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Abstract. Interdisciplinary research in human vision has greatly
contributed to the current state-of-the-art in computer vision and
machine learning starting with low-level topics such as image
compression and image quality assessment up to complex neural
networks for object recognition. Representations similar to those
in the primary visual cortex are frequently employed, e.g., linear
filters in image compression and deep neural networks. Here,
we first review particular nonlinear visual representations that
can be used to better understand human vision and provide
efficient representations for computer vision including deep neural
networks. We then focus on i2D representations that are related to
end-stopped neurons. The resulting E-nets are deep convolutional
networks, which outperform some state-of-the-art deep networks.
Finally, we show that the performance of E-nets can be further
improved by using genetic algorithms to optimize the architecture of
the network. c© 2023 Society for Imaging Science and Technology.
[DOI: 10.2352/J.Percept.Imaging.2023.6.000402]

1. INTRODUCTION
Given the 75th IS&T anniversary special issue of JPI, we here
give an overview of selected contributions to the topic of
efficient image representations.

Linear approaches such as Fouriermethods andwavelets
have been very successful inmodeling early visual processing
and also in designing algorithms for image processing, such
as image compression, denoising, etc. But even in the early
days, these linear methods did not work alone, as they always
required rather simple nonlinearities such as a threshold or
quantization. However, certain visual phenomena, e.g., gain
control and end-stopping, required new types of, often more
complex, nonlinear models.

We will here review some of these approaches and
mainly focus on particular nonlinear representations related
to the concepts of intrinsic dimension, curvature, and
end-stopping. A similar approach has been taken in the
presentation at the 25th anniversary of the HVEI confer-
ence [13]. Here we broaden the topic to include machine
learning and provide, in Section 4, some related and recent
unpublished results regarding the design of deep neural
networks.

In machine learning, we need to adapt the bias to
the problem at hand and keep it as strong as necessary
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and as weak as possible. Therefore, the main challenge
in machine learning is to find an appropriate bias. For
example, convolutional neural networks (CNNs) perform
better than multilayer perceptrons (MLPs) in image-based
object recognition because they have an additional bias,
which is adequate for dealing with images (they have
sparse and shared weights as neurons do). Theoretically, an
MLP could be trained to have a weight-matrix that is a
convolution matrix. But if convolutions are enforced as in
CNNs, i.e., introduced as a bias, the convolution emerges
with probability one whereas with MLPs the probability
will be very small. Historically, this additional bias was
inspired by vision research, leading to, for example, the
neocognitron [15] and the LeNet [30]. Here, we look at
further useful biases that are based on interdisciplinary
research in human vision. Although some tend to believe
that everything could be learned from data, it is a fact that
learning is only possible with extra-evidential factors [51],
i.e., with an appropriate bias.

In our view, the result of learning is determined by (i) the
raw data (a particular training set), and (ii) the rest - which
we would call the bias, i.e. everything - other than the data -
that influences the result (including how data are selected).
So the bias is a mixed bag full of ‘‘things’’ out of which some
things are trivial, others are well known, some are bad, and
yet others can be a valuable contribution that improves the
results of decision making. Finding the latter is the challenge
that we refer to. We could have maybe used another term
such as ‘‘model’’ but in our view, it seems important to use the
term bias because all the different terms, such as inductive-,
implicit-, cognitive-bias are all biases, and it is important to
realize that the bias as such is not something to avoid. It is
what we need to make decisions and the challenge is to find a
good bias, one which helps solving the problem. This is why
mechanisms found in human vision are so useful because
they define a bias adapted to the problem of vision. The bias
must also be adapted to the amount of data. This is why
in the early days of machine vision we had to introduce a
stronger bias, e.g., by defining specific hand-crafted features,
whereas today with more data and learning capacity we need
a more generic bias. From a machine-learning perspective,
we choose a machine and then the learning process selects
one function out of the set of all possible functions.One could
therefore argue that if two machines, that can theoretically
approximate any function, would lead to different results
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it is the learning that determines the result. However, that
would be misleading because it obviously is the choice of the
machine that is critical andmakes a big difference. Therefore,
we believe that distinctions, such as between model- and
inductive- or learning bias [43], are hard to make.

2. THEORETICAL BACKGROUND
In the following, we present a few ways of approaching the
goal of efficient coding from different perspectives.

