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Abstract. The investigation of aesthetics has primarily been
conducted within the visual domain. This is not a surprise,
as aesthetics has largely been associated with the perception
and appreciation of visual media, such as traditional artworks,
photography, and architecture. However, one doesn’t need to look
far to realize that aesthetics extends beyond the visual domain.
Media such as film and music introduce a unique and equally
rich temporally changing visual and auditory experience. Product
design, ranging from furniture to clothing, strongly depends on
pleasant tactile evaluations. Studies involving the perception of 1/f
statistics in vision have been particularly consistent in demonstrating
a preference for a 1/f structure resembling that of natural scenes,
as well as systematic individual differences across a variety of visual
objects. Interestingly, comparable findings have also been reached
in the auditory and tactile domains. In this review, we discuss some
of the current literature on the perception of 1/f statistics across
the contexts of different sensory modalities. c© 2022 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.Percept.Imaging.2022.5.000406]

1. NATURAL SCENE STATISTICS,
FRACTAL-SCALING, AND AESTHETICS IN VISION

From the beginning, the study of aesthetics has often focused
on the identification and definition of universal attributes.
For example, attributes like symmetry, homogeneous texture,
and certain spatial proportions are considered markers
of facial attractiveness [41, 55]. Other features such as
balance, complexity, and contrast have been put forward as
determinants of beauty and preference in art [6, 16, 18, 23].
However, it is important to note that empirical aesthetics is
not restricted to appreciation of artworks and is used more
generally to refer to the attributes associated with sensory
appeal and preference across a wide range of natural and
synthetic objects.

Furthermore, our perception, representation, and in-
teraction with the world is inherently multimodal and
aesthetic experience is no exception. Yet, even in modern
research, aesthetic perception in different modalities is
studied in isolation from one another and still persists with a
predominant focus on vision. Previously, we have argued for
the close coupling between sensory tuning to the multi-scale
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and scale-invariant, properties of natural images, and visual
preference [60–63]; here, we argue for an extension of
this approach to preference in other sensory modalities.
Specifically, we focus on the scale-dependent regularities in
the statistical properties of visual images, three-dimensional
surfaces, and tonal sequences to explore scaling-dependent
preferences in visual, tactile, and auditory domains.

1.1 Measuring Scale-Invariance: 1/ f Fourier Spectrum
and Fractal Dimension
Natural scenes, even when displaying widely different
environments and superficial different visual subjects, share
a common statistical regularity — a distance-dependent
degree of variations in their spatial structure. Namely,
across natural scenes, the nearby regions are considerably
more similar in their spatial properties such as luminance,
chromaticity, orientation, and texture, compared to more
distant regions. These regularities have been discussed in
terms of scale-invariance and/or self-similarity and can
be represented by the two different, but related, scaling
measures: the Fourier amplitude spectrum and fractal
dimension [9, 26].

Perhaps the most commonly used method of repre-
senting the distance-dependent variations in the intensity of
individual points in natural scenes is through the properties
of their spatial frequency amplitude spectra [13, 20, 57, 69],
as illustrated in Figure 1. When an image of a natural scene
is broken down into their component spatial frequencies
(f ), analysis of amplitude (i.e., average differences in pixel
intensity) as a function of spatial frequency reveals a
highly consistent inverse relationship between amplitude and
spatial frequency, known as the 1/f α structure. The falloff
of the amplitude spectra provides a simple snapshot of the
relative differences in amplitudes across frequencies and
is denoted by a value known as the amplitude spectrum
slope (α). Early studies by Field [20] and Burton and
Moorhead [13] found that the amplitude spectrum slope
across a small set of a variety of natural scenes, averaged
toward a value of 1. However, subsequent studies featuring
larger samples of images elucidated a wider range of possible
α values, with averages typically falling between 0.9 and
1.2 [21, 58, 69, 74]. Despite this variability, it is important
to note that given the diversity of natural scene images,
the majority share a highly regular statistical structure
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Figure 1. The Fourier amplitude spectra for (a) a natural scene image, (b) an urban scene image, (c) representational art (Willian Turner, The Fighting
Temeraire, 1839), and (d) abstract art (Mark Rothko, Black on Maroon, 1959). The gradient of the line of best fit (in red) is the image’s amplitude spectrum
slope (α).

that comprises a relatively small proportion of all possible
amplitude spectrum slope values.

