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Abstract. Both natural scene statistics and ground surfaces have
been shown to play important roles in visual perception, in particular,
in the perception of distance. Yet, there have been surprisingly few
studies looking at the natural statistics of distances to the ground,
and the studies that have been done used a loose definition of
ground. Additionally, perception studies investigating the role of the
ground surface typically use artificial scenes containing perfectly
flat ground surfaces with relatively few non-ground objects present,
whereas ground surfaces in natural scenes are typically non-planar
and have a large number of non-ground objects occluding the
ground. Our study investigates the distance statistics of many
natural scenes across three datasets, with the goal of separately
analyzing the ground surface and non-ground objects. We used a
recent filtering method to partition LiDAR-acquired 3D point clouds
into ground points and non-ground points. We then examined the
way in which distance distributions depend on distance, viewing
elevation angle, and simulated viewing height. We found, first, that
the distance distribution of ground points shares some similarities
with that of a perfectly flat plane, namely with a sharp peak at a near
distance that depends on viewing height, but also some differences.
Second, we also found that the distribution of non-ground points is
flatter and did not vary with viewing height. Third, we found that the
proportion of non-ground points increases with viewing elevation
angle. Our findings provide further insight into the statistical
information available for distance perception in natural scenes,
and suggest that studies of distance perception should consider a
broader range of ground surfaces and object distributions than what
has been used in the past in order to better reflect the statistics
of natural scenes. c© 2022 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.Percept.Imaging.2022.5.000503]

1. INTRODUCTION
The role of natural scene statistics in visual perception has
been affirmed time and time again. Indeed, the idea that
the environment comprises certain regularities (statistics)
which constrain the array of possible visual stimuli has been
used to explain how visual systems efficiently encode images
and estimate scene properties such as geometry, material,
and lighting. Simoncelli and Olshausen [42] and Geisler [12]
provide overviews of early work. More recently, studies have
found evidence for the role of natural scene statistics in
ordinal depth [5], binocular eye movements [14, 15, 22, 43]
and stereoscopic depth [27, 45] perception.
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Ground surfaces are important. Most natural scenes
inhabited by human observers contain a ground surface.
Ground surfaces support locomotion and thereby constrain
where and how we move through the world. Ground
surfaces also directly support most objects and indirectly
support almost all others. From a natural scene statistics
point of view, this means that human observers are able to
learn correspondences between visual cues (e.g., the ground
surface’s texture) and real-world distances by walking up
to the object of interest to confirm their judgement of its
distance. Gibson [13] was one of the first to propose that
ground surfaces are important in visual perception; many
empirical studies have since confirmed it. These studies
include studies of shape perception which show a bias for
upward slant (floor) over downward slant (ceiling) [38],
studies of relative depth perception that show a ‘ground
dominance effect’ (i.e., subjects are more likely to perceive
objects as resting on a ground surface rather than attached
to a ceiling surface [2–4, 9, 25]), and visual search studies
finding an advantage for stimuli organized to appear like a
ground plane over other planes [6, 28]. Other studies have
additionally shown that absolute distance can be computed
by integrating information along the ground [50], and by
using elevation angle and viewer height as cues [21, 33, 35].
The absolute distance of objects that lie off the ground plane
can also be judged in reference to depths of adjacent points
along the ground plane [30, 46]. Finally, studies have also
shown how irregularities in either the height or the texture
of ground surface can disrupt absolute distance perception
[11, 41, 51, 52].

Given the demonstrated role of natural scene statistics
in visual perception, and the importance of the ground
surface in vision, it is surprising how little work has been
done combining natural scene statistics and the perception
of distance to the ground surface. Huang et al. [23] used
laser range data in forest scenes and found that distance
distributions were different in the upper and lower halves of
the images; they attributed the differences to the presence of
the ground plane in the lower halves but did not examine
the differences in any detail. Potetz and Lee [36] used
co-registered range and intensity images of urban and rural
scenes to study the correlations between luminance and
distance. In their analysis of distance, they observed that
a planar fit to the mean scene distance as a function of
visual direction had a small upwards overall slant, which
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they attributed to the ground surface. A similar finding
of an overall upward mean slant has been used to explain
biases in stereoscopic distance perception and binocular eye
movements [14, 15, 22, 27, 43]. Finally, Yang and Purves [53]
computed natural scene statistics of distance using point
clouds they acquired from a forest and a university campus,
and used those statistics to explain well-known distance
perception biases such as the ground dominance effect [2–4,
9, 25] and the specific distance tendency [16–18].

It is important to note that the studies cited above all
employed only a general, loose notion of ‘ground surface.’
Huang et al. [23], for example, considered the bottom
half of their range images as a ground surface; Yang and
Purves [53] similarly treated all points below eye level as
representing the ground surface. Specifically, the authors of
those studies did not distinguish between points belonging to
the ground surface and points below the horizon belonging
to non-ground objects such as trees and shrubs, rocks, fences,
walls, etc.

The goal of the current study is to revisit natural scene
statistics that are relevant to the perception of distance, and
to investigate differences in statistics between the ground
and non-ground objects. In particular, given the importance
of the Yang and Purves [53] study for distance perception
and natural scene statistics, our goal is to reproduce and
extend some of their analyses by using recent techniques
for separating ground and non-ground points, and for
simulating changes in viewing height.