2.1 Linear Filters
Linear filters, e.g., wavelets, have been used extensively
to compute useful image representations and to construct
models of visual representations. Linear transforms, or linear
layers in a network, are computed by multiplying the input
vector with a matrix, i.e., ExLF =W Ex where Ex ∈ <N is the
vector that represents the image, or an image block, W is a
weight matrix, and ExLF is the filtered image or image block.

When the matrix W is pre-defined, i.e., not learned,
such filters are now named handcrafted filters. In terms
of efficient representations, linear transforms can be used
to decorrelate signals. In case of higher-order statistical
dependencies, however, linear transforms can only reduce
very specific higher-order dependencies, and therefore
nonlinear transforms are needed [58].

2.2 Unsupervised Learning of Representations
As an alternative to predefined filters; representations,
including linear ones, can be learned based on a represen-
tative set of sample data Exi, i = 1, . . . , p. For the learning
procedure, optimization criteria are required. One useful
strategy is to maximize the efficiency of the representation,
e.g., by reducing the dimension of the data vector, i.e., we look
for a mapping Ex ∈ <N 7−→ Ey ∈ <M ,M <N . Possible criteria
are (i) minimal loss of information (generic criterion), or
(ii) better pattern-recognition performance. For biological
systems, criteria such as reduced neural activity can be
important. Ideally, the vector Ey contains the features of the
data Ex that are themost relevant (for amore or less specific set
of tasks). However, properties of the data vector Ey other than
the reduced dimension may be of interest, and the challenge
is to find generic criteria for data representation that turn out
to be useful for various tasks.

From a geometric perspective, one aims to find the
subspace to which the data may be confined. Linear
subspaces can be found by using linear transforms such as the
Principal Component Analysis (PCA) or the Independent
Component Analysis (ICA). Linear transforms, however, fail
if the subspace is, e.g., a curved manifold.

2.3 Sparse Coding
A sparse representation is one where only a few components
of the data vector are different from zero. The principle of
sparse coding, as introduced by Olshausen and Field [36, 37]
is implemented as an optimization problem with the cost
function E = −Epreserveinformation − λEsparseness, where the
individual energy terms are the mean reconstruction error

Epreserveinformation = −‖W−1
ExSC − Ex‖2 and a sparseness

term that favors small values for the components of ExSC .
The goal is to learn the representation ExSC and the basis
functions, i.e., the rows of W−1 by solving the nested
optimization problem minW−1(minExSC E). Note that the set
of basis functions can be over-complete, i.e., one can have
more basis functions than dimensions of the input space.
Moreover, the basis functions need not be orthogonal.

2.4 Gain Control and Divisive Normalization
Lyu and Simoncelli [32] have shown that in case of
natural images, the probability density function is often
better modeled as elliptical than as factorial and have
introduced Radial Gaussianisation as a method that can
find representations with independent components in case of
elliptical symmetric densities (ESD), i.e., densities for which
the points of constant probability are ellipsoids. Here the
limitation of linear transforms is that they cannot make
the components of signals with ESD more independent
after whitening, whereas radial gaussianisation, defined as
Exrg = g (‖Exwht‖)Exwht/‖Exwht‖, can (Exwht is the whitened signal
and g (.) is chosen such that xrg is Gaussian). Moreover,
it can be shown that divisive normalization is a good
approximation to radial gaussianisation and is related to
cortical gain control. The gain of a neuron is often controlled
by the activity of neighboring neurons in order to better
cope with the high dynamic range of the input. In case of
divisive normalization, the output of a neuron is divided by
the average response of neighboring neurons.

2.5 Intrinsic Dimension and i2D Operators
Let an image be modeled by a function f : R2

→ R.
Given an open region �, for all (u, v) ∈ �, either (a)
f (u, v) = constant; or (b) f (u, v) = g (au + bv), for some
g , a, b; or (c) f varies along all directions. The image f is
said to locally have intrinsic dimension 0, 1, or 2, respectively
(i0D, i1D, i2D for short).

To find an efficient representation, we now search for
a Exi2D = F(Ex) that is equal to zero if Ex , now defined as the
vector that contains all the pixel values f (u, v) in �, is i0D
or i1D. Exi2D should be different from zero, if Ex is i2D. Such a
transformation is called i2D transform or i2D operator.