It is interesting that these statistical regularities extend
to a wide range of images (Fig. 1), including those of urban
scenes and art images [24, 25, 43, 45, 53, 54]. Graham and
Field [24] analyzed a sample of 124 paintings that featured
both representational and non-representational works across
a variety of cultures, subjects, periods, and artistic move-
ments, and found an average amplitude spectrum slope of
1.23. This is not to say that all artworks, regardless of content,
will approximate this slope; for example, abstract art was
found to have a slight, but significantly shallower mean slope
of 1.13 compared to landscapes and portraits [25]. However,
like natural scenes, the range in average slope values across
artworks shares very similar boundaries and overall exhibits
a high degree of statistical regularity.

The scale invariance of natural scenes can also be
captured by a geometric scaling parameter known as the
fractal dimension (D), which focuses on the boundary edge
between the paint-filled regions and empty regions in an
image. A well-known method to quantify fractal dimension
is the box-counting technique (Figure 2), which performs
the scaling examination by covering an image with a mesh
of identical squares (‘‘boxes’’) of varying side lengths (L).
The box-counting technique counts the number of squares,
N , that contain part of the boundary edge with the count
repeated for increasingly small squares within the mesh.
Reducing the box size (i.e., smaller values of L) is equivalent
to examining the image at finer spatial frequencies and
N assesses the amount of space containing the pattern
boundaries at these spatial scales. Even if the image content
is represented as a surface in a three-dimensional volume
(with the intensity axis as a third dimension), or in the

case of three-dimensional objects, the same procedure can
be performed by dividing the three-dimensional volume
into progressively smaller three-dimensional cubes [40, 44,
65]. Like the Fourier amplitude spectrum slope analysis,
the scale-invariance with the box counting method appears
through the power law relationship N ∼ (1/L)D, by plotting
log N as a function of log(1/L). The fractal dimension is
the exponent D and is inversely related to the 1/f amplitude
spectrum slope: higher alpha value is equivalent to low D
value and vice versa [9, 24, 61].

The images in Figure 3 illustrate the relationship
between variations in amplitude spectra of synthetic filtered
noise images and fractal dimension more explicitly. The top
row shows examples of synthetic filtered noise images with
parametric variations in their amplitude spectrum slope α
ranging from 0.75 (top left image) to 2.25 (top right image).
The amplitude spectrum slopes for all the images in the
top row are indicted at the bottom (α) alongside with the
corresponding fractal dimension values (D) for the same
images. It is important to emphasize that fractal dimension
calculations are always performed by considering the degree
of spatial variations along the edges of binarized, black and
white regions in an image. Thus, to apply a box-counting
procedure on the synthetic images varying in their amplitude
spectra characteristics, as illustrated in the top row in Fig. 3,
these images are first thresholded with respect to their mean
luminance. During the thresholding procedure, all pixels
with a value higher than the mean luminance are assigned
as white and all pixels with values below the mean are
assigned as black, resulting in images shown in the second
row in Fig. 3. Edge-only image variations are generated by
extracting the edges from the thresholded black and white
images as illustrated in the third row in Fig. 3. While the
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Figure 2. Demonstration of the box counting technique at three different values of L. As L decreases from left to right, the number of boxes (N ) needed to
measure the length of a boundary edge increases following a power law relationship defined by D.

Figure 3. Examples of synthetic, computer-generated 1/f fractal noise images. The first row shows the the original 1/f grayscale images, created to have
falloffs (amplitude spectrum slopes) ranging from 0.75 to 2.25 in increments of 0.25. The middle row shows the binarized (or ‘‘thresholded’’) versions of
the same 1/f images. The third row depicts the ‘‘edge-only’’ variations. The input amplitude spectrum slope used to create the original grayscale images
are shown in the row labeled ‘‘α,’’ and the approximate fractal dimensions of each column are shown in the row labeled ‘‘D.’’

thresholding and edge extraction transformation procedures
alter the measured photometric and amplitude spectrum
slope values of the corresponding derived images, their
geometrical, fractal-scaling properties remain essentially
identical.

