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Abstract. The area of uncertainty visualization attempts to
determine the impact of alternative representations and evaluate
their effectiveness in decision-making. Uncertainties are often an
integral part of data, and model predictions often contain a significant
amount of uncertain information. In this study, we explore a novel
idea for a visualization to present data uncertainty using simulated
chromatic aberration (CA). To produce uncertain data to visualize,
we first utilized existing machine learning models to generate
predictive results using public health data. We then visualize
the data itself and the associated uncertainties with artificially
spatially separated color channels, and the user perception of
this CA representation is evaluated in a comparative user study.
From quantitative analysis, it is observed that users are able to
identify targets with the CA method more accurately than the
comparator state-of-the-art approach. In addition, the speed of target
identification was significantly faster in CA as compared to the
alternative, but the subjective preferences of users do not vary
significantly between the two.
Keywords: visualization, chromatic aberration, user study, uncer-
tainty
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1. INTRODUCTION
Data is an essential part of daily life, andmany datasets have a
degree of uncertainty either in known or unknown form. The
uncertainties in data can originate from different sources,
and it is important to analyze and measure the amount of
uncertainty in the data. The most commonly considered
aspect of uncertainty is measures of error, which can emerge
from both data collection and processing of collected data
[9]. However, a third source of error could be referred to as
‘‘use error,’’ which is associated with the application of data
[2].

The first opportunity for error is at the data collection
phase, which is also often referred to as source error. Source
errors can include errors in the data itself or even in
the identification of the data. Missteps on the part of the
data collector, time pressure constraints, difficult ambient
or environmental conditions, or inherent limitations in
instruments used to collect the data are just some of the
contributing factors to source errors. But error can also be the
result of compromises and tradeoffs since the cost of highly
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precise data collection may exceed its value. This cost can
therefore impact both the accuracy and the completeness of
the obtained dataset.

Subsequent modifications to the data collected may
include abstraction, scale changes, projections, dimension-
ality reductions, and analog-to-digital conversions [2] as
well as many types of errors resulting from modeling
including machine learning. We refer to these as process
or modeling errors, and the potential for such errors is
ever present especially when data is subjected to a chain
of multiple manipulations, each of which can contribute to
compounding errors into the data.

In a non-domain specific way, we might define error
as the discrepancy between measurement and true value.
However, it has been noted that a universally complete
definition of data quality may be difficult to define as the
particular application area can be a factor [9]. Nevertheless, a
variety of commonmeasures have been developed as ametric
for reliability or confidence and used across many disciplines
[3].

Uncertainty visualization is an ongoing area of research
[39, 49] but a topic thatmany commercial practitioners avoid
due to the additional complexity that it introduces. However,
Greis et al. [18] explored game-like experimental tasks
and compared representations that communicate different
amounts of uncertainty information to the user, and results
showed that participants did not favor representations with
no uncertainty as they valued the additional information.
Deitrick et al. [14] also studied whether uncertainty visual-
ization influences, or results in, different decisions and found
through a human-subject experiment that it can be a factor.

There are several traditional approaches to handling
uncertainty, including error bars [3]; however, these can
often be difficult to integrate directly into more general
visualizations [20]. In addition, there are various studies con-
ducted for uncertainty representations; for example, textual
representation such as captions or tooltips [29], graphical
representations such as glyphs [29, 39], custom color palettes
such as value-suppressing uncertainty palette (VSUP) [12],
bivariate choropleth maps [35], and texture patterns [4]. But
to our knowledge, no uncertainty representation has made
use of chromatic aberration (CA).

Chromatic aberration is a well-known phenomenon of
color distortion or alteration that is sometimes seen around
high contrast edges of objects in photographs and can also
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result from impaired vision. Since different colors of light
refract to different angles upon traveling through materials
with refractive indices [47], the resulting images may appear
to be distorted [24]. Since CA is an image quality problem,
most of the research concerning CA is conducted to fix the
problem and improve image quality. On the other hand,
uncertainty is the problem of data quality, and relevant
research is most often conducted to reduce it to improve data
certainty. Our goal is neither to improve image quality nor
data quality; our aim is to utilize simulated and approximate
chromatic aberration as a novel representation of uncertainty
visualization.

To evaluate this novel approach, we first collected
relevant data from well-known sources and generated
uncertainty data from model predictions using machine
learningmodels. Uncertainties were then calculated from the
resultant forecasts [16]. We then visualized the uncertainty
in the data using CA as well as a recent state-of-the-art
competing method, VSUP. We then conducted a con-
trolled human–computer interaction experiment to evaluate
whether our new visual representation was more beneficial
than the existing approach.

We chose to compare our method with VSUP [12]
as it is a recent and novel visualization technique that
emphasizes uncertainty over specific data values. By using
color gradients, VSUP palettes help users focus on the range
and impact of uncertainty rather than on precise numerical
details. As with our method, VSUP is intended for situations
in which understanding the variability and confidence in
the data is essential for making well-informed decisions.
We further chose VSUP as a comparator since they also
conducted a user study which showed that it offers benefits
over traditional bivariate mappings of uncertainty and value.
This is due to the non-uniform budgeting of visual channels,
which allows VSUP to make more efficient use of the
limited visual encoding space. Our own study will test for
improvements from our CA approach over VSUP itself.

2. RELATEDWORK
From a vision perspective, chromatic aberration leads to
various forms of color imperfections in the image. Koh et al.
[30] presented a user study to observe the effect of CA on
users’ judgment with lateral chromatic aberration for chart
reading in information visualization on display devices and
suggested some guidelines for designers to avoid such issues.
Other work [5, 25] proposed image warping techniques to
resolve the problem. Real cameras have an aperture through
which light falls on an image plane to register the image, but
diffraction is an issue in this process. Therefore, [33] presents
a novel rendering system for defocus blur and lens effects by
approximating optical aberrations. But our purpose is quite
different from these prior works as we explore the use of
an approximate and simulated CA as a means to represent
uncertainty.