The concept of intrinsic dimension can easily be
extended to more dimensions, such that, in case of videos,
the intrinsic dimension inD varies from n= 0, . . . , 3.

Why should a nonlinear i2D transform be better than
the linear transformations discussed above? Since linear
transformations cannot be i2D transforms [55, 56] any linear
transform will fail to create zero output coefficients for all
i0D and i1D inputs although the coefficients could be zero
without loss of information. In differential geometry, the
curvature measures the deviation from flatness and only
flat surfaces can be mapped to a plane. This provides some
insight for understandingwhy information is concentrated at
(curved) i2D regions of an image [34, 55, 56] and a number
of applications have confirmed this fact [49, 50].

J. Percept. Imaging 2 September 2023



Grüning and Barth: Efficient coding in human vision as a useful bias in computer vision and machine learning

Figure 1. The statistics of natural images are well captured by the square
image on the left (i0D regions are most frequent and i2D regions the least
frequent). Representations in the retina already attenuate i0D regions by
isotropic lateral inhibition (middle) and end-stopped cells would represent
the square by its corners only (right) leading to a very sparse representation
that nevertheless fully determines the original square.

Figure 2. As shown in Ref. [34], an image (example shown left) can
be reconstructed from its i2D representation (edge curvature shown in the
middle). The reconstructed image is shown on the right. This demonstrates
the redundancy of i0D and i1D regions.

Moreover, it has been shown that i0D and i1D regions
are more frequent in natural images than i2D regions [58].
Therefore, an i2D transform can produce, without loss of
information, a higher degree of sparsification than a linear
transform.

Differential geometry has also led to methods for the
design of i2D operators and models of end-stopped cells.
In geometry, to obtain the Gaussian curvature that is zero
for i0D and i1D regions, the main curvatures must be
multiplied [12]. This can be generalized to a more general
framework in which the outputs of orientation-selective
filters of different orientations are multiplied [55]. The
multiplication, however, is not essential; in a more general
framework nonlinearities are needed that create some kind
of AND combination of the two filters. For example, the
corners in Figure 1 and Figure 2 can be detected by the logical
combination of ‘‘horizontal edge filter AND vertical edge
filter’’.

2.6 Supervised Learning of Representations
In deep networks, representations that emerge in the early
layers are learned by backpropagating the classification
errors, i.e., the representations are optimized for the clas-
sification task at hand. Task-specific representations can
obviously be better for a specific task but applications often

benefit from less specialized networks that can solvemultiple
problems [40]. How specific a learned representation is,
depends on the data used to train it. With transfer learning,
networks are pretrained on a benchmark, such as ImageNet,
with a large database and then adapted to a specific problem
with fewer data [46]. However, as seen in the Introduction,
not everything can be learned effectively and thus a useful
bias has the potential to improve the performance of the
network.

3. OVERVIEWOF SOME EARLIER RESULTS
3.1 Sparse Coding
In 1996, Olshausen and Field published several influential
papers [14, 36, 37]. The first paper [14] relates to earlier
work on efficient coding that analyzed the statistics of natural
images. The focus was on the 1/f fall-off of the amplitude
spectra, which was related to the sparseness of structure
in images, as opposed to self-similarity. Moreover, the
main properties of cortical neurons (localization, frequency
selectivity, and orientation) are related to the principle of
sparse coding: the steeper the fall-off of the amplitude
spectrum, the fewer the number of active neurons tuned
to high frequencies. The second paper [37] focused on
the learning of sparse representations and proposed to
describe images with a sparse set of learned basis functions
drawn from an overcomplete dictionary. A later paper [35]
extended the principle of sparse coding to the coding of
motion signals. Bilinear generative image models have been
considered since previous sparse codes, based on linear
superposition only, cannot optimally encode objects that
move or change due to other sources of variation. The idea
is that, similar to the visual coding in ‘‘what’’ and ‘‘where’’
streams, the representations of object shape can be separated
from object transformations and learned independently. In
more general terms, representations are now learned in
different subspaces. Related ideas have been discussed in
[52].

A number of extensions and applications of sparse
coding have been published (see, for example, the IEEE
Transactions on Selected Topics in Signal Processing [44]).
However, to our knowledge, the first application of sparse
coding to a technical problemof pattern recognition has been
presented in Ref. [29].