In summary, both the slope of the amplitude spectrum
and the fractal dimension are scaling measures that quantify
the relationship between the coarse and fine spatial detail
in an image, depending either on the contrast amplitude
or density of fine spatial detail in an image. While both
can be used to refer to the scale-invariant properties
of natural images (either regarding the distribution of
contrast or structural complexity across different spatial
scales), by themselves, these measures are not diagnostic of
whether an image is natural or fractal per se. Indeed, the
amplitude spectrum slope can be used to quantify the spatial
scale-dependent distribution of contrast in urban, artistic,
or any types of images. Similarly, while the fractals have
been defined as patterns that self-repeat at different levels of
magnification [46], it is important to emphasize that they also
come in a variety of forms. Typically, the most salient fractals
we encounter are those that appear identical at different

levels of magnification, for example, Koch’s snowflake or the
Mandelbrot set, and are known as the exact or mathematical
fractals. However, the term ‘‘fractal’’ is not restricted to
these mathematically constructed patterns, but can be also
extended to incorporate forms that appear similar in their
statistical properties at different levels of magnification.

1.2 Fractal-Scaling, Complexity, and Aesthetics
The realization that both natural scenes and a wide range
of art images share a common statistical characteristic
has received much attention and has led researchers to
consider several possible explanations. For example, Redies
and his colleagues [53, 54] propose that artists seem to have
implicit knowledge of natural statistics, a view consistent
with the idea that the human visual system evolved to
recognize and recreate natural image statistics [24]. On
the other hand, Graham and Field [25] have proposed
the so-called ‘‘perceptibility’’ hypothesis according to which
artists’ adherence to specific natural scene statistics are done
in order tomake the image ‘‘visible’’ to the human eye. In this
view, the statistical regularities found in art are a corollary
of artistic production and attributed to the constraints of the
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visual andmotor systems involved in creating and inspecting
works of art. Simply, the artworks with a natural amplitude
spectrum are both more easily created and more easily
processed by the visual system, compared to the artworks
with non-natural statistical characteristics, also thought to
be more challenging to produce. It is interesting that the
visibility hypothesis remains agnostic regarding the aesthetic
appeal of imageswhich do or do not possess particular spatial
statistics.

In contrast, others have explicitly linked the natural
scene statistics and fractal structure to their aesthetic
appeal [3, 31, 42, 60–63]. Initially referred to by Graham and
Field as the ‘‘affect’’ hypothesis [25], this type of approach
proposes that a human’s intrinsic ability to efficiently process
natural scenes is directly responsible for higher preference
for aesthetic objects, like artworks, that share similar
statistical regularities. Indeed, a number of studies have
shown that images with spatial and chromatic properties
departing from the 1/f statistics found in natural scenes
were less preferred [60–63, 66, 70] and rated as more
uncomfortable [19, 42]. Collectively, these studies show an
enhanced aesthetic preference for intermediate amplitude
spectrum slope and fractal dimension values across a
wide variety of images with fractal-like statistics. They are
also broadly consistent with the well-known concept of
perceptual/processing fluency [52, 67], which argues that if
human perception is most efficiently tuned to the statistical
characteristics of natural scenes, the same efficiency in
perceiving images of similar structures is perceived as
pleasant, non-effortful, and as a result, translate to higher
scores on experimental measures of aesthetic evaluation
and preference. Indeed, there is both psychophysical and
neurological evidence to suggest we are more visually
sensitive to images that have natural amplitude spectra
compared to images with slopes that deviate from this
structure [38, 62]. Rogowitz and Voss [56] have also shown
that patternswith low fractal dimension evoke the perception
of nameable objects, thus highlighting the role of fractal
complexity in shape perception.

As discussed above, the relationship between natural
scene statistics and perceived qualities is indeedmultifaceted
and themechanismsmediating preference for characteristics
such as fractal-scaling remain unclear. We have argued
that the overall preference for intermediate fractal-like
scaling exponents is reminiscent of and consistent with
the previous findings that patterns with moderate degrees
of complexity are preferred [16, 23, 63, 71] and that the
perceived complexity might act as a mediator between the
physical complexity and preference. This relationship has
also been suggested by Boon, Casti, and Taylor [12] who have
argued for the importance of characterizing both objective
and subjective complexity of complex spatial and temporal
systems including visual art and music.