Uncertainty is an unavoidable part of data, and due to
the complexity it introduces, practitioners often avoid it in
their visualizations. The term uncertainty can refer to data

quality, errors in data, or the accuracy of predictions. Given
that errors are inherent in many types of data, improper
or absent uncertainty representations can mislead decision-
making for data analysts. Prediction generation is becoming
increasingly important when usingmachine learningmodels
such as neural networks (multilayer perceptron [MLP],
LSTM, and GRU) [40] for performance evaluation, ARIMA
or PROPHET [16, 46] for time series analysis, and XGBoost
for epidemic predictions [34]. For example, a decision-
support tool [38] formedical centers and health-care services
has been proposed for influenza prediction and liver disease
predictive analysis [47]. All these works have been conducted
without specific concern for uncertainty visualization.

Botchen et al. [4] focus on the uncertainty that occurs
during data acquisition and utilize texture-based techniques
to visualize uncertainty in time-dependent 2D flow fields. In
their system, the user can interactively manipulate aspects
of the system such as particle density, error influence, or
dye injection to affect the visualization of the uncertainty
within the flow field. They cite several potential sources
of uncertainty but focus on those resulting from data
acquisition. Their solution is to use semi-Lagrangian texture
advection to show flow direction by streaklines and convey
uncertainty by blurring these streaklines. However, unlike
our more abstract visualization approach, their solution is
tailored to a specific problem, namely the representation of
flow fields.

A common task in medical visualization is the parti-
tioning of images or volumetric data into salient regions
that correspond to a variety of structures, materials, or
pathologies. Medical data collection often includes noise,
which is a source of data uncertainty. Quite often, the
segmentation task employs sophisticated computational
models, which can also introduce a second layer of model
uncertainty. Lundstrom et al. [36] propose probabilistic
transfer functions in order to assign material probabilities
to model cases. This produces a distribution of materials
at every 3D location, for which animation is used where
each material is shown for a duration that is proportional
to its probability. There are interesting ideas introduced in
this paper; however, this is also a specialized solution to
a particular problem. In addition, we did not pursue an
animated solution due to the well-known issues of limited
short-term memory and change blindness, which can be a
factor to consider for users [10].

Finger et al. [15] describe two studies in which blended
icons were used to convey uncertainty regarding the identity
of a radar contact as hostile or friendly. A classification study
first showed that participants could sort, order, and rank
icons from five sets intended to represent different levels
of uncertainty. Three icon sets were selected for further
study in an experiment in which participants had to identify
the status of contacts as either hostile or friendly. Contacts
and probabilistic estimates of their identities were depicted
on a simulated radar screen in one of three ways: with
degraded icons and probabilities, with non-degraded icons
and probabilities, and with degraded icons only. Results
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showed that participants using displays with only degraded
icons performed better on some measures than the other
tested conditions.

Kay et al. [29] present a novel mobile interface design
and visualization of uncertainty for transit predictions on
mobile phones based on discrete outcomes. In a controlled
experiment, they found that quantile dot plots reduce the
variance of probabilistic estimates compared to density
plots and facilitate more confident estimation by end users
in the context of real-time transit prediction scenarios.
Other researchers [31, 35] investigated how data uncertainty
visualized inmapsmight influence the process and outcomes
of spatial decision-making, especially when made under
time pressure. According to researchers, the limitations of
this research are that they did not consider the effect of
stress along with time constraints and it was limited to a
cartographic display.

Bubble treemaps [17] combine the representation of
treemaps with the quantitative encoding of bubble charts,
offering a visualization method for hierarchical datasets
with an element of uncertainty. It maintains the hierarchical
structure of data by representing nodes as bubbles within
hierarchically nested areas as represented and bounded by
contoured lines. The size of the bubbles represents the
magnitude of a particular measure, while the wiggles of the
contours can indicate uncertainty. This method is designed
for exploring hierarchical structures and understanding how
uncertainty varies across different levels of the hierarchy.
They present some interesting use cases but, unlike for
example VSUP [12], do not evaluate its effectiveness with a
user study. Andwhile interesting and novel, it is worth noting
that these bubble treemaps are a custom type of visualization
for a particular type of data, namely hierarchical data,
whereas our aim is to introduce a new basic visualization
element that may have applicability to a variety of visual
designs and data types.

We can also consider uncertainty handling in widely
used software packages such as ggdist [26], which is an
R package that enhances data distribution visualization by
extending ggplot2 with specialized tools. This also extends
to tidybayes [21], which is an R package that integrates
Bayesian statistical methods and provides a set of functions
that make it easier to interpret Bayesian inferences. The
package tidybayes builds on top of (and re-exports) several
functions for visualizing uncertainty from its sister package
ggdist [26]. One of these functions is to create curves to
represent time series data, incorporating uncertainty bands
to show confidence intervals. This type of plot aims to
help users understand the variability and uncertainty for
this type of data, providing a view of the range of possible
values. However, as with our previous note regarding bubble
treemaps, with the introduction of our approach, our initial
aim is first to assess CA as a new basic visualization element
that may have applicability to a variety of visual designs and
data types rather than focusing on any particular type of
data such as time series or hierarchical data. Once we have
established CA’s potential as a basic visual element, further

work may explore how it might be effectively incorporated
into particular visualization designs, a topic that we will
revisit in future work.