We address two central questions. First, how are dis-
tances to ground points and non-ground points distributed
in the real world? In particular, how do those distributions
compare to those of a flat ground surface with few objects
like one might find in a typical perceptual study executed
in a laboratory setting? Many perceptual studies of distance
have shown that a pure horizontal ground plane scene does
not account for perceptual biases in perceived distances [34],
and one of Yang and Purves’ key insights was to relate
those perceptual findings to natural scene statistics. Thus,
one of our goals was to compare the statistics of actual
ground points to the statistics of a flat horizontal surface,
and to disentangle the statistics of the ground from those
of non-ground objects. Disentangling these statistics could
suggest experiments of distance perception that are more
reflective of the actual statistics of natural scenes, in which
the ground is not regular or flat and in which the ratio of
non-ground points might be larger than the one in the sparse
scenes used in most past studies.

The second central question we address is how the
distributions of distances to ground and non-ground points
vary with viewing height.Whilemany studies have examined
the scale invariance of natural image statistics (e.g., [39])
there is little evidence that distance statistics are also scale
invariant. In particular, we would expect that changing the
height of the viewer should change the distance statistics,
such that the taller the viewer, the flatter the scene appears
to be. (In the extreme, the world seen from an airplane
appears quite flat.) More practically, sitting on the ground

Table I. Datasets and their specifications.

YP-2003 SYNS: Semantic3D*
[53] outdoor [1] [19]

# of scenes 23 natural 76 outdoor 30 urban
per category 51 outdoor

maximum 300 m 120 m 300 m
range

angular 0.144◦ 0.036◦ 0.0005◦

resolution

horizontal 333◦ 360◦ 360◦

span

vertical 72◦ 135◦ 135◦

span

* The parameters for the Semantic3D dataset had to be estimated for the point clouds,
since they were not available in the dataset’s paper.

or standing on large object provides a different view of
what is visible in a scene. So, a fundamental question about
natural scene statistics is how do distance distributions
vary under such viewing height changes? A few perceptual
studies have examined how perceived size and distance in
a scene can depend on perceived viewing height [40, 48,
49]. However, these studies did not consider natural scene
statistics. We believe that the same experimental question
could be addressed using a natural scene statistics approach,
and that a model of how natural scene distance statistics vary
with viewing height could be useful in future experiments
to determine how distance perception depends on perceived
viewing height.

2. METHODS
2.1 Datasets
We used three datasets in our analyses: the Yang and
Purves’ dataset [53] which we refer to as YP-2003; the
SYNS dataset [1], specifically the outdoor scenes; and the
Semantic3D dataset [19]. Parameters for each dataset are
shown in Table I.

We chose the YP-2003 dataset, as one of our goals was
to replicate and extend Yang and Purves’ previous work. As
for the SYNS outdoor scene dataset and the Semantic3D
dataset, we chose them because they had higher angular
resolutions and expanded the scene types present in our
analyses: whereas the YP-2003 scenes were all collected in
Duke Forest and around Duke Campus, both the SYNS
and Semantic3D scenes were purposefully selected from a
wide range of locations. The SYNS outdoor scenes were
specifically created from 19 outdoor categories, and the
Semantic3D scenes were chosen for variety. We did not use
the SYNS indoor scenes because we wanted to focus on
natural and human-made outdoor scenes like the ones in
the YP-2003 dataset. More details, including pictures of the
scenes and images showing the point cloud are available on
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both the SYNS website (https://syns.soton.ac.uk/) and the
Semantic3D website (https://www.semantic3d.net/).

There a few additional things to note. First, the scanners
used in all three datasets were positioned at 1.65 m above
the ground in all scenes. Second, for all three of the datasets
described, the scanners’ vertical range did not extend beyond
135◦ from the zenith; i.e., they did not scan their own
base. For the YP-2003 dataset, the scanner’s vertical range
extended from 63◦ from the zenith to 135◦ from the zenith.
For the other two datasets, the scanners’ vertical range went
from the zenith to 135◦ from the zenith. Finally, we had
to downsample 12 of the 30 Semantic3D point clouds. The
original point clouds contained between 170 million and
496million points; this was farmore than was needed for our
purposes, andmade it more costly in terms of computational
resources to use these point clouds in our analyses. For
this reason, we applied the resampling step of the SLR [31]
method (described in Section 2.2.6) using the scanner’s
original position and height above the ground but using a
lower angular resolution (0.0005◦).

2.2 Analyses
2.2.1 Distributions of Distances
Following Yang and Purves [53], we computed probability
density distributions of distance by determining the distance
from the LiDAR scanner to all of a dataset’s point clouds’
points, counting the number of points occurring in each
bin (we used pulse-sized bins, defined in the next section),
normalizing the counts to obtain the fraction of points in
each bin, and dividing those fractions by their bin’s width to
obtain the probability density per meter for that bin.

Points were labelled as belonging to the ground surface
or to non-ground objects using the Cloth Simulation
Filtering method (described in Section 2.2.3). Distributions
of distances to ground points and to non-ground objects were
normalized using the total number of all points, so that the
sum of the normalized ground and non-ground distributions
is equal to the normalized distribution of all points.