Prior to the wide adoption of image statistics and
analysis of frequency spectra, visual complexity was manip-
ulated by systematically adjusting a variety of features or
combinations of features such as quantity, heterogeneity, and

variety of image elements. The stimuli used in experiments
were typically abstract patterns that varied along some
spectrum along these properties [2, 6, 7, 72]. These seminal
studies formed the foundation for the role of perceived
complexity in aesthetic preference, whereby stimuli of
‘‘intermediate’’ complexity were generally regarded as more
pleasing over less complex or more complex stimuli.
However, the introduction of fractal-like scale invariance
and consistent statistical structures found in natural scenes
became an important tool for expanding the understanding
of the relationship between aesthetic perception and image
complexity. Indeed, because both amplitude spectrum slope
(α) and fractal dimension (D) values chart the ratio of
coarse-to-fine geometrical structure in a pattern, they can
be considered a powerful and generic measure of physical
complexity generated by repeating patterns that is also
directly related to their perceived complexity [14, 51, 63]. For
example, the panel in Figure 4(a) plots the average perceived
complexity for the synthetic grayscale, thresholded, and
edges-only images as a function of their fractal-scaling
characteristics (physical complexity). The preference ratings
for the same grayscale, thresholded, and edges-only images
plotted as a function of their perceived complexity is
illustrated in Fig. 4(b), confirming the highest average
preference for all three types of images for the intermediate
level of perceived complexity [63].

In summary, the images that possess natural amplitude
spectrum statistics or an intermediate level of fractal
structural complexitymay afford the ‘‘optimal’’ amount of the
perceived ‘‘subjective’’ visual complexity – not too simple to
be boring, and not too complex as to be overstimulating [6].
It is also argued that the fractal structures most commonly
encountered in nature elicit unique physiological responses
related to relaxation [31, 66] and this familiarity makes
them the most preferred. Certainly, studies that have
utilized images with fractal-scaling have consistently shown
an average preference for synthetic images and patterns
with natural 1/f statistics and/or intermediate levels of
complexity over those with higher and lower complexity [3,
60, 62, 70]. Of course, on its own, fractal-like scaling
characteristics do not provide a full account of the entire
human aesthetic experience. They do, however, offer an
intuitive quantitative measure of complexity and fractal
structure across many forms of visual images. Additionally,
it is also linked with low-level processes in human visual
perception and efficient perceptual processing, providing
a foundation upon which the relationship between visual
processing and the aesthetic experience can be further
explored.

1.3 Patterns of Individual Differences in Preference for
Fractal-Scaling Characteristics
Though the inverted-U complexity-preference function is
still quite a domineering presence in aesthetics literature, its
purported universality has been diminished to some degree,
with a redirected focus onmore nuanced, individual patterns
of aesthetic preferences [27, 64]. While the preference for
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Figure 4. (a) Average perceived complexity in grayscale, thresholded, and edges-only images as a function of their fractal dimension. (b) Average
preference for these patterns plotted as a function of perceived complexity. Adapted from Spehar et al. [63].

intermediate complexity and natural scene statistics is very
robust on an average population basis, it should come as no
surprise that the emphasis on the ‘‘average’’ often obfuscates
the importance of individual differences. Even though the
investigation of individual differences may seem at odds
with the paradigm of universal aesthetics, the degree to
which aesthetic preferences are shared versus individual is
becoming a question of growing interest. Should individual
differences be disregarded as just inexplainable noise, or
taken into account as something more systematic and to an
extent, predictable?

Recent lines of research regarding the preference for
visual complexity has suggested individual differences are
indeed worth investigating [27, 63, 64]. For example,
Street et al. [64] investigated whether age, gender, or
culture predicted preferences for synthetic fractal patterns
of varying complexity. They measured complexity in fractal
dimension (D), in which a higher D value corresponds with
greater visual complexity. They found significantly different
preference patterns between men and women, with women’s
preference peaking for images with 1.6D and men’s prefer-
ence peaking at 1.2D. Preference patterns also varied across
geographical locations, with North American participants’
preference peaking for higher D images compared to Central
Asian or African participants. Güçlütürk et al. [27] found
that complexity preferences not only differed across distinct
populations, but also between participants within a single
population. While they found a curvilinear relationship
between average preference and complexity, a cluster analysis
showed that this curve was rather composed of the average of
two distinct, linear preference patterns; specifically, a group
of participants that preferred simple patterns and another
group that preferred complex ones.