One approach of uncertainty visualization is to encode
data values and uncertainty values independently, using
two visual attributes in a bivariate map. But these resulting
bivariate maps can be difficult to interpret, and the
discriminability of marks can be reduced due to the
interference between visual channels. To address this issue,
Correll et al. [12] introduce VSUPs, and we highlight this
approach as it is the comparator approach of our user
study. The VSUP allocates smaller color ranges of the visual
channel to data when uncertainty is high and larger ranges
when uncertainty is low. This allocation of visual variables
promotes patterns of decision-making that make use of
uncertainty information, discouraging comparison of values
in unreliable regions of the data and promoting comparison
in regions of high certainty. In traditional approaches, the
outputs for each combination of value and uncertainty might
be represented as a 2D grid of colors whereas the VSUP
approach produces a grid of pie-shaped arcs, mapping data
to a smaller set of colors for higher levels of uncertainty.

However, themain limitation of VSUPs [12] results from
their key design decision to filter out higher uncertainty
values by grouping them altogether, which suppresses the
values for decision-making when uncertainties are high. Due
to this elimination of uncertainty information, designers
need to carefully consider whether this representation is
suitable for specific systems. Another limitation is that
both uncertainty and value are represented by color, and
the perceptual challenges associated with color channels
are well-known. The limited ability of users to distinguish
fine differences of hue means that users may struggle to
match an array of hues that are simultaneously mapped to
both value and uncertainty. This requires the concept of a
limited ‘‘budget’’ of distinguishable colors. Given the limited
budget of discernible hues, it necessitates that the data be
quantized; due to this quantization, uncertainty visualization
for continuous values is not possible.

3. UNCERTAINTY DATA GENERATION
We require data with uncertainty to proceed with our study.
Although the novelty of this work does not lie in the chosen
method of data prediction, for clarity, we now discuss the
collected dataset, data manipulation and pre-processing, a
brief description of the predictive model, and the generation
of uncertainty from predicted data.

3.1 Data Collection
We chose the Covid-19 dataset from the WHO-authorized
data repository, and we consolidated and validated the
raw data before feeding it into several machine learning
models [16, 47]. In particular, the date, location, new_cases,
and total_cases are some of the useful attributes for our
predictions. The full dataset includes hundreds of thousands
of records for Covid data from more than 237 countries and
territories.
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Figure 1. Essential architecture of an MLP network.

The dataset is collected as an Excel file, which includes
daily occurrences and/or counts of all properties. The total_*
fields such as total_cases and total_deaths are cumulative,
and so every day, that is updated from the previous day’s
counts. If there is no value in a cell for a certain date for
a country, that cell would be empty; so that needed to be
handled during pre-processing. In practice, we used the
average of the prior and subsequent values to fill in missing
data points.

3.2 Predictive Models with Uncertainty
A time series forecastingmodel comprises a sequence of data
points captured, using time as an input parameter. It uses
historical data to predict values for the next duration, for
instance, data for the next few weeks. Although we explored
prediction experiments with several machine learning and
statistical algorithms (MLP, CNN, LSTM, and ARIMA), for
this visualization study, we used the results produced from
an MLP, which is a class of feedforward artificial neural
networks [8].

An MLP is a neural network connecting multiple layers
in a directed graph, which means that the signal passes
through the nodes only in one direction. Figure 1 shows the
essential architecture of an MLP network. It can be used
for time series forecasting by taking multiple observations
at prior time steps, called lag observations, and using them
as input features and predicting one or more time steps
from those observations. The training dataset is therefore
a list of samples, where each sample has some number of
observations from days prior to the time being forecasted,
and the forecast is the day in the sequence.

The specific process we used for setting up and running
the network is as follows. We first initialize a ‘‘Sequential’’
model from the Keras deep learning library [11], and a dense
layer is added to the model with 24 inputs and 500 nodes
using the rectified linear activation function (relu). We then
add another dense layer with one output. We then compile
the model with the mean square error loss function and the
Adam optimizer, fitting the model with the training dataset,
and then obtain the prediction output for each time step t
(per day). Finally, we calculate the ranges (lower bound Lt ,
meanMt , and upper bound Ut ) of each prediction at time t .

Figure 2. Example of daily Covid forecasting for 200 days.

To train the model, we chose the top 100 most impacted
countries (based on the number of new cases). Uncertainties
were then calculated from the ranges of predicted values
for every time step (daily) during the specified 200 days of
the forecasting period. Figure 2 shows the daily forecasting
of the number of new cases for the United States based
on previous statistics. The black line on the left shows the
actual occurrences, the red line towards the right shows
the predicted number of cases, and the grayed background
surrounding the predicted line represents the ranges of
model prediction. This means the model can predict a value
between the lower and upper values for a particular day, and
that gray area represents the area of uncertainty.

To map values and their variations onto display devices,
we first normalize the uncertainty. We scale the range of
variation in the data based on the maximum uncertainty in
the data found in the country that exhibits the most uncer-
tainty in its predictions. For this, we generate uncertainty
data for each country, Ut , from the predictive results (the
range between lower boundLt andhigher boundHt ) for each
of 200 days, t :

Ut = Lt−H t ,

and we then sum the average uncertaintyAC of each country
C dividing by the number of days t :

Ac =
∑ Ut

t
.

We then find the maximum average uncertainty from
all countries, M, and then divide each country’s average
uncertainty by that maximum to produce a normalized
average uncertainty for each country:

Âc =
AC
M
.

Once we have the normalized form of uncertainty for every
country, Âc , we then map the normalized uncertainty to a
radial displacement rc for each country C in our application
with a scaling factor of 9 pixels, yielding radial displacements
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Figure 3. Underlying geometry of CA.

of 0 to 9 pixels. For example, countries that have higher
uncertainties might have normalized uncertainty values Âc
such as 1, 0.9, and 0.8, which map to normalized radial
displacements rc of 9, 8.1, and 6.4, respectively.