3.2 Gain Control and Divisive Normalization
Using divisive normalization, one can better predict human
recognition performance, e.g., the detection of nodules in
radiographs [31]. In 2007 Lyu and Simoncelli [33] presented
an invertible divisive normalization transform with applica-
tions to local contrast enhancement and image compression.
A few years earlier, Valerio and Navarro [47] already showed
that an invertible divisive normalization stage can remove
higher-order statistical dependencies beyondwhat is possible
with linear filters. Both the linear wavelet decomposition
stage and the nonlinear divisive normalization stage reduced
the mutual information by a factor of six each. Bio-inspired
generalized divisive normalization has been used for an
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end-to-end optimized image compression model [1]. In
Ref. [60] the authors discuss divisive normalization in
the context of a multi-stage linear-non-linear codec. Burg
et al. [9] use divisive normalization to predict responses of
neurons in the macaque V1.

3.3 Intrinsic Dimension and i2D Operators
The first paper on intrinsic dimension appeared at the IS&T
conference HVEI [56] and already presented a number of
relevant topics such as the concept of intrinsic dimension,
the limits of linear filters, the related differential-geometry
framework, related biological phenomena such as end-
stopping and bug detectors, generalized i2D-detector equa-
tion based on 65 structures, the compensation equation,
i2D-detectors as AND operations on oriented filters, and
the topological invariance of integrated i2D activities. Later
the concepts have been extended to a theory of i2D
selectivity based on nonlinear Volterra-Wiener systems and
i2D-operators have been related to higher-order statistical
dependencies and the polyspectra of natural images [26, 59].

In Ref. [6] it could be shown that simple lateral
inhibition, i.e. isotropic operations as found in the retina,
can lead to i2D selectivity when implemented in a deep or
in a recurrent network with simple nonlinearities (ON/OFF
rectification, now called ReLU). A detailed retinal model was
presented, which, a few years later, has been used to model
the rather complex topological sensitivity of the bug detector
in the frog’s eye and human topological sensitivity attributed
to early visual processing [4].

The computational power of such linear-non-linear
(LNL) structures has been further analyzed about ten years
later [60] and it has been shown how LNL networks
can reduce the statistical dependencies in natural images.
An early description of an LNL structure with ReLUs is
given in Ref. [61]. The LNL ideas have been meanwhile
confirmed by the success of certain deep-learning strategies,
where a number of layers are learned by unsupervised
methods (often leading to sparse representations) and only
the final layer is trained for making decisions [8]. However, a
unified theoretical framework of LNL sandwiches and their
relation to efficient representations, intrinsic dimension,
sparse coding, and deep learning is still missing. Note,
however, that the simple INROG (IteratedNonlinear Ratio of
Gaussians) operator presented in Ref. [6] already provided a
deep-network structure with increasingly sparse i2D features
and divisive normalization.

Further results have been the reconstruction of images
from only i2D features [3], and the mathematical proof that
i2D regions are unique [34].

The geometrical aspects of extensions to video have
been presented in Refs. [7, 57] and later used to model
the selectivity of MT neurons to multiple motions and
the perception of global motion induced by terminator
motion [5]. Finally, the framework has led to a state-of-the-
art saliency model [50] and performance of several state-
of-the-art action recognition algorithms was significantly

improved by a preprocessing step that restricted action
recognition to such salient video regions [49].

4. EFFICIENT CODING IN DEEP NETWORKS
4.1 Barlow Twins
Based on the tradition that insights from neuroscience
can help improve technical applications, the Facebook AI
team has developed a novel and quite influential deep-
network architecture inspired by the concepts of efficient
coding [53]. Besides using the classification error, the
learning of representations is enhanced by an additional term
that reduces the correlations between the components of the
representation vector. The name of the novel network has
been chosen to give credit to Barlow, who pioneered the idea
of efficient coding in the brain [2]. Barlow twins are a good
example of how a useful bias can improve the performance
of a deep network.

4.2 Sparse Coding and Hyperselectivity
Deep-learning networks are the champions on most image-
based recognition benchmarks. There remains, however, a
severe limitation due to the fact that the typical neuron
models used in deep networks can be activated by a large
set of image patterns that are outside the training set. What
that implies is, that even if one succeeded in training a
self-driving car such that it will make no mistakes in its
natural environment, one would be able to confuse the
car by providing some unnatural patterns chosen with the
purpose to confuse it. In this context, it has been shown
that sparse-coding neurons are hyperselective, i.e., the set of
patterns that can excite them is smaller, and can thus, provide
increased robustness, e.g., robustness against adversarial
attacks [38, 59, 61]. The E-net units of Section 4.4 are also
hyperselective [21]. A further application in deep networks is
to use sparse coding for regularization, see for example [45].