Similarly, Spehar et al. [63] presented participants with
a range of 1/f α synthetic images that varied systematically
in amplitude spectra and fractal dimension. In addition
to the standard 1/f α noise images (Fig. 3), they also
presented thresholded, edge, cross-section, and terrain
varieties generated from the same base 1/f α image. They
found average preference peaked at a slope of around
1.25 across all image varieties and possessed the typical
inverted-U shape, whereby preference was on average
lowest for the most ‘‘non-natural’’ slopes further from the
intermediate value. However, the examination of individual

preferences using clustering analysis revealed divergent
patterns of preferences that were systematic across all
variations of stimuli (Figure 5). These preference patterns
were also relatively evenly distributed across the population
of participants and can be defined into three distinct
preference patterns: low complexity (high slope, low D),
intermediate complexity (‘‘natural’’ slope, mid D), and high
complexity (low slope, high D). In addition to emerging
across five visually distinct types of 1/f α stimuli, we also
found that there was a remarkable degree of internal
consistency within individuals.

This finding was replicated and extended in a subse-
quent study that investigated whether individual preference
patterns extended beyond not just synthetic 1/f α stimuli but
also toward art images that possessed the same statistical
structures [70]. Art images from a range of periods
and subject matter were selected and separated into low,
intermediate, and high fractal dimension groups. Synthetic
images of matching 1/f α statistics were generated, as well
as the thresholded and edge variations. Participants were
presented with these images in a three alternative rank
choice task, as well as rated individually for pleasantness,
complexity, and interest. The results supported previous find-
ings, showing a peak in average preference for intermediate
fractal dimension images in both synthetic and art categories.
Cluster analysis revealed the same three types of preference
patterns across both categories: ‘‘smooth,’’ ‘‘intermediate,’’
and ‘‘sharp.’’ Furthermore, correlations between preference
patterns within participants on average were moderate and
positive, again demonstrating a high degree of internal
consistency in preference for specific 1/f α structures.

Sherman, Grabowecky & Suzuki [59] have also shown
that aesthetic preference for complexity correlated with the
visual working memory of individual observers: individuals
with higher visual object workingmemory capacity preferred
artworks of higher complexity compared to individuals with
lower visual object working memory. Thus, we believe that
the focus on individual differences in preference in general
and for complexity is warranted, given the relative stability
and internal consistency in preference for specific 1/f α
statistics across distinct stimuli in the visual domain and their
link with the visual working memory processes. We propose
that investigating systematic individual differences offers a

J. Percept. Imaging 000406-5 January 2022



Viengkham and Spehar: Beyond visual aesthetics: The role of fractal-scaling characteristics across the senses

Figure 5. The graph on the left shows the typical clusters of individual preferences that emerge when investigating a sample for aesthetic preferences for
a range of 1/f stimuli. The green line represents participants who preferred more complex stimuli, such as those in (a). The red line represents participants
who preferred stimuli with ‘‘natural’’ 1/f structure, which also corresponds to intermediately complex stimuli as seen in (b). The blue line represents those
who preferred more simple stimuli like those seen in (c). These preference clusters are based on findings from Spehar, Walker [63], and Viengkham and
Spehar [70]. Artworks displayed – top: Jackson Pollock, Watery Paths, 1947; middle: Diego Rivera, Composition with Bust, 1916; bottom: William
Scott, Berline Blues 6,1966.

unique framework from which one can explore aesthetic
preferences across multiple sensory domains.

2. FRACTAL-SCALING CHARACTERISTICS AND
AESTHETICS BEYOND STATIC VISUAL PATTERNS

The question that is raised through this line of research is how
far 1/f α statistics predicts aesthetic preference across a larger
variety of aesthetic stimuli. Our perception, representation,
and interaction with the world are inherently multimodal
and aesthetic experience is no exception. Though it is not
restricted to any single modality, we typically investigate
different modalities in isolation from one another and
maintain a predominant focus in the visual domain. One
advantage of 1/f α statistics and similar fractal-scaling
manipulations are their flexibility to be applied across a
wide variety of stimulus types. As such, it offers a common
control of complexity across stimuli fromdifferentmodalities
and can allow us to investigate whether we perceive 1/f α
structures the same way across different sensory modalities.

