model 1 was 120 and that from the latent space of Model 2
was 40, giving a total of 160 images. Two kinds of sampling
were performed; both assumed a uniform distribution
over the input. One was random sampling, and the other
was randomly sampling points that vary only along one
axis—meaning points on straight lines parallel to both axes
separately. For each shape, 20 points were randomly sampled
from the whole cluster and 20 points were randomly sampled
from the points inside the cluster whose locations lay on
a straight line parallel to the principal axis of the 2D
latent space. The reason for sampling points that lie along
(parallel to) the axis was to measure how the various optical
and perceived parameters of each varied as compared to
their location in the latent space. These points helped to
calculate the correlation among different parameters and
rates of change to understand the surface of the latent
space.

Figure 3 shows the sampled data points from the
latent space of Model 1. Figure 3(a) shows the points that
were randomly sampled for each shape cluster. This was
performed to obtain points that represent each shape cluster
and capture its variance. Figure 3(b) shows the sampled
points that lie on a straight line along the principal axis.
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Figure 3. Sampling for Model 1. (a) A uniform random sampling was

applied to each cluster fo select points that represent the distribution of
that cluster {60 points, 20 per shape). (b) The midpoints of each clusfer
were idenfified. Then the points that lie on the locations parallel to the
principal axes were randomly sampled (60 points). The axes correspond
to the two orthogonal bases that have the highest explained variance of
the 512-dimensional latent space obtained using PCA.

Each cluster was visually inspected and its midpoints were
identified. The midpoint of the sphere cluster is located at
(=3, 7), for the cube it is at (11, —1), and for the Stanford
bunny it is (—6, —7). The points of each cluster were filtered
so that only the points that had an X axis similar to or close to
(rounded to one decimal point) the identified X axis and the
points that had a Y axis similar to or close to the identified
Y axis were included. Then a uniform random sampling
was performed on this filtered list of points. For example,
considering the sphere cluster, all points that had an X axis
of —3 were put in a list and all points that had a Y axis of
7 were put into another list. These two lists were combined.
Then, a uniform random sampling was performed to select
20 samples from this combined list. This procedure was
performed on the other shape clusters as well as the cluster
in the latent space of Model 2. This kind of sampling was
performed to obtain points that capture the rate of change
of various parameters of the data points. The parameters
can include optical parameters and results of the perceived
attributes of the psychophysical experiments and also the axis
of the latent space itself. Sampled data from the latent space of
Model 2 is illustrated in Figure S.3.1(d-f) in Supplementary
Material.

2.4.4 Experimental Setup

The psychophysical experiments were conducted on a 24”
Samsung T37F LED display calibrated for the sRGB color
space with a gamma of 2.2, 5700 K reference white, and
80 cd/m? of maximum luminance. The sSRGB color space was
chosen because the image part of the experiment is encoded
in that color space. The vertical illuminance measured with
a lux meter was 6.4 lux in front of the observer looking at
the display at a distance of 1.6 m and 0.5 lux elsewhere in
the room. Informed consent to voluntary participation was
obtained from the observers. They were informed about the
experiment and how the data would be processed. During the
experiment, no personal data was collected except age.
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2.4.5 Data Processing

To aggregate the magnitude estimates and obtain a single
value for each image, the geometric mean (to mitigate the
bias due to potential outliers) over all 20 observers’ estimates
of translucency, gloss, and lightness was calculated for each
experiment separately. The categorical labels were converted
to numerical values: Right Side of the Object = 1, Behind the
Object on the Right Side = 2, Behind the Object on the Left
Side = 3, and Left Side of the Object = 4.

3. RESULTS

This section discusses the evaluation of the generation
quality of the trained models as well as their latent space
to determine how the model has structured the optical
parameters and perceived attributes. Exploratory data
analysis was performed and correlations were found among
the latent space, optical parameters, and perceived attributes.