2.2.2 Pulse-sized Bins
We computed our distance distributions using a binning
method in which each bin represents the interval of distances
spanned by a set of pulses coming from an ideal, noiseless
scanner that is placed 1.65 m above a perfectly flat ground
plane (see Figure 1a). In particular, for distances beyond
1.65 m, each bin spans a fixed elevation angle of 0.144◦ (the
angular resolution of the YP-2003 dataset’s scanner [53]).
The constant elevation angle means that bin size increases
with distance (see Fig. 1b, S2 > S1). As for distances up to
1.65 m (scanner height), points whose distance is less than
scanner height do not belong to the flat ground surface.
We therefore used 5 cm fixed-size bins for distances up to
scanner height (1.65 m). We refer to this overall binning
scheme as pulse-sized bins, because the vast majority of the
bins’ size is defined by the size S of a pulse.

The advantage of pulse-sized bins is that they provide
a more representative view of the data. Consider a noiseless

Figure 1. Pulse-sized bins explained. (a) LiDAR scanner (black line) sitting
on a flat ground surface. The green points represent points reported by
the scanner’s pulses. The red and purple triangles are pulses shot from the
LiDAR. The red and purple annuli represent the area covered by a single
set of pulses at those elevations. (b) Visual representation of the range of
two fictitious pulses and their corresponding pulse-sized bins; the arrows
represent the pulses and the gray arcs represent the bins’ edges. Each
bin comprises distances to points acquired by a single set of pulses, and
those distances are computed from a theoretical scanner with an angular
resolution of 0.144◦ and a height of 1.65 m to a flat ground surface.
S2 is larger than S1 since pulses cover a larger area the further away
they land from the scanner. (c) Distance probability distribution for a point
cloud of a flat ground surface acquired using an ideal, noiseless scanner.
Since there is no distance estimation noise, points are concentrated in
a few bins, leading to the distribution alternating between 0 and a high
probability. (d) The same probability distribution as in (c), but plotted using
pulse-sized bins. The number of points is spread over the width of a pulse,
leading to a better representation of the data.

scanner described above with height of 1.65 m, azimuth and
elevation angular resolutions of 0.144◦, horizontal span of
360◦ and a vertical span of 135◦. Distributions of distances
to a flat ground surface acquired by this ideal, noiseless
scanner are shown in Fig. 1(c) (fixed-size bins) and Fig. 1(d)
(pulse-sized bins). The distribution in Fig. 1(c) appears
sparse; it reports, for example, that there were no points
in the 140–140.2 m bin, and reports a high number of
points in the 131.2− 131.4 m bin. Fixed-size bins depend
on the assumption that the distance estimate noise in
real-world scanners is uniformly random. In contrast, the
pulse-sized-bin distribution in Fig. 1(d) reports a small
number of points in the 131.31 − 164.31 m bin. This
is because the pulses of a noiseless scanner (i.e., without
distance estimate noise)would systematically report points at
the same distance on an ideal flat ground surface. Pulse-sized
bins therefore provide a better representation, because they
spread the number of returns over the size S defined by the
range of a pulse.
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Figure 2. Cloth Simulation Filtering, step-by-step. (a) Frontal slice of
scene #33: Scholing, Southampton from the SYNS dataset. (b) The scene
is flipped and a simulated cloth is set to cover the whole scene. The cloth
is simulated by cloth particles (drawn as blue points) and interconnections
(represented by lines connecting the particles). (c) The cloth is dropped.
Simulated interconnections allow it to mold to the shape of the ground,
but prevent it from entering deeper grooves such as the one to the right
of the house. The flexibility of the cloth is based on parameters reported
in text. (d) Points within a parameterized distance of the cloth are marked
as being part of the ground. (e) The result. Ground points are shown in
black and non-ground points, in gray.

2.2.3 Labelling Points as Ground and Non-ground
Points were labelled as ground or non-ground using the
Cloth Simulation Filtering method [54]. This method was
created in the context of airborne LiDAR and digital terrain
models. The idea behind themethod, represented in Figure 2,
is to first turn the point cloud upside down, and then to
drop a simulated cloth on the inverted surface. The method
simulates the cloth falling until it settles and, once it has
settled, the points from the point cloud which are in contact
with the cloth or which are within a certain distance of the
cloth (e.g., 10 cm) are considered ground. All other points
are considered non-ground.We implemented the labelling in
two steps.

Figure 3. View from the top of a point cloud from the YP-2003 dataset.
This point cloud’s odd shape caused our implementation of the CSF
method to time out. The gray rectangular area represents the cropped area
passed to the CSF method for labelling. Points outside of the rectangular
area were labelled as non-ground points.

First, we removed outliers and manually cropped the
point cloud when necessary. Outliers were removed using
the Open3D library [55] function remove_statistical_
outlier. The function computed the distance of each point
to its 30 closest neighbors, and rejected points whose distance
to their neighbors was more than 3 standard deviations away
from the average neighbor distance. Rejected points did not
participate in theCloth Simulation Filtering andwere instead
automatically labeled as non-ground points. We also had to
manually crop some of our point clouds having a particularly
odd shape which caused our implementation of the method
to time out (see Figure 3 for instance). Cropped portions
of point clouds were automatically labelled non-ground,
and were not processed by the Cloth Simulation Filtering
method. Cropped points represented less than 1% of the
problematic point clouds’ points.