Our guiding principle for mapping the values is to be
as fair as possible to the competing method in our study
(VSUP), and so we mapped the data values themselves to
the eight color levels used in the pie-shaped VSUP color
map along the top. So although this constraint of VSUP is
somewhat arbitrary for our approach, we again normalized
the data values and then scaled up to a range suitable for
eight color levels. In the user study itself, we felt it more
important to be as fair and consistent as possible between
the two methods rather than express the absolute numerical
values.

4. DESIGN OF CA VISUALIZATION
Chromatic aberration occurs when light of different wave-
lengths does not focus to the same convergent point because
light with shorter wavelengths refracts more than light with
longer wavelengths. Inspired by this phenomenon, we can
consider a circle that represents the predicted number of new
cases for a country on a specific day. But since there is an
associated uncertainty with each prediction, a single circle
will not be sufficient to represent the bivariate (number of
cases and uncertainty) distribution. Instead of a single circle,
we use three circles with separated RGB color channels,
applying lateral shifts from the center of the circle by the
amount of uncertainty, and blend them together in the center.
Figure 3 shows this geometric arrangement on a unit radius
circle.

To draw a circle representing uncertainty, we can draw
three chromatic circles. We first set the center of the target
circle at (x, y) and let the radial offset r represent the
uncertainty. This can be implemented using many available
visualization toolkits. For example, in the widely used D3
(d3js.org) library, this can be easily achieved with a

Figure 4. CA representation on circles (top) and rectangles (bottom).

commonly available blending mode (such as the CSS mix-
blend-mode ‘‘darken’’) to blend all three circles. Using the
normalized radial displacements rc calculated in Section 3.2,
we then draw the first chromatic circle C1 with color (R, 255,
255) at a shifted location of

(x, y + rc),

the second chromatic circle C2 with color (255, G, 255) at a
shifted location of(

x + rC ×
+
√

3
2

, y + rC ×
−1
2

)
,

and the third chromatic circle C3 with color (255, 255, B) at
a shifted location of(

x + rC ×
−
√

3
2

, y + rC ×
+1
2

)
.

Using this approach, the resultant aberration is presented
with the uncertainty for a country in Figure 4. The center
area’s color represents the predicted number of new cases,
and the color separated edges represent the amount of
uncertainty in that prediction. In this way, each of the items
in the figure represents both the predicted value and the
amount of uncertainties.

5. USER STUDY DESIGN
Uncertainty visualization presents a complex challenge
that requires careful design of user studies. Various study
types include experimental, descriptive, observational, and
within-/between-subject studies. Our research involved a
within-subject comparative study evaluating uncertainty
visualizations using metrics such as task time, error rate,
and subjective assessments (NASA-TLX, System Usability
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Scale [SUS]). We aim to understand how well chromatic
aberration performs compared to the state-of-the-art VSUP
visualization in terms of accuracy, efficiency (user response
times), and user preference. This helps in assessing how well
the visualization supports the intended tasks and identifying
any additional needs or requirements.

5.1 Primary Study Components
Beyond the initial testing, Component Questions and Post-
Session Questionnaires (PSQs) are the two main categories
of question for the participants. Component Questions
requires the user to select visualization elements defined
by both the data value and the degree of uncertainty. As
already noted, VSUP is a recent and prominent technique
for uncertainty visualization. In that paper, they used a
grid-chart representation, but in our study we broadened the
test cases somewhat using both a grid chart and a circle chart,
which form the following core components of our study:

• CA+ Circle: Chromatic aberration is applied on circles
in a circle chart.
• CA+Grid: Chromatic aberration is applied on squares
in a grid chart.
• VSUP+ Circle: Uncertainties are presented using color
with circular shapes.
• VSUP + Grid: Uncertainties are presented using color
with square shapes.

The two chart representations and two uncertainty
visualizations are implemented in four different components.

The comparator method, VSUP, makes use of a grid
chart with its custom color set. To make the comparison
fair, we have grouped our uncertainties into four levels since
VSUP also uses four levels of uncertainties. In our case,
we have quantized our CA data and made four equidistant
values of uncertainties such as 33, 52, 71, and 90 to represent
the chromatic aberration in both circles and rectangles. In
addition, to fill the circles and rectangles of CA, we have
used the eight standard VSUP colors to make the evaluation
consistent.

5.2 Recruitment
We recruited 32 participants to ensure balanced represen-
tation for all components. Most participants (97%) were
undergraduate or graduate students with a background
in computer science or information and communication
technology. To ensure accurate results, we conducted color
blindness tests and required participants to have a reliable
Internet connection and a computer as the study was
conducted entirely online.

5.3 Counterbalancing
Many empirical evaluations of input devices or interaction
techniques involve comparing a new device or technique
against alternatives. Our study used a within-subject design,
allowing each participant to test every component while
addressing potential learning effects. Each component in-
cludes eight questions, presented in random order to each

Figure 5. Possible flow of questionnaires for a participant.

participant.We employed the balanced Latin squaresmethod
to counterbalance the presentation of components, ensuring
that no two consecutive participants received the same order
and that each component was presented first to an equal
number of participants (8 out of 32). This approach helps
mitigate learning effects and ensures balanced emphasis
across components.

5.4 Study Procedure
The study session contained several stages that included a
color blindness test, introductions before starting a session,
sessions for each of the core components, and Post-Session
Questionnaires. In the following, we explain each of the
stages. Over the course of the interactive sessions, the
following data was collected:

• Answers to the questionnaire questions
• Videos (screen only)
• Audio recordings of the session.