3.1 Model Synthesis

Four sets of hyperparameters for training the StyleGAN2-
ADA model were tested and the best performing set
of hyperparameters was selected based on the Frechet
Inception Distance (FID) and the Kernel Inception Dis-
tance (KID). The hyperparameters tested were as follows.
Experiment 1: default configuration (as set by the authors
of StyleGAN2-ADA [20]). Experiment 2: using gamma =
10 as recommended by Karras et al. [20]. Everything else
was default. Gamma is a hyperparameter that controls the
strength of the R1 regularization applied to the discriminator
to prevent it from overfitting. Experiment 3: using the set
of augmentations by Liao et al. [27] and using the default
gamma = 0.8. Everything else was default. Experiment 4:
using the set of augmentations by Liao et al. [27] and using
gamma = 10. The detailed information on the obtained
FID and KID scores can be found in Figure S.4.1. of the
Supplementary Material. Experiment 3 achieved the lowest
FID and KID scores. Hence the model obtained by training
with the hyperparameters of Experiment 3 was chosen as the
candidate model. The model trained on the multiple lighting
direction set also used the same hyperparameters.

To assess the quality of the synthesis, the images
were first synthesized by random input noise vectors.
The results are illustrated in Figure 4 (more examples in
Supplementary Figure S.5.1.). Although some images look
adequate, morphing artifacts can be noticed in others. The
latent vectors located at the edge of clusters of two shapes
result in a morphed image that has the characteristics of both
shapes. The latent space arranges shapes as separate clusters,
and the areas between those clusters do not result in realistic
images. Shape morphing is absent in Model 2 because only
one shape was part of this training dataset. Some morphing
artifacts can be still noticed where one half of the image
is lighter than the other, but it is less noticeable than the
artifacts from Model 1 (see Supplementary Figure S.6.1.).

On the other hand, the model synthesized images similar
to the training set with high fidelity. Figures 5 and 6 illustrate
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Figure 4. Outputs from performing random synthesis using the model
trained on fixed lighting set. The shape morphing artifacts are visible for
examples marked with a red frame. Other than that, the vast majority of
the images generally look convincing.

the examples. Translucency (Fig. 5(a)-(c)), gloss (Fig. 5(d)-
(f)), lightness (Fig. 5(g)-(i)), and lighting direction (Fig. 6)
are all generated faithfully. The only exception is the case
of highly transparent see-through objects that appear more
hazy and translucent than they should (leftmost column in
Fig. 5(a)-(c)). Seemingly, the model did not accurately learn
see-through cues of the distorted background due to scarcity
of such materials in the training set.

3.2 Structure of Latent Space

3.2.1 Disentanglement of Physical Attributes

Figure 7(a) shows the visualization of the latent space of
Model 1. The model has formed three distinct clusters for
the three different shapes in the latent space, indicating that
the model has captured the shape difference well. The albedo,
IoR, and o values are separated within each shape cluster. In
each cluster, the albedo seems to have higher values toward
the decreasing Y axis. However, for « and IoR, each cluster
has placed the extreme values at slightly different locations.
For «, the higher values are placed generally toward the
increasing Y axis, but inside the bunny-shape cluster, the
high values are placed toward the negative X axis direction
while in the cube cluster, they are placed toward the positive
X axis direction. This is true for IoR as well. Inside the
sphere cluster, the high values of IoR and « are placed toward
the increasing Y axis direction. Finally, o7 does not have
a discernible pattern. It is possible that the variation of the
values is more visible in 3D or higher dimensions.

Figure 7(b) shows the visualization of the latent space
of Model 2. Since there is only one shape in this dataset,
the latent space also has one large cluster. The albedo, «,
and light direction have distinct extremes. The IoR has an
oscillating pattern where the value varies from high to low in
the diagonal direction from the positive Y axis and negative
X axis to the negative Y axis and positive X axis (from top left
to bottom right). Both models have learned to disentangle the
albedo, &, and light direction parameters in 2D. Model 1 has
learned to also disentangle the IoR parameter as well as the
shape. The latent space of the model captures the variation
in intrinsic and extrinsic properties of the dataset and can
distinguish between them, indicating that the models have
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Figure 5. Comparing rendered objects and their counterparts generated by the models (Model 1). The model can accurately reproduce appearance
except for very fransparent seethrough objects (see red frame). The optical parameters of the rendering are displayed on top of each column in

(o7)_(albedo)_{loR)_{«) format. R and G denote rendered and generated rows, respectively.
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Figure 6. The results for the lighting direction (Model 2).

learned the statistical structure of the images inside the
training dataset.

