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Abstract. Portable X-ray imaging systems are routinely used
by bomb squads throughout the world to image the contents of
suspicious packages and explosive devices. The images are used
by bomb technicians to determine whether or not packages contain
explosive devices or device components. In events of positive
detection, the images are also used to understand device design and
to devise countermeasures. The quality of the images is considered
to be of primary importance by users and manufacturers of these
systems, since it affects the ability of the users to analyze the
images and to detect potential threats. As such, there exist national
standards that set minimum acceptable image-quality levels for
the performance of these imaging systems. An implicit assumption
is that better image quality leads to better user identification of
components in explosive devices and, therefore, better informed
plans to render them safe. However, there is no previously published
experimental work investigating this. Toward advancing progress
in this direction, the authors developed the new NIST-LIVE X-ray
improvised explosive device (IED) image-quality database. The
database consists of: a set of pristine X-ray images of IEDs and
benign objects; a larger set of distorted images of varying quality of
the same objects; ground-truth IED component labels for all images;
and human task-performance results locating and identifying the
IED components. More than 40 trained U.S. bomb technicians
were recruited to generate the human task-performance data. They
use the database to show that identification probabilities for IED
components are strongly correlated with image quality. They also
show how the results relate to the image-quality metrics described
in the current U.S. national standard for these systems, and how
their results can be used to inform the development of baseline
performance requirements. They expect these results to directly
affect future revisions of the standard. c© 2021 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.Percept.Imaging.2021.4.1.010502]

1. INTRODUCTION
Bomb technicians perform a vital role in the community,
helping to locate explosive devices and render them safe
before they can do harm. In 2018 alone, there were 17,968
explosives related incidents in the United States, according
to the United States Bomb Data Center (USBDC) (The
USBDC is part of the Bureau of Alcohol, Tobacco, Firearms
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and Explosives which is part of the Department of Justice.)
[38]. These incidents included 7,305 explosives recoveries,
7,408 suspicious or unattended packages, and 1,628 bomb
threats. The most serious incidents were the 706 explosions
and 289 bombings that led to more than 72 injuries and 16
fatalities, a number could have been much higher if not for
the work of bomb technicians. In the United States andmany
other countries, responsibility for the disposal of explosive
devices is divided between military and civilian agencies.
In the military realm, explosive ordnance disposal teams
are responsible for dealing with unexploded conventional
munitions, improvised explosive devices (IEDs), and other
explosives in a military context. Similarly, while public safety
bomb squads are responsible for addressing these potential
threats in a civilian context. We will use the phrase bomb
technician to refer to both groups of experts throughout.

Portable X-ray systems are one of the most important
tools used by bomb technicians, and are used routinely in
the identification and disposal of IEDs. The use of these
systems serves two main purposes: to determine whether
a suspected device is benign or an IED; then, if an IED is
located, the X-ray system is used to help understand the
design of the IED and to formulate a plan to render it safe.
The X-ray systems used for this purpose must be small,
battery powered, and highly portable, since IEDs can be
hidden almost anywhere. Since IEDs are sometimes hidden
in vehicles or utilize containers such as pressure cookers or
steel pipes, the sources generally use X-ray energies up to
a few hundred keV. While early X-ray systems used X-ray
film, most bomb technicians now use systems based on
digital panels that can be directly read out by a computer or
photostimulable phosphor (PSP) imaging plates that must be
exposed first then digitized by a dedicated reader.

All U.S. public safety bomb technicians are trained
and certified by the Hazardous Devices School, located at
Redstone Arsenal in Huntsville, Alabama. (https://www.fbi.
gov/news/stories/hazardous-devices-school (accessed: 10th
Dec 2020).) Their training includes courses in X-ray image
interpretation, where they are taught to interpret the design
of IEDs so that they can devise effective countermeasures.
For example, some IEDs can be ‘‘rendered safe’’ by using
a high-explosive charge to disrupt the trigger mechanism
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before it can fire. During their X-ray interpretation training,
bomb technicians are taught the five major constituent
components of an IED: switches, detonators, explosive
charges, power sources or batteries, and usually some form
of container. We will use the same component categories
in this work. Since at least 2016, all bomb technicians have
been trained to view, enhance, analyze, and label their images
using the X-ray Toolkit (XTK) software. (https://xraytoolkit.
sandia.gov (accessed: 10th Dec 2020).)