Timing information was also recorded to facilitate a
comparison of the time requirements of each competing
visualization approach.

Since the study was conducted online during Covid,
an event was created through the online meeting platform
MS Teams. When the participant logged in to the system,
the researcher greeted and welcomed the participant and
exchanged formal greetings. If the participant faced any
technical difficulty, then the researcher tried to help by any
possible means. The researcher then briefed the participant
about the steps he or she had to go through and explained
how he was going to conduct the session. Participants were
also asked if his/her system had a Firefox/Edge browser
installed, which is mandatory for the study. If not, he/she
would be requested to install it and the researcher might
instruct further if they needed any help regarding the
installation of the browser. After this, the participant was
requested to open it and informed that the researcher would
give two URLs for the session: (i) for the color blindness test
and (ii) for the questionnaire about the study.

To maintain similarity with the work of Correll et al.
[12], a color blindness/vision test was first administered
to ensure participants were capable of discerning color
accurately. Specifically, we presented a set of Ishihara plates
[22] as a color blindness test, and participants were asked
to detect the embedded numbers. Participants who failed to
pass the color vision test were politely asked to withdraw
from the study.

After the color blindness test was passed successfully,
the researcher asked participants some basic questions,
which we thought might be relevant to their performance.
For instance, the following information was noted by the
main researcher:
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Figure 6. Sample Question. The number inside CA bubbles denotes the amount of uncertainty represented by those chromatic circles; e.g., CA = 71
refers to 71% uncertainty.

• Educational (science, arts, etc.) background
• Professional background (IT, accountant, etc.)
• Computer skills (basic, intermediate, expert)
• Mathematical and geometric knowledge
• Visualization and computer graphics knowledge
• Computer gaming skill
• Measurement knowledge (inch, feet, pixel, etc.).

After the pre-session discussion, there were two types
of questions posed in our user study design: Component
Questions and PSQs. By Component Questions, we refer
to the questions relevant to those four core components.
On the other hand, PSQs refer to the questions to obtain
user feedback from the experience of using the four core
components of the system. The PSQs include SUS questions
and NASA-TLXWorkload Scale questions.

If we consider A,B,C , and D as four components of the
study, then Figure 5 shows a possible flow of the components
that come one after another randomly during the session of
the participants as discussed in Section 5.3. It also shows that
PSQs appear at the completion of four modules.

At the beginning of every section, the bottom-right part
of the user interface (UI) showed the session description.
The researcher described the features (chart, legend, how
questions will be asked, etc.). After completion of the
explanation, the participant was asked to click the ‘‘Start’’
buttonwhen ready. Once he or she pressed the ‘‘Start’’ button,
the questionnaire began immediately and questions were
presented one at a time.

When presented with a question, the user needed to
select a cell (bubble or rectangle) from the chart based on
the provided Value and Uncertainty/CA combination. An
example question is shown in Figure 6. After a cell was
selected by the user, the next question appeared at the same
place until the eighth question of the section was reached.We
presented one example question prior to the questionnaire
of each section. In the actual sessions, it was also described

verbally to the participant along with the opportunity for the
participant to ask any questions they may have had.

The order of the questionnaire was changed by counter-
balancing for individual participants. And so, this could be
one possible sequence for a particular user:

1. Example of CA+ Bubble
2. Questionnaire on CA+ Bubble
3. Example of VSUP + Bubble
4. Questionnaire on VSUP + Bubble
5. Example of CA + Grid
6. Questionnaire on CA + Grid
7. Example of VSUP + Grid
8. Questionnaire on VSUP + Grid.

Then we asked them to answer the following two types
of additional questionnaires:

9. Questions on SUS
10. Questions on NASA-TLX.

5.5 Component Questions
We now present a sampling of questions that were presented
to the user, with additional explanatory information placed
within them. Figs. 3 and 4 show example component
questions for the CA + Circle and VSUP + Circle
modules with the addition of explanatory markups for
better understanding. We note that in the study session,
the markups were not shown since the primary researcher
clarified the underlying mechanism to the participants
and/or answered any question the participants had before
and during the session. There are significant commonalities
in the two figures. Both present the following:

• The clickable chart in the left area
• A legend for both value and uncertainty in the top right
• The question asked of the participant (select a value &

uncertainty level) in the bottom right.
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Figure 7. CA+Circle questionnaire interface.

Figure 8. VSUP+Circle questionnaire interface.

Apart from the uncertaintymethod itself, themain point
of difference between Figures 7 and 8 is found in the legend.
The CA requires a composite legend, with colors shown for
value and levels of CA for uncertainty. The VSUP’s legend
is more integrated since both value and uncertainty are
mapped to a pie-shaped color map. Note, however, that the
top row of colors used for value in both CA and VSUP
was intentionally made the same to facilitate comparison.
The VSUP legend is pie-shaped because data points with
higher levels of uncertainty aremapped to fewer colors under
the assumption that higher uncertainty yields a reduced
discrimination of values.

Figures 9 and 10 show example component questions for
the CA+Grid andVSUP+Gridmodules including the added
explanatory markups for better legibility. We note that apart

from the circles of the circle chart rather than the squares of
the grid chart, the figures are very similar to Figs. 7 and 8.

Figures 11 and 12 show the PSQ interfaces for theNASA-
TLX Workload related questions and the SUS questions. We
separated both UIs in the figure where CA and VSUP occupy
the top and bottom, respectively. Since the mechanism
is the same for both CA+Circle and CA+Grid, they are
grouped together and placed at the top of the UI in the
CA section. Similarly, VSUP+Circle and VSUP+Grid are
grouped together for the same reason and placed at the
bottom in the VSUP section of the UI. For both CA and
VSUP, we have shown the same question. For SUS, the
questions are in the scale range of 1 to 5, where 1 means
‘‘Strongly Disagree’’ and 5 means ‘‘Strongly Agree’’ and the
rest of the scales 2, 3, and 4 carry in between weights based
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Figure 9. CA+Grid questionnaire interface.