2.1 Dynamic Fractal Patterns: 1/ f Structure in
Spatiotemporal Stimuli
The natural world surrounding us is not a purely static
one. There is constant movement introduced both through
the motion of objects in the world itself as well as in the
biological movement of the observer (i.e., eyes, head, body).
Early studies have analyzed the spatiotemporal amplitude
spectra of dynamic natural scenes and have consistently
found a 1/f α amplitude spectra across time, where α was
approximately 1 [11, 15, 30].

In order to more precisely investigate the interplay be-
tween temporal and spatial frequencies, synthetic spatiotem-
poral fractals were created, in which the 1/f α structure could

be manipulated in both time and space [11]. Here, altering
the temporal slope changes how much energy is in certain
temporal frequencies in a dynamic pattern. For example, as
temporal slope approaches 0, equal amounts of energy are
distributed equally across all temporal frequencies, resulting
in a large rate of change at all frequencies from low to high.
As temporal slope increase, more energy is distributed to
low frequencies, resulting in a large rate of change at low
frequencies and relatively smaller change at high. This is
most clearly perceptible in the speed and predictability a
pattern changes over time, with high sloped stimuli changing
slowly over time and lower slopes changing at a rapid, more
random pace – similar to a flicker.

Billock et al. [11] investigated the tuning of the visual
system toward the 1/f α amplitude spectrum in both space
and time and found that just noticeable difference thresholds
were lowest for the most natural slopes (α between 0.8 and
1.0), and became greater as a temporal slope diverged from
this point (becoming particularly bad at detecting differences
at the lowest slopes). These findings demonstrated visual
sensitivity to natural temporal slopes, as well as further
reconsolidating a sensitivity for natural spatial slopes.

However, even until recently, there has been a general
dearth of studies exploring the aesthetic appeal of spatiotem-
poral textures of varying slopes. A study by Toet et al. [68]
used a variety of real-world natural textures, like moving
water, and asked individuals to label them with a number of
affective terms related to emotional descriptions including
pleasure, relaxation, and arousal. While the study did not
measure the 1/f temporal structure of the movies, they were
rated for several spatial and temporal characteristics such as
temporal regularity, speed, amplitude, and regularity. They
found that qualities like high speed and amplitude were
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both negatively correlated with pleasure, and the former
with relaxation. However, it is important to note that all the
movies used to feature natural scenes and therefore, natural
dynamics. It is yet to be understood whether preferences for
the samedynamics are preservedwhennon-natural temporal
structure is introduced.

Recently, Isherwood, Clifford, Schira, Roberts & Spehar
[39] measured discrimination sensitivity and preference
for dynamic filtered noise movies that varied in their
spatiotemporal amplitude spectra. Interestingly, they found
that sensitivity and visual preference did not closely overlap.
While the sensitivity of the visual system was highest for
our stimuluswith an intermediatemodulation rate (temporal
amplitude spectrum slope of 1.25), which is presumablymost
abundant in nature, the stimuluswith the slowestmodulation
rate in their study (temporal amplitude spectrum slope of
2.25) wasmost preferred. They argued that preference for the
temporal variationsmight be related to what these properties
signal in the natural world with slower stimuli signaling the
safer and thus more preferred environmental characteristics.
However, their dynamic stimuli consisted of only 128 frames
which were presented in a loop. Even though the drop-off in
temporal frequency remains the same, with shorter durations
the power at higher temporal frequencies is boosted relative
to the low temporal frequencies. In other words, what was
the perceived speed/rate of change at different temporal
slopes is unknown, which might have affected the shape
of the preference function for different temporal amplitude
spectrum slopes.

2.2 Fractal-Scaling Characteristics in Tactile Domain
The 1/f α amplitude spectra variations can also be rendered
in the domain of 3D surfaces. Here, the standard 1/f α
noise image of varying slope can be mapped in such a way
that individual luminance values of the pixels in the image
corresponds to a specific height [51]. Computer-generated
3Dmodels of the 1/f α textures have previously been used in
studies of aesthetics, both to gauge perceived roughness [50]
as well as aesthetic value [63]. In the case of aesthetic value,
preference was found to be greatest for intermediate slope
values, similar to the average preference patterns for static
1/f α images. However, in both experiments, the 3D surfaces
were presented on screen and visually inspected as opposed
to touched.