It is interesting to understand whether the latent space is
linear or non-linear with respect to the optical parameters.
For this, data points that lie on a straight line parallel to
the principal axes were considered, and their coordinates
in the latent space were plotted as a function of optical
properties. Additionally, the Pearson correlation coefficient
and the distance correlation [39] were calculated.

Figure 8(a) shows the relationship for sphere between
the optical parameter values and the X axis values of the data
points that lie on a straight line along the X axis inside the
latent space of Model 1 (for other shapes, see Figure S7.1.
in Supplementary Material). Observing the figure, o has
a non-linear correlation with the X axis in the sphere and
cube clusters. The distance correlation is 0.44 for sphere and
0.40 for cube while the R coefficient is —0.14 for sphere and
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0.15 for cube. It has a linear correlation in the bunny cluster.
The albedo has a linear positive correlation in the cube
cluster and a slight negative non-linear relation in the bunny
cluster. Moving on, the IoR has a slight positive non-linear
correlation in the bunny cluster and a linear one in the
cube cluster. Figure 8(b) shows the relationship between the
optical parameter values and the Y axis values. It is observed
that o has a strong positive linear correlation and albedo has
a strong negative linear correlation inside the sphere cluster.
The IoR and o have a negative non-linear relationship with
the Y axis inside this cluster. The albedo has a strong linear
relationship in the sphere and cube clusters. As in the case of
the X axis, here the IoR also has a positive linear correlation
in the cube cluster. However, the relationship in the bunny
cluster is not indicative of correlation. Moreover, there is a
negative non-linear correlation in the sphere. Finally, « is
non-linearly related in the sphere and bunny groups. Overall,
ot and o have a non-linear rate of change as compared to the
X and Y axes. The IoR changes positively and linearly inside
the cube cluster on both the X and Y axes of the latent space.

Figure S7.2. in Supplementary Material shows the results
for Model 2. The albedo has a positive linear correlation with
its X and Y axis locations. Similarly, o also has the same
relation. The light direction is inversely correlated with the
X axis of the latent space and positively correlated with the
Y axis of the latent space. In general, the optical parameters
demonstrate mostly linear correlation inside the latent space
of Model 2.
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(b) Latent space visualization of the 2D latent vectors of Model 2.

Figure 7. latentspace visualization of the 2D latent vectors for Model 1 (a) and Model 2 (b). In each plot, the latent vectors are labeled by their respective
opfical parameters, shape, or lighting direction (where applicable). The axes correspond to the two orthogonal bases with the highest explained variance
of the 512D latent vectors as obtained using PCA. Each scatter plot contains 8712 points for Model 1 and 7920 points for Model 2.
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Figure 8. Scatter plots considering only the points that vary along the
X axis [a) and Y axis (b) of the latent space of Model 1. The Pearson
coefficient and the distance correlation are calculated and shown inside
the plofs.

3.2.2 Perceptual Navigability of Latent Space

Figure 7 illustrates that the latent space disentangles shape,
lighting direction, and many optical properties reasonably
well. However, as mentioned in Section 1, the correlation
between optical properties and perception is not straightfor-
ward. We conducted psychophysical experiments to explore
how perceived attributes change in the 2D latent space.
Figure 9 shows the magnitude estimates of the perceived
attributes of translucency, gloss, and lightness for Model 1.
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The observers have rated almost all of the data points as
having lower than 4 translucency (on a 1-10 scale). However,
there is a pattern to the location of the values. Higher values
tend to be located toward the negative Y axis. This pattern
is consistent with the distribution of the albedo. Similarly to
translucency, observers have given an overall low rating to
gloss. In the bunny cluster, the few high values are grouped
at the rightmost edge of the cluster toward the positive X
axis. In the sphere cluster, higher values are in the middle,
whereas for the cube no data point was rated above 6.
There is also a negative correlation between gloss and «.
Finally, perceived lightness has a prominent pattern with
high values generally toward the negative Y axis direction
similar to the albedo, which is logical, since high albedo
objects usually appear lighter due to subsurface scattering.
The low scores for perceived translucency verify the findings
that the model is incapable of synthesizing transparent and
close-to-transparent appearance.