Figure 10. VSUP+Grid questionnaire interface.

on their values whereas for NASA-TLX, it is on a scale of 1
(Very Low) to 21 (Very High).

6. RESULTS ANDNUMERICAL ANALYSIS
We recorded several sources of data from the user study,
which include (i) quantitative questionnaire results; (ii) time
utilization data for each component; (iii) SUS data for CA
and VSUP; and (iv) NASA-TLX for CA and VSUP. We
analyzed these data and present the results in the following
sections.

6.1 Quantitative Questionnaire Results
As we have four components (CA + Circle, CA + Grid,
VSUP+Circle, VSUP+Grid), we collected the performance
data for each component separately. As previously stated,
there were eight questions for each component and every
question carried 1 point. For answering correctly, the
participant gained 1 point and did not lose any points for
incorrect answers. Our 32 participants could therefore gain a

maximum of 8 points for a component. Figure 13 graphically
shows the correct response scores for both the circle chart
and the grid chart for all 32 participants, where higher scores
are better. As we will see in the subsequent analysis, when
using chromatic aberration, users scored approximately 10%
better on average. We note that this is not uniformly so, as
there are a few instances of users performing better with
VSUP.

We analyzed user performance (accuracy) with ANOVA
for the four components and we subsequently used the t-test
for two grouped (CA andVSUP) components.We first define
the null (Ho) and alternative hypotheses (Ha) as follows:

Ho: µ1 = µ2 = µ3 = µ4 (user accuracy was equal for all
components)

Ha: Not all means are equal (user accuracy was not equal for
all components).

Specifically, these hypotheses are tested using an F-ratio
for one-way ANOVA. We obtained the test results shown
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Figure 11. PSQ interface for SUS.

Figure 12. PSQ interface for NASA-TLX.

Table I. Summary of ANOVA test results.

Source DoF Sum of squares Mean square F -stat p -value

Between groups 3 19.588 6.529 3.850 0.0113
Within groups 124 210.285 1.696
Total 127 229.873

in Table I for the significance level α = 0.05, and the
degrees of freedom are df 1 = 3 and df 2 = 124. Therefore,
the rejection region for this F-test is R = {F : F > 2.678}
and the computed test statistic F equals 3.8499, which is
not in the 95% region of acceptance: [−∞: 2.678]. Given
that F = 3.85 > Fc = 2.678, it is concluded that the null

hypothesis isrejected at the α = 0.05 significance level, and
the user accuracy was not equal for all components.

We then compare the combined CA and VSUP data
from the four components’ performance data by grouping
the two pairs CA= (CA+Circle andCA+Grid) andVSUP=
(VSUP+Circle andVSUP+Grid). The statistical summary of
user accuracy performance is CA (mean= 5.938, SD= 1.105,
SEM = 0.195, N = 32) and VSUP (mean = 5.422,
SD = 1.078, SEM = 0.191, N = 32). Here we define the null
(Ho) and alternative hypotheses (Ha) as follows:

Ho: µD= (µ1−µ2)≥ 0 (performance of CA is higher or
equal to the performance of VSUP)

Ha: µD= (µ1−µ2) < 0 (performance of CA is less than
the performance of VSUP).
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Figure 13. User accuracy scores for the circle chart (top) and the grid chart (bottom) when using chromatic aberration (blue) and value-suppressing
uncertainty palettes (orange). Higher scores are better.

This corresponds to a left-tailed test, for which a
t-test for paired samples is used. Using a significance
level of α = 0.05, the critical value for a left-tailed test
is tc = −1.696 and the rejection region for this left-tailed
test is R = {t : t < −1.696}. The computed test statistic is
3.61 and since it is observed that t = 3.61 ≥ tc = −1.696,
it is concluded that the null hypothesis is not rejected. We
can say that the accuracy performance of CA quantitatively
surpassed the performance of VSUP.

Our system also tracked the user response times for
every component. Figure 14 graphically shows the user
response times for tasks completed for both the circle chart
and the grid chart for all 32 participants, where lower
response times are better. As we will see in the subsequent

analysis, when using chromatic aberration, users were able
to complete the tasks approximately 11% faster on average.
We also note anecdotally that some individuals have very
different response times with CA versus VSUP. In particular,
the chart exhibits some markedly longer VSUP response
times for some users. However, the results are not uniform
as there are some instances of users performing faster with
VSUP.

The statistical summary of the timing data is CA
(mean = 8.675, SD = 2.320, SEM = 0.410, N = 32) and
VSUP (mean = 9.647, SD = 3.123, SEM = 0.552, N = 32),
where a shorter response duration is preferred. For user
response times, we define the null (Ho) and alternative
hypotheses (Ha) as follows:
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Figure 14. User response times for the circle chart (top) and the grid chart (bottom) when using chromatic aberration (blue) and value-suppressing uncertainty
palettes (orange). Lower response times are better.

Ho: µD = (µ1 − µ2) ≤ 0 (CA response was equal to or
faster than VSUP response)

Ha: µD = (µ1− µ2) > 0 (CA response was slower than
VSUP response).

This corresponds to a right-tailed test, for which a
t-test for paired samples is used. Again, using a significance
level of α = 0.05, the critical value for a right-tailed test is
tc = 1.696 and the rejection region for this right-tailed test
is R= {t : t > 1.696}. The computed test statistic is equal to
−2.656. Since it is observed that t =−2.656 ≤ tc = 1.696,
it is then concluded that the null hypothesis is not rejected.
We can say that the response time performance of the CA
method was faster than the VSUP method.