The quality of roughness is a particularly important
descriptor in tactile aesthetics. The smooth-rough dimension
is consistently defined in multivariate multidimensional
models of haptic perception [4, 32, 33, 49]. Furthermore,
ratings of everyday materials have reliably found a negative
relationship between roughness and perceptions of pleasant-
ness; that is, the more rough a surface is, the less pleasant it
is perceived to be [17].

We recently conducted the same preference study using
3D printed physical versions of these same 1/f α surfaces
[71]. The surface textures were generated from 1/f α noise
images that range from slopes of 1.25 to 2.75 and were
printed onto blocks made from a matte plastic type material

(Figure 6). Different groups of participants were asked
to inspect the blocks visually, tactilely, and through both
sensory modalities. Similar to the preferences for dynamic
1/f α visual patterns, we found that preference was linear
and peaked for surfaces generated from the highest 1/f α
slopes. Surfaces made from these slopes were also perceived
to be the most smooth and pleasant. These results are
consistent with what has been found previous research of
material perception from a non-1/f α framework in which
normal materials are typically used. Here, materials that are
high in qualities of smoothness and softness are the most
preferred compared tomaterials on the opposite end of those
dimensions [17].

Average preferences for 1/f α tactile surfaces were
not curvilinear like what was consistently found for the
static 1/f α noise images and its variations. However, it is
interesting that similar systematic differences in preference
patterns also emerged for these stimuli. Specifically, a small
proportion of the population showed a greater preference for
stimuli with low slope values – rougher, sharper surfaces – as
well as the intermediate slope values. Moreover, correlations
between tactile preferences and static visual 1/f α images
remained unanimously positive across all image variations
[71].

2.3 Auditory Perception of 1/ f Melodies
Finally, we’ll explore what has been established so far on the
role of 1/f α statistical structures in the auditory domain.
Music consists of numerous components that influence its
complexity and aesthetic value. This has resulted in a rather
wide and vague definition of the ‘‘fractal nature’’ of music,
whereby different types of analyses, musical features, and
parameters have all been used to identify, quantify, or dispute
the relevance of fractal statistics in music.

Early research on the spectra of complex noise signals
found through the analysis of a variety of music, sound,
and talk show programs on the radio possessed a 1/f α
structure. Hour long segments from various radio programs
were analyzed and found to have a slope averaging the natural
intermediate range, same as those found in natural scenes
[73]. Noise signals ranging from classicalmusic to rockmusic
to speech — all share a common ‘‘natural’’ 1/f α structure.
It is especially in the analysis of the existing discography
of classical and contemporary real-world music that the
relationship between fractal-scaling statistics in music and
its aesthetic value or perception have become somewhat
unclear. For example, some studies have found that different
genres of music differ in their fractal dimension [10, 34, 35],
while others have found no discernible consistencies in the
role of fractal-scaling statistics at all [37].

More research has been completed to determine the
perceived complexity and melodicity of 1/f α synthetic
melodies [5]. That is, when music is in its most basic form
– a sequence of single notes of same duration spaced equally
to form amelody – does a 1/f manipulation of this sequence
alter their perceived aesthetic value? This structure was later
applied directly to simple melodic sequences in which a
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Figure 6. Examples of 1/f textured surfaces recently used in [71]. The texture blocks were created from 1/f grayscale images with the corresponding
amplitude spectrum slopes.

Figure 7. Examples of synthetic 1/f melodies of the corresponding amplitude spectrum slope input values.

sequence of notes (essentially equivalent to a sequence of
numbers) followed a 1/f α structure based on three slope
values: 0, 1, and 2. Similar to their visual counterparts,
melodies created from 1/f structures with a slope of 0 are
random, where no one note predicts any subsequent note.
As the slope increased toward 2, the sequence becomes
more predictable and the change in consecutive notes is
more gradual. An informal study carried out at the time
revealed a greater preference for sequences that followed the
intermediate 1/f α structure over those with slopes of 0 or
2 [73]. These findings have been more recently supported by
Beauvois [5], who generated a greater series of synthetic 1/f α
melodies with slopes ranging from approximately 0 to 2.0
in increments of 0.2. Here, preference showed a curvilinear
function and peaked for slope values of approximately 1.38.
Furthermore, slope was found to correspond closely to
perceived complexity where complexity rating decreased
monotonically with increasing slope.