Second, once outliers had been removed, we applied
the Cloth Simulation Filtering method using code adapted
from the open source project CloudCompare [7]. One of this
method’s strengths is that it is easy to use and requires setting
far fewer parameters than most other methods. In our case,
we set the k-nearest-neighbors parameter to 1, the time step
to 0.65, the cloth resolution to 0.1, the class threshold to 0.1,
and the cloth rigidness to 1. We disabled slope smoothing.
Our choice of parameters was informally validated through
visual inspection of a few point clouds prior to applying
the method to all point clouds, and visual inspection of all
point clouds afterwards. The method itself was validated by
its authors, and we refer the interested reader to the Cloth
Simulation Filtering method’s paper [54] for further details
regarding the method and its validation.

2.2.4 Distance as a Function of the Angle of Elevation
Like Yang and Purves [53], we were interested in computing
probability density distributions for distances as a function
of the angle of elevation. In order to do so, we first divided
the vertical angular range between−40◦ and 40◦ of elevation
(50◦ to 130◦ from the zenith) and the distance range from
0 m to 165 m into 655 pulse-sized bins resulting in an
800-by-655 matrix (points falling outside of that range were
discarded).We then computed the distance from the scanner
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(at a height of 1.65 m) to each point, and counted the
number of points falling within each bin based on its distance
and elevation. Points at different azimuth directions were
pooled based on their direction and elevation. Finally, we
normalized the counts relative to the matrix total and to the
size of the bins, and obtained a distribution of probability of
a given distance at the given elevation. It is worth noting that
the ‘‘angle of elevation’’ refers to an angle on the z-axis where
the 0◦ is at the horizon (rather than at the zenith).

2.2.5 The Impact of Viewing Height
Wealso examined howdistributions of distances changewith
viewing height. Human observers do not always view the
world from the same height above the ground; we often
crouch or sit especially when we are resting or if we wish to
hide ourselves, andwhenwewish to see objects from a height
we stand on objects or other protrusions from the ground.
How do such changes in height affect distance distributions?
Taking inspiration from Yang and Purves [53], we examined
distributions of distances at five heights: 3.25 m, 2.45 m,
1.65 m (the scanner’s default height), 0.85 m, and 0.05 m.
Yang and Purves only considered the distribution of points
within ± 2◦ from the horizontal plane at the given viewing
height, whereas we considered points at all elevations at
each viewing height. To reiterate, the purpose of our analysis
was different than Yang and Purves; whereas they focused
on distance perception at eye level [53, 1(c)] and used the
other heights to demonstrate consistency (see their Figure 3),
while we were interested in characterizing distributions of
distances for ground and non-ground points at different
viewing heights.

2.2.6 Simulated LiDAR Repositioning (SLR)
Ourmethod for subsampling at different heights differs from
Yang and Purves’ [53]. Whereas they only considered points
±2◦ from a horizontal plane at each height, we considered
points at all elevations. In particular, given a point cloud of a
real-world scene obtained from a 3D LiDAR scan, Simulated
LiDAR Repositioning generates subsampled point clouds
that correspond to a subset of 3D points that would be visible
from these new positions.

At a high level, the SLR method is straightforward:
(1) select a position to simulate scanning; (2) choose an
appropriate angular resolution for the simulated scanner, and
(3) obtain a point cloud by determining which of the original
point cloud’s points were visible from the new position
given occlusions and the scanner’s new angular resolution.
The third step works by dividing the volume surrounding a
theoretical LiDAR scanner into pyramids (Figure 4) where
each pyramid represents the volume covered by a single
LiDAR pulse, and selecting in each pyramid the point
that is closest to the scanner. This step makes the implicit
assumption that the pulse of an ideal LiDAR would report
the closest point of the closest object, and serves to remove
points from the point cloud which have become occluded
as a result of scanner’s repositioning. It is important to note
that the method does not, however, generate new points to

Figure 4. The volume surrounding a theoretical LiDAR scanner can be
divided into pyramids, where each pyramid represents the volume covered
by a single LiDAR pulse.

represent real-world points that were previously occluded
and would have become visible from the scanner’s new
position and viewing height. Still, while the method only
partially accounts for occlusions, we believe it to be an
improvement over Yang and Purves’ method and over a
simple translation of points’ coordinates, since it does address
some of the occlusions.

We used SLR in two ways to study the impact of
viewing height on distance distributions. The first was
to reposition the scanner vertically without changing its
horizontal position: we selected a new viewing height for the
scanner, chose an angular resolution of 0.144◦ (consistent
with the YP-2003 dataset), and generated subsampled point
clouds by determining occlusions given the viewing height
and angular resolution.

Second, in order to augment the data and obtain
smoother distributions, we applied the method to reposition
the scanner both vertically and horizontally. That is, we
selected a new viewing height as well as a horizontal location
among a set of possible nearby simulation locations, using
point-density based criteria—see [32]; chose an angular
resolution of 0.144◦; and generated point clouds from the
new horizontal position and viewing height using the chosen
angular resolution.