6.2 Qualitative Results
The SUS test provides a useful tool for measuring the
usability of systems based on subjective user experience [6]. It
consists of a ten-item questionnaire with five scale responses
from participants from Strongly Agree to Strongly Disagree,
which classifies the ease of use of the system being tested.
Figure 15 (top) graphically shows the average SUS scores for
all ten questions:

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical

person to be able to use this system.
5. I found the various functions in this system were well

integrated.
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Figure 15. System Usability Scale (top) and NASA-TLX (bottom) scores recorded for chromatic aberration (blue) and value-suppressing uncertainty palettes
(orange).

6. I thought there was too much inconsistency in this
system.

7. I would imagine that most people would learn to use this
system very quickly.

8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going

with this system.

As can be seen from the chart, there is a general pattern
of consistency between the scores for the two methods of
visualization with only minor variations, which is reflected
in the following analysis, which shows a lack of statistically
significant difference.

We interpret the results by normalizing the scores to
produce a percentile ranking. By convention of SUS scoring,
based on Sauro [44], we converted SUS results to SUS scores
by the following rules:

1. For odd-numbered items: subtract 1 from the user
response.

2. For even-numbered items: subtract the user responses
from 5. This scales all values from 0 to 4 (with 4 being
the most positive response).

3. Add the converted responses for each user and multiply
that total by 2.5. This converts the range of possible
values to a range from 0 to 100.

The statistical overview of the scores is CA
(mean = 60.078, SD = 16.307, SEM = 2.883, N = 32)
and VSUP (mean = 61.094, SD = 14.227, SEM = 2.515,
N = 32). The Shapiro–Wilk tests on both distributions
showed that they do not meet the normality test for CA
(W(32) = 0.913, p = 0.013) and VSUP (W(32) = 0.889,
p = 0.003). We therefore used the Kruskal–Wallis test on
the data, which is a non-parametric alternative to the paired
t-test since the distributions are not normal. The purpose
of the test is to assess whether the samples come from
populations with the same population median. We define
the null (Ho) and alternative hypotheses (Ha) as follows:

Ho: The samples come from populations with equal
medians.

Ha: The samples come from populations with medians that
are not all equal.

Using a significance level of α = 0.05, and with the
number of degrees of freedom equal to df = 2− 1= 1, the
rejection region for this chi-square test is R = {χ2 : χ2 >
3.841}. The computed test (H ) statistic is 0.146 and since
χ2= 0.146≤ 3.841, it is concluded that the null hypothesis
is not rejected. This implies that although the subjective SUS
scores of the two methods varied slightly in our experiment,
the differences were not statistically significant as per the
Kruskal–Wallis test at α = 0.05.
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Table II. Kruskal–Wallis test results of NASA-TLX.

NASA-TLX p H Result

Mental demand 0.6626 0.190 Not rejected
Within groups 0.8038 0.062 Not rejected
Temporal demand 0.8932 0.018 Not rejected
Performance 0.0574 3.610 Not rejected
Effort 0.8038 0.062 Not rejected
Mental frustration 0.6772 0.173 Not rejected

TLX stands for Task Load Index and is a measure of
perceived workload [37]. As with the SUS test, we have also
collected the NASA-TLX data from our system. TLX uses
increments of high,medium, and low for each point resulting
in 21 gradations on the scales. To compute the final scores,
we subtract 1 from the given rating in the range of 1–21 and
multiply by 5. Fig. 15 (bottom) graphically shows the average
TLX scores for all six questions. As can be seen from the
chart, there is once again a general pattern of consistency
between the scores for the two methods of visualization with
only minor variations.

To begin the analysis of this data, we applied the
Shapiro–Wilk normality test at α = 0.05. We determine the
test results as follows:

CA:mental demand (W= 0.906, p-value= 0.009), physical
demand (W= 0.914, p-value= 0.014), temporal
demand (W= 0.948, p-value= 0.128), performance
(W= 0.948, p-value= 0.014), effort (W= 0.942,
p-value= 0.085), mental frustration
(W= 0.916, p-value= 0.017).

VSUP: mental demand (W= 0.863, p-value = 0.001),
physical demand (W = 0.903, p-value = 0.007),
temporal demand (W = 0.938, p-value = 0.067),
performance (W = 0.887, p-value = 0.003), effort
(W = 0.901, p-value= 0.006), mental frustration
(W = 0.877, p-value = 0.002).

Other than temporal demand, none of the perceived
workload groups were found to be normal in distribution.
Hence, we again use the Kruskal–Wallis non-parametric
test to evaluate the differences between the two methods
of uncertainty representation (CA and VSUP) for the
NASA-TLX ratings provided by the participants. We define
the null (Ho) and alternative hypotheses (Ha) as follows:

Ho: The samples come from populations with equal
medians.

Ha: The samples come from populations with medians that
are not all equal.

Table II shows the summary of the test results at the
α = 0.05 significance level, with df = 1 and χ2= 3.841.

As shown in Table II, since none of the perceived
workload H values exceeded the χ2 values, no statistically

significant differences were found at α = 0.05 in the
subjective NASA-TLX test.

Although participants did not offer many verbal com-
ments, we note those that were made during the experiment.
Participants (4, 21) commented that the ‘‘CA representation
is deterministically difficult,’’ but we also noted that in these
cases, the comment was the opposite of their performance
given that they performed better in CA than VSUP. It
is noteworthy nonetheless. Some other participants (19,
24) made a more nuanced comment, stating that ‘‘CA
representation is complex but gives more confidence to find
target.’’ Another comment that was commonly expressed by
participants (14, 25, 31) is that ‘‘Colors are very close inVSUP
which made them puzzled to select target.’’