4.3 Divisive Normalization in Deep Networks
More recently, it has been shown that the principle of divisive
normalization can be incorporated into the design of deep
networks. A study including CNNs for image classification
and image super-resolution, as well as language modeling
by recurrent neural networks (RNNs), can be found in [41],
showing that divisive normalization can improve image
upscaling (super-resolution).

Pan et al. [39] show that a brain-inspired weighted
normalization can improve image classification for shallower
networks. In Ref. [10], the authors improve a VOneNet
(an ANN that aims to better mimic primate V1 than
conventional CNNs and is more robust against corrupted
data) with divisive normalization [11].

Lastly, the well-known AlexNet employs local response
normalization (LRN), dividing the activation of a neuron at
position (x, y) by the activation of adjacent neurons [28].

4.4 E-nets Based on End-stopped Model Neurons
Feature-Product networks (FP-nets) inspired by end-stopped
cortical cells and the concept of intrinsic dimension have
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been introduced in Ref. [19]. FP-nets contain FP-units that
multiply the outputs of two learned filters. In Ref. [21] it
could be shown that FP-nets outperform state-of-the-art
deep networks, such as the ResNet and MobileNet-V2, on
the Cifar-10 and ImageNet benchmarks. Moreover, FP-nets
have been shown to be less sensitive to adversarial attacks
and JPEG artifacts. Furthermore, the learned model neurons
are end-stopped to different degrees, and they provide
sparse representations with an entropy that decreases with
hyperselectivity.

It turned out, however, that not the multiplication but
the AND-type combination of two filters is the essential
component of such networks that we therefore now call
E-nets (the E for end-stopping) that contain E-blocks, which
perform the AND combination of two learned filters [16].
Indeed, it has been shown that the two filters could be
combined via the minimum operation, which simplifies
the computations without reducing performance [17]. In
a further study, the multiplication could be replaced with
logarithmic addition [20].

In Ref. [18] it has been shown that E-nets can predict
subjective image quality and it has been argued that this may
be due to the fact that the E-nets are inspired by vision.

As shown in Section 4.5, E-nets can be further improved
by placing the end-stopped units at strategic positions that
are found with genetic algorithms.

4.5 Finding Optimal E-net Architectures
As depicted in Figure 3, state-of-the-art CNNs for image
classification are similar in their overall composition. Their
main building element is a convolution layer, followed by a
nonlinearity. A deep CNN can be viewed as a long sequence
of such layers that extract increasingly complex features [54].
These features range from lines and edges with specific
orientations to corners (i2D signals) and more complex
shapes such as eyes, tires, or even whole objects.

A CNN can be divided into stacks that contain blocks
containing specific arrangements of different layers. To
create an E-net, specific blocks of a state-of-the-art CNN
are exchanged with E-blocks. We here focus on the CNN
ResNet [23] and the benchmark Cifar-10 [27]. The ResNet
is composed of three stacks withN pyramid blocks each [22]
- see Fig. 3. In Refs. [21] and [17], exchanging the first block
of each stack yielded an E-net with improved classification
accuracy and increased robustness. The above design rule
that defines which blocks are exchanged is based on the
observation that end-stopping occurs in rather early stages
(areas V1 and V2 of the visual cortex). Accordingly, E-blocks
should be positioned early in the E-net. ResNets use
residual connections that pass-through low-level-features
from earlier convolution layers to the entire network. Thus,
a stack can be seen as a sub-network that also processes
low-level information at a specific scale [48]. Thus, in each
stack, an early block should be replaced with an E-block. In
our experiments, we refer to this model as default model.