The method was only applied to the SYNS and
Semantic3D datasets; the method requires the angular
resolution of generated point clouds to be lower, and
the YP-2003 dataset’s angular resolution was already low
compared to that of the other two datasets.

It is important to note that the method does not
represent points that would have become visible as a result of
moving the scanner to the new position and viewing height.
As an observer moves in a scene, some of the points which
were visible from the original position become occluded, and
some of the points which were occluded become visible. The
method handles the former by computing occlusions, but
does not handle the latter. That is to say that the SLRmethod
does not generate points to represent previously occluded
points that have become visible from the new position. Since
these points were not captured in the first place, there is no
way for us to accurately identify what might be visible from
the new position and viewing height that wasn’t the original
one. As we argue later, this phenomenon is comparable to
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Figure 5. Distributions of all distances (light blue), distances to the ground
(brown), and distances to non-ground objects (green) for the (a) YP-2003,
(b) SYNS, and (c) Semantic3D datasets. The distributions of all distances
(gray) appear compatible with Yang and Purves’ findings: the distributions
peak between 2 and 4 m (see Fig. 6) and decline in a similar fashion.

half-occlusions and, as we have demonstrated elsewhere [32],
only a small proportion of points aremisrepresented this way.

2.3 Computational Resources
Analyses were done in Python 3 [47] using the NumPy [20],
Pandas [29], Matplotlib [24], and Open3D [55] libraries.
Analyses were primarily executed on computational clusters
provided by Calcul Québec and Compute Canada. Some
analyses were also executed on aDell computer with a 12 core
XEON processor and 32 GB of RAM running Linux Debian
10 Buster.

3. RESULTS & DISCUSSION
We were interested in examining differences between the
ground and non-ground objects in the context of three of
Yang and Purves’ [53] analyses, namely, distributions of
distances as function of the angle of elevation, and the impact
of viewing height.We describe the results of each in their own
section below.

3.1 Distributions of Distances to the Ground and to
Non-ground Objects
Distributions of distances to all points, ground points,
and non-ground points are shown in Figure 5. Close-ups
of the early portions of these distributions are shown in

Figure 6. The distributions of distances from 0 m to 10 m for (a) a
flat ground surface (see full distribution in Fig. 1d), (b) the YP-2003
dataset (Fig. 5a), (c) the SYNS outdoor dataset (Fig. 5b), and (d) the
Semantic3D dataset (Fig. 5c). The purpose of this figure is to focus on
the early portions of the distributions, where the peaks of the distributions
and crossovers between the ground and non-ground distributions occur.
The 2 m–4 m range is highlighted in blue-gray. There are important
differences between the distributions of all distances, ground distances,
and non-ground distances. The distributions of all distances and ground
distances for all three datasets are sharp and occur between 2 m and
4 m. The peaks of the non-ground distributions are softer and their exact
location is unclear. Distances to the ground dominate short distances: there
is a higher proportion of ground points in the 2.48 m–5.34 m range in
the YP-2003 dataset, the 2.07 m–8.26 m range for the SYNS dataset,
and 2.23 m–9.30 m range for the Semantic3D dataset. For (b)–(d), the
early peaks and rapid decline of the ground distributions are expected:
their shapes are very similar to that of the theoretical distribution to a flat
ground surface in (a).

Figure 6. There are four results to note. The first is that
the distributions of all distances (in light blue) for all
three datasets appear compatible with the findings reported
by Yang and Purves [53]. Yang and Purves identified
two key features of their distribution of distances, namely
that it peaked at ‘‘about 3 m’’ and that it ‘‘declin[ed]
approximately exponentially over greater distances.’’ Indeed,
our distributions of all distances present similar features: the
peaks do appear to fall between 2 m and 4 m (Fig. 6), and the
distributions do show a similar pattern of decline after the
peak (Fig. 5).

The second result to note is that there are differences
between the distributions of distances to the ground (brown),
to non-ground objects (green), and to all distances (light
blue). In particular, the distributions of ground distances
have sharp peaks after which they decline rapidly, the
distributions of non-ground distances have soft, noisy peaks
and a large tail, and the distributions of all distances have
sharp peaks and large tails. These suggest that the ground
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is most visible at short distances rather than far distances
(ground distributions have sharp, early peaks), partly be-
cause it becomes occluded by non-ground objects which are
visible at larger distances (non-ground distributions have
large tails). More generally, these figures show that the
ground dominates early distances (from approximately 2 m
up to approximately 5.5 m, 8 m, and 9 m for the YP-2003,
SYNS, and Semantic3D datasets respectively), and that larger
distances are dominated by non-ground objects.

The third result to note is that there are similarities
between the distributions of ground distances for all three
datasets and the distribution of distances to a flat ground
surface (Fig. 6a). The latter distribution was computed
assuming an ideal LiDAR scanner with a height of 1.65 m
positioned on top of flat ground surface. This distribution
both starts and peaks at 2.33 m. This particular value
depends on the height of the scanner and the fact that the
scanner did not scan below 135◦ (just like the scanners for
all three datasets). The similarities suggest that the labelling
of ground and non-ground points was done correctly by our
implementation of the CSF method, and that visible points
at near distances are indeed dominated by ground points.
We explore these distributions more precisely and in greater
detail in the following two experiments.