The results for Model 2 are given in Supplementary Ma-
terial S8. As for perceived translucency, the trends are similar
here with overall low ratings. Some high values are seen in the
bottom left corner of the cluster. The perceived gloss has the
same pattern but with more ratings that are higher than 6.
The perceived lightness has higher values toward the middle
of the cluster and in the positive X axis direction, correlating
with the albedo. The perceived light direction has a high
correlation with the light direction parameter, indicating that
the model has captured the light direction extrinsic param-
eter well and also that the observers were able to mostly
successfully predict the directions. Figures S.9.1. and S.9.2.
of the Supplementary Material show similar plots including
only the data points that lie on a straight line parallel to the
principal axes, which makes the trends easier to spot.

To gain a deeper insight into perceptual navigability of
the latent space, latent-space coordinates were plotted as a
function of perceived attribute magnitudes and correlations
were found among them. A similar study on the correlation
between optical and perceptual properties can be found in
Section S11 and Figures S.11.1.-S.11.4 of the Supplementary
Material. Figure 10(a) shows the relationship between the
perceived attribute values for a sphere and the X axis values
of the data points that lie on a straight line along the X axis
inside the latent space of Model 1 (the results for other shapes
are illustrated in Supplementary Material S10). The perceived
translucency inside the sphere and cube clusters is the only
strong linear correlation while the perceived gloss inside
the sphere and cube clusters shows a non-linear correlation.
The perceived lightness scatter plots are chaotic and do not
exhibit a relation. Figure 10(b) shows the relationship for the
Y axis (Supplementary Material S10 for cube and bunny).
The perceived lightness has a strong negative correlation
with the Y axis of the latent space inside all shape clusters.
Similarly to the observation in the X axis, the perceived
gloss shows a slight non-linear correlation in the sphere and
cube clusters. The perceived translucency shows a reduced
correlation strength within the cube group compared to the
same relationship with the X axis. In general, the perceived
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translucency exhibits linear correlations in the X axis. The
perceived gloss has a non-linear relation and the perceived
lightness has a linear correlation with only the Y axis.

The results for Model 2 are shown in Supplementary
Figure S.10.1(g)-(h). The perceived gloss shows a strong
negative linear correlation with both axes. The perceived
translucency has a non-linear relationship with both axes.
There is a positive linear correlation between the perceived
lightness and the X axis of the latent space. Finally, the light
direction is non-linearly related to the X axis and has a linear
relation with the Y axis.

3.2.3 Generalization to Unseen Data

To assess the generalization ability of StyleGAN2-ADA
beyond its training distribution, we evaluated 625 unseen
parameter combinations by comparing GAN-generated
outputs with Mitsuba-rendered ground truths. The results
showed that the model was generally capable of producing
images with high perceptual and structural similarity for
parameters interpolated between seen data as well as for
those extrapolated beyond the training range. Quantitative
metrics support this: the SSIM achieved a median of
0.875, indicating strong alignment in geometry and fine
image structures. The PSNR values were more variable,
reflecting differences in brightness and pixel level fidelity,
yet remained centered around 18.12 dB, which is within
an acceptable range for high-quality synthesis. The LPIPS
scores, which assess perceptual similarity using deep features,
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were consistently low for most images, affirming that the
GAN captured perceptually important aspects such as gloss
and translucency. A small subset of outliers showed poor
alignment, often with low SSIM and high LPIPS, which
correspond to extreme parameter combinations that were
intentionally chosen to lie outside the training distribution.
Importantly, these combinations resulted in physically im-
plausible appearances (e.g., albedo > 1), which resulted in
highly noisy Mitsuba renderings. The GAN’s failure to repli-
cate them is consistent with the expectation that the model
should not generalize to implausible material configurations.
Thus, these misalignments serve not as failures but rather as
further validation that the model has learned a grounded,
perceptually coherent generative prior. The histogram in
Figure 11 confirms this trend, with the majority of examples
falling within a high-quality perceptual and structural range.