7. LIMITATIONS
There are several limitations of this work that we wish
to highlight. Although we did not have a prerequisite for
participants to be university students, based on the responses
we received, most were from universities (undergraduate
and graduate students) with only a subset of the population
being working professionals. Based on this, one must be
cautious not to generalize to significantly younger or older
demographics when considering issues such as fatigue. We
believe the prior VSUP study [12] also had participants with
similar backgrounds.

Related to the sample demographics, in order to
maintain coherence with the prior work of Correll et al.
[12], and more generally, based on standard practice in such
experiments, users with color blindness did not participate
in the experiment. However, with regard to color vision
impairment, a point of note is that although we did not
design or test the visualization for color blind support, when
compared with an alternative such as VSUP, which is purely
based on very subtle differences of color, our approach at
least offers a spatial encoding of the uncertainty information,
namely when the R, G, and B elements separate. The limited
discernible color palette of someone with limited color vision
might be solely applied to the value, leaving uncertainty to be
encoded with spatial separation. We speculate that because
we are not trying to encode both uncertainty and the data
values into color, our method may be more adaptable for
color impaired applications than VSUP, but this would need
to be tested with further studies.

However, if one considers other visual impairments
such as myopia, presbyopia, or astigmatism, which affect
the sharpness of the image, then other issues may come
into play such as fatigue, eye strain, or general effectiveness.
This also warrants further study. A general countermeasure
worth mentioning is providing some choice for users with
visual impairments, whether that be VSUP, CA, or CA with
a limited color palette for value.

In addition, in the CA representation, one needs to be
careful so that chromatic objects and adjacent objects do not
overlap. An additional level of care must be applied in the
case of implementing zooming based on the zoom scale of the
visualization in order to keep them consistent. This relates
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to the potential use of CA in geographic information system
(GIS) applications, which we will return to in the following
section. Another potential limitation is how CAmay interact
with other glyph shapes.

Lastly, although our approximation of CA is computa-
tionally inexpensive and very accessible for use in widely
used web-based visualizations, if one were to implement a
more complexCA renderingmethod, then further studywith
participants may be required. In particular, we note that in
real-world chromatic aberration, chromatic blurring appears
continuously from the inner edge to the outer edge.

8. CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a novel approach for uncertainty
visualization, namely chromatic aberration. We conducted
a within-subject comparative user study between the state-
of-the-art alternative, VSUP, and our system to assess user
performance accuracy/error rate, task completion time, and
subjective assessment (with NASA-TLX and SUS). From
the numerical analysis of the results, we see that the
user performance of CA is both statistically more accurate
(10%) and faster (11%) when compared to VSUP, whereas
in the subjective assessment, the two methods do not
vary significantly. Future studies could look at further
task-specific uses of CA, which might shed more light on
the lack of statistical differences with regard to subjective
preference.

We noted that in real chromatic aberration, blurring
appears continuously from the inner edge to the outer edge.
However, our simplified implementation allows us to reduce
the aberration to both double and/or single parameter(s),
which facilitates the representation of uncertainty. It also
allows one to implement the approach relatively easily using
standard andwidely available graphical operations.However,
additional research could be conducted that examines
more sophisticated chromatic aberration effects. In addition,
further research could be carried out with more levels of
uncertainties than were tested by Correll et al. [12].

Related to this, one might look more closely at the
mapping of uncertainty to the scale of CA displacements.
Additional research would be required to determine the opti-
mal orminimal displacement required to convey uncertainty.
More broadly speaking, as this is the first attempt at using
chromatic aberration for this novel purpose, there likely
remains significant scope to optimize and adapt its use with
further refinements and ideas.

Other possibilities include studying the use of CA
in animated and interactive visualizations, using CA for
contextual highlighting, and testing the effectiveness of
CA for use with more complex glyphs, as well as the
potential intersection between CA and known pre-attentive
visual effects. Another aspect that could be explored is
using CA with alternative data types such as categorical,
hierarchical, and time series data, which might then relate
more specifically to other existing work such as bubble
treemaps [17], ggdist [26], and tidybayes [21].

It would also be interesting to explore the limits of
CA in applications requiring choropleth maps and other
GIS-related visualizations. Despite the spatial requirement
that the CA separation requires, a choropleth map might
be possible using a buffer between each element to allow
for some degree of chromatic aberration at the boundaries.
Alternatively, the R, G, and B chromatic displacements for
each element in the map might instead maintain the outer
boundary shape as a maximum area. Then each R, G,
and B displacement would need to shrink somewhat and
move away from the center internally, within that original
boundary of each map element. This may offer a stronger
overall Gestalt of the uncertainty in the map, but the tradeoff
might be a tighter limit on how small individual elements
could become.

Beyond GIS maps, one might speculate on the breadth
of applicability to other types of data, such as temporal data,
and other forms of visualization. With some graphs that
are defined by lines and curves, the CA would may need
to be adapted and applied locally along the line or curve,
rather than uniformly displacing the entire curve into three
renderings for R,G andB.Other graphs are primarily defined
with their silhouettes, such as violin charts, density charts,
and ridgeline charts. And aswith curve and line-based charts,
for these charts that provide most of their information along
silhouettes, the CA would likely need to be applied locally
along those boundary curves. Some other types of graphs,
such as stream graphs, may often contain large flat areas of
color and these might benefit from the overlay of an artificial
texture prior to the local application of simulated CA. This
might allow the CA to differentiate that texture locally based
on uncertainty. But given that our method has purposely
been designed for implementation in widely used online
visualization libraries, such as D3, it is our hope that other
practitioners begin to experiment with possibilities that we
are as yet unable to anticipate.
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