3.2 Distance Distributions as a Function of the Angle of
Elevation
Figure 7 shows the distributions of all distances as a
function of the angle of elevation (0◦ is the horizon) for
all three datasets for all distances (first column), distances
to the ground (second column), and distances to non-
ground objects (third column). These distributions were
created using pulse-sized bins which make precise visual
comparisons with Yang and Purves’ own distribution [53,
Fig. (5a)] difficult. That said, we note that the three
distributions of all distances as a function of elevation (first
column) present three key features identified by Yang and
Purves which suggest that our results are compatible with
theirs. First, probability density is spread over a wider range
of distances in the upper halves of distance distributions
(above 0◦, the horizon) than in the lower halves. This
is indeed the case across all three datasets, and is easily
understood: distances below the horizon are limited by the
ground. Second, the range of distances is widest near 0◦ (the
horizon) and shifts toward nearer distances as the elevation
departs from 0◦ both above and below the horizon. This is
to say that, if one were to divide the field of view in three
sections—the sky, the horizon, and the ground—then there
are more distant objects to perceive at the horizon. The lower
third of the field of view is typically occupied by the ground
which is close to the viewer. The upper third of the field
of view is the sky which typically contains few objects. For
example, for a building to be visible at 20◦ of elevation and
at a distance of 100 m, it has to be at least 36 m tall (over
10 stories high). Third, Yang and Purves identified a ‘‘single
salient ridge’’ below the horizon. In our Fig. 7, this ridge
appears in red in all three datasets, starts between −5◦ and

−10◦ of elevation, and stretches downwards. The location
of this ridge—similar to that of the peaks in Fig. 5 and
Fig. 6—suggests that the ridge represents distances to the
ground.

Fig. 7 also shows the distributions of distances as a
function of the angle of elevation for ground points (second
column, Fig. 7b, 7e, and 7h) and for non-ground objects
(third column, Fig. 7c, 7f, and 7i). The first result to note
is the presence of the red ridge in the ground distributions,
its absence from non-ground distributions, and the fact that
the distribution of distances as a function of elevation for a
flat ground surface (dashed gray line) goes straight through
the red ridge. This confirms that it was indeed due to ground
points, and its location further suggests that it is most likely
related to the peaks in the distributions of all distances
and ground distances in Fig. 5. The second result to note
is the presence of ground points in the upper half of the
distribution (above 0◦, the horizon). It is not obvious from
the log color scale, but these only represent 1.6%, 1.3%,
and 1.3% of all ground points in the YP-2003, SYNS, and
Semantic3D datasets respectively. Such a small proportion of
points can largely be explained by natural variations in the
landscape (non-planar ground) and, to a smaller degree, by
imperfections in the ground and non-ground point labelling.
The third result to note is how similar the distributions
of non-ground distances (Fig. 7c, 7f, and 7i) are to those
of the distributions of all distances (Fig. 7a, 7d, and 7g).
That their upper halves (above 0◦) are similar is expected:
non-ground points represent the vast majority of points
above the horizon (0◦). It is surprising however that, save
for the red ridge (discussed above), they are rather similar
below the horizon as well. One part of the explanation is
that this is again due the ground and non-ground point
labelling. It is possible that the method and our choice of
parameters havemade it so that ground points are sometimes
erroneously labelled as non-ground points. Another part
of the explanation is that the ground directly supports
most objects, and indirectly supports almost all others. The
distributions of non-ground distances below the horizon
may, in other words, be composed of distances to objects
resting on the ground.

3.3 The Impact of Viewing Height on Ground and
Non-ground Distributions
Figure 8 shows the impact of viewing height on distributions
of all distances, distances to the ground, and distances to
non-ground objects for the SYNS and Semantic3D datasets.
These were obtained by simulated vertical repositioning of
the scanner described earlier. Figure 9 provides log-log plots
of the same data. The plots for all distances (Fig. 8a and 8d)
are very different from the one presented by Yang and Purves
[53] in their figure 3(c). There are a couple of reasons for
this. First, whereas they considered only horizontal distances,
namely ±2◦ above and below the horizon, we considered
distances at all elevations. Second,we only show the first 50m
of the distributions, since this is where the interesting features
are. Third, we don’t use the YP-2003 dataset in this analysis.
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Figure 7. Probability density distributions of distances as a function of the angle of elevation using pulse-sized bins for the YP-2003, SYNS, and Semantic3D
datasets. The same color scale is used for all figures and was chosen to match the colors in Yang and Purves’ Fig. 5(a) [53]. The first column, Fig. a, d,
and g, represent the results for all distances (i.e., both ground and non-ground distances). The second and third columns represent distances to the ground
(Fig. b, e, and h) and distances to non-ground objects respectively (Fig. c, f, and i). Distributions for all distances in the first column are compatible with
Yang and Purves’ findings: in all three datasets, probability density is spread over a larger area above than below the horizon, probability density shifts
toward nearer distances as the angle of elevation departs from 0◦ both above and below the horizon, and there is a red ridge of dense probability density
below the horizon. As for the distributions of ground and non-ground distances in the second and third columns, they show that the red ridges below
the horizon in the distributions of distances in the first column are attributable to ground points, that the distribution for a flat ground surface (the dashed
gray line) goes straight through the red ridge, that points above the horizon in ground distributions represent only a small percentage of all ground points
(between 1.3% and 1.6%), and that the similarities between non-ground distributions and distributions of all distances may be due to both the labelling
ground and non-ground points, and to the relationship between the ground and non-ground objects. See text.