3.2.4 How Many Dimensions Are Sufficient?

To evaluate whether StyleGAN2’s latent-space projection
retains sufficient structure for interpretable parameter re-
covery, we attempted to reverse-map 3D PCA-reduced
latent vectors back to the original optical parameters (o,
albedo, IoR, «) used in Mitsuba rendering. We expected
that 3D better captures the data structure than 2D while
still remaining user-friendly and human-intelligible. Initial
analysis revealed that the first three PCA components
together explained only 25.48% of the variance in the 512-
dimensional latent space, indicating substantial information
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Figure 11. Histograms of SSIM, PSNR, and LPIPS across all 625
GAN-generated images compared with Mitsuba-rendered ground truths.
Blue bars show the full dataset and red overlays highlight the outliers
we focus on [albedo 1.2-1.3; n=250), which are outside the training
range and produce the most visible artifacts. Most images fall within a
high-quality range across all mefrics while the highlighted outliers drive
the low-SSIM/PSNR and high-LPIPS tails. Higher is better for SSIM and
PSNR; lower is better for LPIPS.

loss. Figure 12 illustrates the cumulative variance curve,
showing that as many as 219 components are needed to cap-
ture 95% of the variance, highlighting the high-dimensional
complexity of the latent space. Regression models trained
on the 3D PCA vectors, ranging from linear methods
to random forests, achieved limited success (Table II) in
predicting optical material properties, with the best model
(random forest) yielding an R? of 0.77 but still suffering from
inaccurate predictions. Even neural networks trained on 3D
PCA inputs exhibited significant gaps between training and
validation performance and consistently collapsed toward
predicting midrange parameter values (Table III), confirm-
ing underfitting. These issues were partially resolved by
increasing the dimensionality: using 220 PCA components
dramatically improved performance, reducing mean squared
error from 0.34 to 0.013 and mean absolute error from 0.31 to
0.06. However, despite improved metric scores (SSIM = 0.90,
LPIPS = 0.084), color comparison (Table IV) revealed per-
ceptual mismatches between GAN- and Mitsuba-generated
images, particularly in hue and translucency. We hypothesize
that the variation in hue in generated images is due to
the interpolation of the pixel values. The training dataset
consists of colors that are different shades of gray from very
dark to very bright images. When images from the trained
StyleGAN2-ADA latent space are generated, they can be
sampled from a location that is in between a bright image
and a dark image, generating an interpolated image in terms
of pixel values, leading to the appearance of hues that were
not initially present in the dataset. This morphing has also
been demonstrated in [33]. The role of the light probe whose
mirror reflections are visible in highly glossy images also
cannot be ruled out. These findings confirm a fundamental
limitation: although StyleGAN2-ADAs latent space can
encode meaningful visual information, heavily reducing its
dimensionality, even to enable intuitive PCA navigation,
results in the loss of excessive information to accurately
reconstruct physical parameters, making such mappings
unreliable without retaining a large portion of the original
latent structure. Even though 2D PCA disentangles the
attributes to an extent sufficient for qualitative exploration,
it is too lossy for accurate mapping back to the optical
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Figure 12. Cumulative explained variance by PCA components. The
first three components account for only 25.48% of total variance while
219 components are needed to reach 95%. This highlights the high
dimensionality of the lafent space and the significant information loss when
reducing fo 3D.

Table II. Comparison of 3 PCA versus 220 PCA results.

Metric JPCA 220 PCA
Overall MSE 0.3386013 0.012917
Overall MAE 0.314907 0.061780
Sigma T MSE — 0.033033
Albedo MSE - 0.016024
Infernal loR MSE — 0.001390
Alpha MSE — 0.001222

Table lll. Predicted versus actual parameter ranges: neural networks on 3D PCA.

Parameter Predicted range Actual range
Sigma T 0.70-0.90 3.83-5.89
Albedo 0.46-0.56 0.84-091

Internal loR 1.76-1.91 1.96-2.03
Alpha 0.47-0.52 0.73-0.77

properties. When many physical parameters vary, mapping
to a low-dimensional space is non-injective, that is, a set of
coordinates in the low-dimensional space may not map to the
unique set of optical properties, making reversing impossible.