However, when a fractal-like structure is applied to
music in its simplest form – a sequence of single notes
placed in equal spacing to form a melody – it is essentially
isolating a single aspect of complexity and removing all other
factors (Figure 7). Based on the existing research highlighted,
we can see that 1/f α structure is a reliable quantifier of
objective complexity of melodies and that similar to what
is found in the visual domain, aesthetic preference appears

to peak for values closest to the most natural slope range.
While it is still unclear whether the same preference patterns
found in the visual and tactile domain also emerge for the
auditory domain, a recent study offers some possible insight.
Güçlütürk and van Lier [28] measured participant liking
ratings for 25 song excerpts from a variety of musical genres
that had been previous rated for instrumental complexity.
Analysis of preferences clustered the participants into two
relatively equal sized groups, where one group showed a
preference for more complex songs and the other group
showed a preference for more simple songs. Therefore, it
is expected that looking beyond the average curvilinear
preference found for 1/f α melodies, more distinct and
systematic preference patterns will also be found.

3. CONCLUSION
Studies which have investigated cross-modal aesthetic per-
ception have often been done from a more top-down
perspective of genre categorification [1], or ensuring a
congruent cross-sensory consumer-minded experience [36,
75]. Given the multitude of scale-invariant, fractal-like
scaling manifestation across many physical and biological
domains, we explore the potential of this approach when
considering aesthetic experience across different sensory
domains.
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While a fair amount of research has been completed
on the aesthetic evaluation of scale-invariant 1/f α stimuli
across vision, audition, and touch, these have mostly been
done independently of each other (see Table I). Though it
is obvious that the relationship between fractal-scaling and
preference differs across studies both within and between
different sensory domains, this is not very surprising. A
closer inspection reveals that these studies differ enormously
in the type of stimuli they use, the way in which the
fractal-scaling characteristics are manipulated, and whether
they measure preference, beauty, discomfort, complexity,
or some combination of different measures. As previously
noted, there is paucity of studies in tactile and auditory
domains.

Nevertheless, in all sensory domains and across a wide
range of different types of stimuli, there is evidence that
fractal-scaling characteristics influence reported preference
for these stimuli. Our review of 1/f α statistical manipu-
lations across all these separate domains demonstrates its
consistency as an objective measure of stimulus complexity.
Importantly, it also seems to be directly and linearly related
with the perceived or subjective stimulus complexity across
sensory domains. Synthetic images with a spatial slope of
2.25 are generally considered to be less complex compared
to images with slopes of 1.25, just as melodies, surfaces, or
dynamic images with slopes of 2.25 are also considered less
complex than their 1.25 variations.

Within a single domain, such as in vision, preferences for
specific 1/f α slopes in a population and within an individual
were found to be systematic and relatively consistent. That
is, across a set of visually distinct visual stimuli, if an
individual preferred an intermediate slope for one variation,
this preference would remain internally consistent across the
others. From this, we highlighted how individuals also fell
into three preference types that emerged across all image
variations: low, intermediate, and high complexity [8, 9,
27, 63, 70, 71]. A small number of studies within other
domains such as tactile surfaces and dynamic patterns have
also found stable preferences, as well as similar patterns of
individual differences between visual and tactile domains.
However, the structure and reasons for the patterns of
individual differences in preference within and between
different sensory domains remain underexplored and in a
need of further empirical and theoretical focus.

In summary, despite some superficial differences, the
underlying dimensional structure mediating the preference
across sensory domains is encouragingly similar, suggesting
systematic patterns of preference for fractals in vision, audi-
tion, and touch. Based on the evidence so far [27, 70, 71], we
propose that there exists a strong link between fractal-scaling
statistics and perception of dynamic, expressive, and affective
aspects of sensory stimulations in different modalities. To be
able to elucidate the contribution of shared and individual
contributions to preference we believe that the perceived
structural (roughness, complexity, regularity) and affective
(pleasantness, liking, harmony, interest) representations of

fractal-scaling properties should be studied concurrently and
in a comparable manner across different sensory domains.
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