This is simply because simulating changing the scanner’s
height was achieved using the parts of the SLR method [31]
which generates point cloudswith a lower angular resolution,
and the YP-2003 dataset’s angular resolution was already low
compared to that of the other two datasets.

Notice the dual pattern in the distributions in Fig. 8(a)
and 8(d): on the one hand, the peaks of the distributions
appear to become closer to 0 m as the viewing height is

moved toward the ground; on the other hand, the tails of the
distributions do not appear to change with viewing height.
The reason for this dual pattern is shown in the second
and third columns of Figs. 8 and 9: the distributions for
the ground (Fig. 8/9b and 8/9e) are different from those for
non-ground points (Fig. 8/9c and 8/9f). The distributions
of distances to the ground are compressed toward 0 m as
the viewing height is moved toward the ground, whereas the
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Figure 8. Distributions of distances at various viewing heights for all
points (Fig. a and d), ground points (Fig. b and e), and non-ground points
(Fig. c and f). Here, SLR was used to reposition the scanner vertically
while maintaining its original position. The five distributions in each graph
represent the distributions of distances at each of five heights: 1.6 m above
scanner height (3.25 m above the ground), 0.8 m above (2.45 m),
scanner height (1.65 m), 0.8 m below (0.85 m), and 1.6 m below
(0.05 m). In the distributions of distances to all points (Fig. a and d),
two patterns emerge: the peaks appear to approximately shift toward
0 m as the scanner is lowered toward the ground, while the tails appear
constant. The distributions of distances ground points (Fig. b and e) and
non-ground points (Fig. c and f) show that the two patterns observed in the
distributions of all distances appear to be due to separate patterns in the
distributions of ground and non-ground distances. Namely, distributions of
ground distances approximately shift toward 0 m as the scanner is lowered
toward the ground, and non-ground distributions are not impacted by
height.

distributions of non-ground distances are roughly constant.
This behavior of the ground distributions is qualitatively
similar to the behavior of a perfect ground plane with no
occluding objects in the scene; we describe this effect in
greater detail below. As for the non-ground object pattern,
our findings extend those of Yang and Purves [53]: whereas
they had found that distances near horizontal directions were
roughly constant across viewing heights, our results show a
similar result when all viewing directions or elevations are
considered.

We do note one exception. The distributions of distances
to ground points and non-ground points for the ‘‘1.6 m
below’’ viewing height display a lower proportion of ground
points and a greater proportion of non-ground points overall
in comparison to those of other viewing heights. This

Figure 9. Distributions of distances at various viewing heights for all points
(Fig. a and d), ground points (Fig. b and e), and non-ground points (Fig.
c and f). This figure is based on the same data as Fig. 8, but shows the
distributions using a log-log scale rather than a semilog scale.

difference can be seen clearly in Fig. 8. (The curve for viewing
height 0.05 m above the ground is light gray.) We believe
this difference to be a characteristic of the viewing height:
with the scanner so close to the ground, ground points will
tend to occlude large parts of the distant scene, in particular
occluding other parts of the ground. As a result, non-ground
points will be more likely to be visible at this viewing height
than at other heights, and ground points will be less likely to
be visible at this viewing height than at other heights.

The distributions presented in Figs. 8 and 9 were
somewhat noisy. To obtain smoother curves, we augmented
the data by applying the SLR method and horizontally
repositioning the sensor. The results corresponding to Fig. 8
are shown in Figure 10. The qualitative behavior described
above is now more evident because the curves are smoother.

The results for the ground surface can be explained by
a scaling of distribution of distances as a function viewing
height. Consider an observer with an eye height (viewing
height) of 1.65m standing on a flat horizontal ground surface
containing no objects, so that only the ground is visible below
the horizon. If that observer were to look at the ground at
angles of 45◦ below the horizon and 30◦ below the horizon,
the points on the ground at the center of the observer’s gaze
would be at a distance of approximately 2.33 m and 3.30 m.
Consider now two other observers on the same surface but
with eye heights of 0.165 m and 16.5 m. For the viewing
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Figure 10. The same distributions as in Fig. 8, but this time using SLR
to reposition the scanner both horizontally and vertically. The resulting
distributions are smoother due to the greater number of scans.

angles, the distances at the center of their gazes would be
0.23 m and 0.33 m for the first observer, and 23.33 m and
33 m for the second. As this example demonstrates, as eye
height increases or decreases by a factor of α, so do the
distances. This is because, given a fixed viewing angle θ , there
is a linear relationship between an observer’s eye height h and
the distance d from the observer’s eyes to the point on the
ground at the center of their gaze, namely d = h · cos θ . For
a flat horizontal surface, this would translate into a change
in the position of the distribution’s peak and in a change in
the peak’s magnitude (to maintain a total probability of 1).
For natural scenes like those from our datasets in which the
ground surface is neither perfectly horizontal nor perfectly
flat, the scaling effect is still visible though understandably
less pronounced.