4. DISCUSSION AND CONCLUSIONS

The objective of this work was to create a representation
space for the appearance of translucency and gloss. Addi-
tional attributes that were explored were lightness, shape, and
lighting direction. The works of Storrs et al., Liao et al., and
Nimma and Gigilashvili [27, 30, 36] were used as the basis for
the methodology. A large-scale dataset consisting of 16,632
images and three different shapes was rendered and used for
training two deep generative models. The 512D latent vectors
of each image in the rendered dataset were generated by an
optimization process. To make the latent space navigable and
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Table IV. Comparison mefrics between Mitsuba and StyleGAN2 renderings for five test
cases. Higher values are better for SSIM and PSNR while lower values are better for
MSE, MAE, and LPIPS. Despite good structural similarity (SSIM > 0.89) and perceptual
similarity (LPIPS < 0.1), color analysis reveals notable differences.

Pair SSIM PSNR (dB) MSE MAE LPIPS
] 0.8996 17.4384 112.7230 32.152 0.0861
2 0.9102 18.3183 113.0993 29.6714 0.0759
3 0.9089 18.0350 113.9986 30.59M 0.0795
4 0.8977 17.7378 111.1618 31.1934 0.0936
5 0.9075 18.2048 113.2953 30.0312 0.0848

Color Analysis

Delta E: 9.8280

Channel differences (out of 255):

red, 30.6630; green, 29.7446; blue, 29.7756

intelligible to human users, dimensionality reduction using
PCA was performed on 512D latent vectors to reduce them
to 2D latent vectors (3D for inversion experiments). For every
latent vector, its optical parameters are available as labels.
Four psychophysical experiments were conducted to obtain
perceptual estimates of translucency, gloss, lightness, and
light direction. Finally, equipped with optical and perceptual
labels, the latent space of the two models was analyzed. The
main observations are as follows:

e The model is well developed and was capable of
synthesizing high-fidelity images, with an exception of
highly transparent materials.

e The model clearly separated the shapes and produced
convincing results within the boundaries of each cluster,
but intercluster areas of the latent space produced
morphing artifacts and odd shapes—such as round
cubes, elongated spheres, and spherical bunnies. The
morphing ability is, however, desired for generalization
from a discrete set of shapes to endless variations
encountered in natural scenes.

e The optical parameters were also disentangled, with
extreme values appearing at opposite ends of the clus-
ters. An exception to this was the o optical parameter.
One reason for this could be the fact that the or
cluster actually extends upward in higher dimensions.
However, poor disentanglement of or is intuitive and
expected from the visual point of view. Higher albedo
is usually associated with lighter appearance and high
surface roughness with blurrier and hazier appearance;
high IoR produces more vivid reflections, and such
attributes hence are easier to distribute in a meaningful
arrangement. On the other hand, objects with a given o
can exhibit a very large range of different appearances
depending on albedo and other parameters, which
makes it difficult to isolate the effect of or.

e The perceived attributes were also separated by the
model with extreme values appearing at the opposing
ends of the clusters.
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e The correlation plots showing the relationship between

the optical parameters and perceived attributes verified
that the model can synthesize perceptually plausible im-
ages that correspond to the expected appearance for cer-
tain values of specific optical parameters. For instance, a
high & corresponded to alow perceived gloss, which was
expected as surface roughness blurs the reflected image
and is known to be negatively correlated with gloss.

The manifold of the latent space in terms of optical
parameters and perceived attributes was analyzed by
plotting correlation plots between those parameters
and latent-space coordinates. Model 1 was highly
non-linear. This is consistent with the non-linearity
observed in the HVS, which follows non-linear response
functions (e.g., the relationship between the subsurface
scattering albedo and translucency [13]). Model 2
showed more linearity in terms of optical properties but
not for perceptual attributes.

Even though the latent space of the trained models is
well developed and navigable to a certain extent, if the
model is trained with more than one object, the latent
space becomes non-linear and bumpy.

Latent vectors are highly non-linear in terms of
perception. This is not surprising since perception of
appearance by the HVS is a complex, highly non-linear
process that is still being studied [1, 4].