However, the impact of the design rule has not been
estimated systematically, mainly because of the heavy

Figure 3. Typical structure of a CNN. An input image is first processed
by a stem which is a convolution layer, possibly subsampling the input.
Afterward, the stem’s output is processed by a sequence of stacks. Each
stack contains a certain number of blocks consisting of a specific sequence
of convolution layers; these sequences usually define a model. In most
cases, the beginning of a stack subsamples its input. For classification, the
output of the last stack, a tensor of shape H ×W ×D, is averaged into
a D-dimensional vector. Lastly, a linear layer transforms the vector into a
C-dimensional vector, each entry representing a class score. This vector
can be transformed into a probability distribution (e.g., by the Softmax
function). As an example, the schema shows the structure of a ResNet
used for the Cifar-10 dataset consisting of three stacks with N blocks
each. Note that other architectures may have a different number of stacks,
and each stack may consist of different numbers of blocks.

computational workload: for a CNNwithM blocks, there are
2M possible E-nets.

Thus, we need to solve a discrete search problem with a
vast search space, where each query (i.e., training a model
to determine the test error) can take several hours. An
exhaustive search is thus not feasible for larger networks.

However, using a genetic algorithm is a straightforward
approach to speed up the search. The algorithm mimics
the process of natural selection: a population of entities (in
our case models) is tested for their fitness (in our case the
test score), and only the fittest entities of this population
survive to pass on their genes (modeled as bitstrings) to
another population, creating new genes by recombination
and mutation. This iteration step is repeated several times
such that better entities will eventually prevail.

The pseudo-code for the genetic algorithm is shown
in Algorithm 1 in the Appendix. We ran different genetic
algorithms to obtain 216 (N = 5), 72 (N = 7), and 180
(N = 9) models. We started with N = 5, ran N = 7, and
finished with N = 9. We obtained a number of E-ResNets
that performed better than the baseline on average (in the
Appendix, we provide the results in Table B.1, Table B.2, and
Table B.3 for N = 5, 7, 9, respectively).

As shown in Figure 4, the models found by the
genetic algorithm outperform the baseline and also previous
E-nets [17, 21]. Note that the improvements over the baseline
are considerable, given that the original ResNet already
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Figure 4. Cifar-10 test error comparison. Each diamond shows a
particular model’s number of parameters in thousands (x-axis), and its mean
test error after 200 epochs averaged over five runs (y-axis), with error bars
indicating the standard deviation. The transparent area shows the range
from the smallest to the largest test error. The baseline results are depicted
in black with a dotted line, and the dark blue and dashed line shows the
results for the default model. The results for the best E-net configurations
found by the genetic algorithm are shown in light blue with a solid line.

performs very well on Cifar-10, and we are just exchanging a
few blocks of the ResNet with E-blocks.

5. CONCLUSIONS
From a geometric perspective, the goal of efficient represen-
tation is to find the tiny sub-manifolds in which the natural
images, or a particular set of images, lie. The statistical view
is that one obtains more efficient representations the more
redundancies are removed.

We have reviewed a number of approaches that can
lead to more efficient representations and have shown how
some of them can be used to design better-performing deep
networks. E-nets are a particular class of deep networks
that are inspired by end-stopped visual neurons and the
concept of intrinsic dimension. We have reviewed some of
the results obtained with E-nets. We have also presented
novel results that show how E-net architectures can be
further optimized by using genetic algorithms. The main
idea behind E-nets is to learn pairs of filters, which are then
combinedwith a nonlinearity that generatesAND terms, e.g.,
by multiplication or minimum operation. Current E-nets
are just one particular way of implementing this general
idea, which is inspired by end-stopped neurons and the
concept of curvature in differential geometry. As argued
in the Introduction, MLPs could in principle be trained to
become CNNs but in practice, this is very unlikely. The same
argument applies when comparing CNNs with E-nets. In
[21] we could show that CNNs do indeed learn neurons
that are end-stopped to a certain degree but including the

E-blocks leads to a significant increase regarding the degree
of end-stopping. Conversely, every E-neuron in the E-net
could in principle be trained to become an ‘‘ordinary’’ neuron
of a CNN if the angle between the two filters is zero. And
indeed this happens with about 15–50% of the neurons
depending on how deep the layer is [21].

We have seen that all the aspects of efficient coding
discussed here, i.e., linear filters, sparse coding, divisive
normalization, and end-stopping, have contributed to the
design of better deep neural networks in machine learning.
Thus, one can conclude that innovative approaches to
computer vision and neural networks have been inspired
by interdisciplinary studies of human vision. In a reciprocal
view, the fact that insights from vision research may lead
to algorithms that really work can be a benefit for vision
research by providing insights for building more robust
human-vision models. It is this type of interaction that has
led to the initial design of deep neural networks, which have
then later been boosted by increased computing power, large
amounts of data, and big investments.