As for the non-ground points, the distribution is roughly
invariant over changes in viewing height. We believe this due
to three effects, all of which are small. First, when the actual
(not simulated) viewing height changes, some scene points
become occluded and others become visible. This effect is
similar to that of half-occlusions in binocular stereo where
some points are only visible from one eye or the other but
not both. It has been shown that, except in densely cluttered
scenes with small objects [26], most scene points that are
visible to one eye are also visible to the other eye (The
fraction of half-occluded points depends on the interocular
distance and on the number and size of objects in the scene

[26]; but for the SYNS and Semantic 3D scenes and for
the range of change of the viewing height in our analysis,
we believe that the vast majority of points in those scenes
would have remained visible if the true scanner height had
been changed.). For this reason, we believe that, only a small
proportion of points would only be visible from one viewing
height but not another, if the actual viewing height were to
change. Second, SLR subsamples at each viewing height (both
at the original and at simulated viewing heights), obtaining
a lower resolution distance distribution (see Fig. 4). Thus,
even if there were no half occlusions effects in the actual
scene, the distributions at different viewing heights could
be composed of different sample points. We see no reason
why this sampling effect itself should bias the distribution
as viewing height changes. Third, while the distance to each
point does change as the viewing height is raised or lowered
(especially the distance to points close to the viewer), as the
viewer moves away from one point, it likely moves towards
another. This results in at most a small net effect on the
distribution.

4. GENERAL DISCUSSION
There is strong evidence that human visual perception is
biased by the statistics of the natural world in which the
visual systemhas evolved. In particular, ground surfaces have
been shown to play an important role in visual perception.
Yet, previous quantitative studies of natural scene statistics
and distance perception have treated all distances alike,
i.e. whether they were distances to ground points or to
non-ground points. Here, using a simple filtering method
for labelling points [54], we revealed important differences
between the statistics of distances to the ground and those
to non-ground points. We showed that the distribution of
distances to the ground cannot reliably be estimated using
either the lower-half of ground points or a flat, artificial
horizontal surface. We also examined how distributions
of distances change with viewing height, and provided an
explanation for the different patterns of results for both
distances to the ground and distances to non-ground objects.

The distinction we have drawn between ground and
non-ground distributions suggests a variety of different
and new experiments to address distance perception. These
experiments could examine situations in which the ground
surface is non-planar, as well as situations in which scenes
contain many objects that occlude large parts of the ground
surface. A non-planar ground surface can also occlude itself
(and the horizon), which raises the question of how robust
are horizon-based cues [40] that have inspired in many
important past studies of distance perception. Further studies
of natural image statistics of ground versus non-ground
could shed light on this issue, by specifying how inherently
reliable horizon-based cues are for perception in real scenes.
Although perceptual biases need not be necessarily matched
to the statistics of the world [10], understanding when the
biases do or do not match the natural scene statistics can
provide insights into what the visual system is doing (or not
doing).
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Our work also suggests future experiments on natural
image statistics themselves. Analysis of ground versus non-
ground points should become easier as more labelled
data sets emerge, for example, from the computer vision
community. Indeed, the Semantic3D dataset comes with
labelled points, although its labelling is more refined than
ground versus non-ground.Note thatwe chose to use theCSF
method’s labelling over the Semantic3D labelling, because
the CSF method had already been validated by its authors
and had shown good results [54], and because we preferred a
systematic and consistent approach across the three datasets.

Another interesting direction for future work might be
to study and model the statistics of natural ground surfaces
as surfaces—not just clouds of points as we have done, but
also fitting terrain models to natural ground surfaces. Such
models could be relevant to previous perceptual studies of
geographical slant, which is the slope of the ground relative
to the horizon. These studies have demonstrated large biases,
e.g. observers overestimate the geographical slant by 50%
or more [37]. The reasons for these biases are unclear, and
so one could ask whether natural scene statistics might be
involved. Previous work has also suggested that non-visual
factors could be involved [44], or that there may be a
bias where visual directions near the horizon are encoded
more precisely for ecological reasons [8]. It is worth noting
that work in this field has typically been carried out in
scenes—either real or in virtual reality—with simple ground
surfaces consisting of a small number of planes (typically just
one or two). It would be interesting to revisit these studies
using non-planar ground shapes, such as landscapes that one
finds in nature.

Finally, one could examine other statistics of ground and
non-ground points as well. The SYNS study [1] addressed
the distributions of surface orientations, and considered how
the statistics varied with viewing elevation. The authors
observed differences in surface slant and tilt distributions at
different elevations both above and below the horizon, and
attributed these differences to the dominant scene features
in these regions, such as ground, ceiling, sky, or in the
case of indoor scenes, walls. Their results remind us that
a finer categorical distinction of ground and non-ground
points could be important, especially for perceptual problems
that go beyond just distance perception but that involve
perception of scene objects and layout.
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