It was challenging to invert the reduced PCA repre-
sentations back into optical parameters. Initial re-
gression experiments on the 3D PCA space yielded
suboptimal results, with traditional models such as
Linear Regression and Ridge Regression showing low
predictive accuracy. Even neural networks trained on
the reduced space defaulted to predicting conservative,
midrange parameter values, highlighting the informa-
tionloss inherent in low-dimensional PCA embeddings.

In contrast, expanding the PCA dimensionality to 220
components dramatically improved predictive accu-
racy, confirming that the latent space of StyleGAN2-
ADA isinherently high-dimensional and that aggressive
dimensionality reduction limits the model’s capacity to
encode complex optical relationships.

This makes us conclude that the low-dimensional
projection of the latent vectors does not retain sufficient
information for reliable mapping between the space and
the objective optical parameters. Up to 220 dimensions
were needed to retain 95% of the variation, which
means that navigation in low dimensions to capture
gloss and translucency properties and replace physically
based rendering with an explainable and predictable
deep generative model may not be feasible. Even if such
a model can be crafted, it may need to be trained on
each individual shape. Introduction of different hues
and variations of the environment will also increase
the complexity of the latent representation, and further
dimensions may be needed to capture color appearance
in an explainable and navigable manner.
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e The objective of this work has not been to emulate the
HVS but to create a latent representation of the image
variations and explore how perceptually meaningful its
dimensions are. However, future work should explore
to what extent such models can provide insights into
the mechanisms of the HVS.

Although not directly comparable due to different train-
ing sets, our models show qualitative resemblance to those
observed in previous studies. The space by Storrs et al. [36]
disentangles glossiness levels (surface roughness in our case),
lighting, and shapes although obviously no linear trends are
visible—qualitatively similar to Fig. 7. Liao et al. [27] also
managed to vary translucency, shape, and color (lightness
in our case) features. Nimma and Gigilashvili [30] also
observed qualitative variation in gloss, translucency, and
lightness along the interpretable dimensions of the latent
space—however, similarly to our work, their space was
highly non-linear and they were not able to isolate individual
features along individual axes being completely orthogonal
to other attributes. Due to the glossy and translucent nature
of the liquids, parallels can be drawn with the viscosity
studies as well [41, 42], whose shape and viscosity features
have been also shown to be possible to be clustered in the
learned spaces. Our study, similarly to other works, exhibits
systemic variation of the perceptual and optical properties in
the space, which indicates that the deep generative models
can learn meaningful qualitative representations of the
material appearance attributes while more accurate and
predictable navigability remains highly limited.

This work comes with several limitations that need to
be addressed in the future. First, the current models failed
to synthesize transparent objects. This can be alleviated by
including a larger set of transparent objects in the training
dataset. Moreover, hyperparameters can be tuned for bet-
ter generalization, and training for a longer time can
also be beneficial. The model is able to generate semi-
transparent objects, and this was reflected in the results of
the psychophysical studies. Second, the study was limited
to wavelength-independent optical properties, and therefore
this representative space was created with only grayscale
objects. Future expansion of this work can include chromatic
variation inside the dataset to study color disentanglement
in the latent space. It is worth noting that all observers were
color science students—future works should recruit a more
diverse population of observers. And finally, SSIM, PSNR,
and LPIPS did not fully capture noticeable discrepancies in
material appearance. More reliable perceptual metrics may
be needed for evaluation in the future.

In conclusion, the trained model demonstrates a strong
capacity to disentangle the optical and perceptual features of
translucent and glossy appearance, offering a rich, partially
navigable latent space. This makes StyleGAN2-ADA a
promising candidate for constructing a high-dimensional
representation space for material appearance in the future.
However, the study reveals critical challenges, particularly,
the limitations of linear dimensionality reduction techniques
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such as PCA. Although the inverse mapping process and per-
ceptual analysis confirmed some success in generalization,
they also exposed the tradeoff between interpretability and
reconstruction accuracy in dimensionality-reduced spaces.
These findings highlight the importance of improving latent
embeddings, expanding the training dataset, and exploring
more sophisticated dimensionality reduction or generative
modeling techniques. With such advancements, deep gen-
erative models could become even more powerful and
controllable tools for modeling and synthesizing complex
material appearances.

DATA AVAILABILITY
The code and data are available at https://github.com/hamz
afer/appearance-perception-deep-learning.
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