One could argue that the E-nets, especially when
optimized as shown here, are not really mimicking human
vision. Yes, we are only taking inspiration not rebuilding the
brain - once the benefits of learning AND-combined pairs
of filters are understood, we can move on and see what is
possible in a technical sense.

However, the inspiration that we take is more than just
some inspiration, it is one effective way to address the main
challenge in machine learning and AI, i.e., we need useful
biases that we cannot derive from the data.

APPENDIX A. CNN STRUCTURE AND E-NETS
CNNs typically start with a single convolution layer called a
stem. Then, the input is further processed by several blocks.
Often, a block is the defining substructure of a network
consisting of particular sequences of convolution layers and
further layers such as batch normalization [25]. For example,
the MobileNet-V2 [42] mainly consists of several mobile
inverted blocks, theDenseNet [24] ofDenseBlocks, and there
are many different block structures for the ResNet [23] –
see Han et al. [22] for an overview. Analogously, stacks are
structures that contain several blocks. Stacks are separated by
subsampling operations, e.g., by using a strided convolution
layer or a max-pooling layer.

E-nets are created by substituting entire blocks of a
network with E-blocks. We describe a particular model
design by using bitstrings. For example, the default model
for an E-ResNet with three blocks per stack (N = 3) is
represented by the bitstring ‘‘100 100 100’’ with a ‘‘1’’
indicating an E-block, and a ‘‘0’’ a standard block. Spaces
separate stacks. We refer to the ‘‘000 000 000’’ string, i.e., the
original ResNet, as the baseline - see [17] for details.
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APPENDIX B. GENETIC ALGORITHM
The pseudo-code for the genetic algorithm is shown in
Algorithm 1, its parameters are:

• The probability of using an and- instead of an or-
combination when recombining two bitstrings (Pand).
• The mutation probability (Pmut).
• Howmanymutated survivors are in the new population
(Nsurv), see Algorithm 3.
• How many recombined survivors (Nrec) are in the new
population, see Algorithm 2.
• How many entities are drawn randomly for the new
population (Nrand).

mzero is the all-zero string. U(0, 1) denotes the uniform
distribution of values between 0 and 1.ST is the set of trained
models.

A critical factor of the algorithm’s efficiency is the
starting population S0 = {m0,m1, . . .}, where mi is a
bitstring describing a model. Running the algorithm in
sequence for model sizesN = 5, 7, 9, the starting population
of each genetic algorithm was handpicked based on the

results of the previousmodel. ForN = 5, we used results from
previous experiments on N = 3 models.

We ran the proposed genetic algorithm to find better-
performing E-ResNets for 5, 7, and 9 blocks per stack,
using the same hyperparameters Pand = 0.7, Pmut = 0.05,
Nsurv = 2, Nrecomb = 3, Nrand = 1. We evaluated twelve
training runs in each iteration step, i.e., six different models
for two different seeds. We chose the population size based
on our hardware setup: four GeForce RTX 2080 GPUs with
11GBRAMeach. For the smallermodels, wewere able to run
three training sessions concurrently on one GPU. However,
this was not possible for N = 9.

For the genetic algorithm results, see Table B.1 for five
blocks (N = 5), Table B.2 for seven blocks, and Table B.3
for nine blocks, respectively. Most notably, for the larger
models (N = 7 and N = 9), we obtained E-ResNets that
had a significant margin of almost one percent between the
baseline mean test error and the E-net test error.

B.1 Evaluation with More Runs
To increase the statistical validity of the above findings, we
compared the best E-ResNet, the baseline, and the default
model on Cifar-10 for five runs instead of only two. We used

Table B.1. Best ten E-ResNets (N = 5) found by the genetic algorithm. We do not
provide results for the baseline and the default model for this particular experiment
(i.e., the particular seeds). However, based on previous results [17], the baseline has a
mean test error of 7.2% and the default-model a mean test error of 6.9%.

Rank Bitstring Cifar-10 test error
mean min max

1 00011 01000 00010 6.433 6.352 6.514
2 00010 00010 00010 6.456 6.368 6.544
3 00011 00000 00010 6.467 6.398 6.536
4 10100 01000 01000 6.548 6.538 6.558
5 00111 01000 00011 6.554 6.288 6.820
6 00101 00010 00000 6.572 6.456 6.688
7 01011 01000 00010 6.587 6.582 6.592
8 00010 00001 00000 6.602 6.526 6.678
9 00011 00000 01010 6.603 6.444 6.762
10 10011 01100 00110 6.607 6.542 6.672
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Table B.2. Best ten E-ResNets (N = 7) found by the genetic algorithm. In addition,
we report the default model and baseline results.

Rank Bitstring Cifar-10 test error
mean min max

1 0000011 0100000 0000001 5.932 5.864 6.000
2 0000011 0100000 0000000 5.973 5.804 6.142
3 0000011 0101000 0000000 6.005 5.842 6.168
4 0000011 1100000 0001000 6.027 5.752 6.302
5 0001101 0001000 0000000 6.037 5.890 6.184
6 0000011 0101000 0100000 6.037 5.814 6.260
7 0101111 0001000 0010000 6.037 6.026 6.048
8 0000101 0100000 0000010 6.059 5.976 6.142
9 0000011 0100000 0100001 6.077 5.970 6.184
10 0001011 1001000 0000000 6.096 5.982 6.210
48 1000000 1000000 1000000 6.304 6.270 6.338
67 0000000 0000000 0000000 6.970 6.938 7.002

Table B.3. Best ten E-ResNets (N = 9) found by the genetic algorithm. In addition,
we report the baseline results.

Rank Bitstring Cifar-10 test error
mean min max

1 000110010 111000000 000000000 5.548 5.430 5.666
2 001110011 001000000 000000000 5.600 5.564 5.636
3 001110010 001010000 001000000 5.627 5.436 5.818
4 001110010 011010000 001000000 5.655 5.448 5.862
5 001110010 010001000 001000000 5.657 5.600 5.714
6 001110010 011001000 001000000 5.668 5.602 5.734
7 000110010 001000000 000000000 5.676 5.514 5.838
8 001100000 010001010 001000000 5.684 5.608 5.760
9 001110010 011000000 000000000 5.723 5.618 5.828
10 001110000 011001000 001000000 5.728 5.696 5.760
159 000000000 000000000 000000000 6.549 6.450 6.648

each of the three best models based on the Cifar-10 genetic
algorithm results.

Fig. 4 shows the test error curves for the baseline, the
default model, and the bestmodels obtained from the genetic
algorithm. Here, for each number of blocks, we selected the

Table B.4. Cifar-10 test results averaged over five runs. We used the three best models
(E-ResNets with a specific design rule) found with the genetic algorithm (Table B.1,
Table B.2, and Table B.3). Furthermore, for each number of blocks, we evaluated the
baseline and the default model.

Bitstring Cifar-10 test error
mean std min max

001110010 001010000 001000000 5.75 0.18 5.51 5.92
000110010 111000000 000000000 5.90 0.16 5.65 6.10
001110011 001000000 000000000 6.01 0.17 5.78 6.22
100000000 100000000 100000000 6.08 0.27 5.73 6.38
000000000 000000000 000000000 6.29 0.08 6.16 6.35

0000011 0100000 0000000 6.08 0.12 5.87 6.17
0000011 0101000 0000000 6.13 0.18 5.82 6.29
0000011 0100000 0000001 6.23 0.25 5.92 6.51
1000000 1000000 1000000 6.47 0.18 6.22 6.69
0000000 0000000 0000000 6.73 0.18 6.53 6.96

00011 01000 00010 6.62 0.27 6.41 7.07
00011 00000 00010 6.74 0.25 6.46 7.10
00010 00010 00010 6.88 0.40 6.43 7.45
10000 10000 10000 6.97 0.15 6.81 7.13
00000 00000 00000 7.25 0.26 6.92 7.54

best-performing of the three tested configurations (for the
results of all models, see Table B.4). The experiment, using
more seeds, did not reproduce the high error differences from
the genetic algorithm results. Thus, sampling more runs for
evaluation shows a downside of the genetic algorithm search:
to process more E-net configurations, we reduce the number
of runs for each E-net, decreasing the statistical validity of the
results. Thus, the genetic algorithm overfits to models that
perform particularly well on a few different runs and would
likely select a different optimal model when using different
random seeds. However, this reduction in performance was
to be expected.
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