While there have been previous efforts to characterize
the performance of commercial portable X-ray systems
for use by bomb technicians, few if any of these efforts
resulted in publications in the open literature. One notable
effort in recent years has been the Response and Defeat
Operations Support (REDOPS) program, (REDOPS is a
Department of Homeland Security (DHS) Science and
Technology (S&T) Directorate program that supports public
safety bomb technicians.) which has tested dozens of X-ray
systems as part of their ‘‘bomb squad test bed X-ray
assessment.’’ REDOPS assessments involve gathering bomb
technicians to test equipment and assess the usability, relia-
bility, and effectiveness of that equipment. The assessments
also included objective image-quality assessment using the
Institute of Electrical and Electronics Engineers/American
National Standards Institute (IEEE/ANSI) N42.55 standard.
The testing is described in reports that can be accessed at
the Law Enforcement Enterprise Portal (LEEP), (LEEP is an
electronic gateway that provides centralized access to a wide
range of law-enforcement resources (see https://www.fbi.gov
/services/cjis/leep (accessed: 10th Dec 2020)).) to those with
permission to access this law-enforcement sensitive data.

Measurement standards for image quality are widely
used in security imaging [18], and there have been a
number of standards developed specifically for portable
X-ray systems used by bomb squads. One example is
the National Institute of Justice (NIJ) standard 0603.01,
which is entitled ‘‘Portable X-Ray Systems for Use in Bomb
Identification’’ [29]. (Development of the 2007 revision of
NIJ 0603.01 was led by Nicholas Paulter.) The standard
describes a test object that consists of bar patterns and
rings of wire behind varying thicknesses of steel blocking
material. The standard also gives minimum performance
specifications for image quality, that require the system to
permit 33Americanwire gauge (AWG) tungstenwire behind
10 mm of steel to ‘‘be seen.’’ This and all previous similar
standards were based on subjective tests, hence human visual
judgments were used to determine whether objects were
‘‘resolved’’ or ‘‘seen.’’

The most recently developed U.S. national standard for
these systems is the IEEE/ANSI N42.55 ‘‘American National
Standard For The Performance Of Portable Transmission
X-Ray Systems For Use In Improvised Explosive Device And
Hazardous Device Identification’’ [20]. (The first revision of
IEEE/ANSI N42.55 was published in 2013 and was chaired
by Nicholas Paulter. The vice chairs were Jack Glover and
Lawrence Hudson.) The standard was a major revision
of the NIJ standard, that included an overhaul of the

image-quality section and a completely new test object. The
transition of most systems to digital imaging allowed for
the specification to add test methods that were analyzed
using standardized and objective algorithms, as opposed to
subjective human judgments. The N42.55 standard defined
a set of image-quality metrics including: spatial resolution;
dynamic range; steel penetration; and organic penetration.
The objective test methods described in the N42.55 standard
have since been adapted for use with other security imaging
technologies, such as the cabinet X-ray systems that are
commonly used to scan carry-on luggage at airports [11].

1.1 Related Work
Despite the importance of portable X-ray systems in thework
of bomb squads, there has been very little academic research
into their efficacy. There have been many extensive studies
of the performance of X-ray devices in the medical domain,
including detailed studies of detection rates as a function of
image quality and other human factors.More detailed studies
into the factors affecting detection have also been conducted
in other areas of security imaging, such as aviation security
andmilitary applications.We will briefly review some of that
work to provide some context for the work presented here.

The detection of simple objects in images has been a
topic of interest for many years [3]. The archetypal example
of detecting a disk on a background of white noise was
an early problem of interest, since statistical methods could
be applied and detection thresholds could be obtained, for
example, the Rose criterion [31]. In subsequent decades,
methods were developed formore complex signal shapes and
less simplified noise patterns. These methods oftenmade use
of statistical decision theory and some type of ideal observer
thatmade a decision about the presence or absence of a signal
based on a statistical calculation of maximum likelihood.
Most of these models dealt with the so-called ‘‘signal known
exactly/background known exactly’’ (SKE/BKE) detection
problem, which is often an over-simplification of real object
detection tasks. Many methods calculate the signal-to-noise
ratio, often in Fourier space, given the presence of a known
signal. Generally, thesemethods have shown good agreement
with measured detection rates for humans, often after
application of an efficiency function to correct for the fact
that humans are suboptimal statistical decision makers [26,
32]. These methods have been widely used in the medical
field [5, 6, 34, 41].

X-ray screening systems have been used in aviation
security for many decades. While there has been a large
volume of work studying human task performance, only
some of it has been published in the open literature, due
to the security sensitive nature of the results. For example,
the Transportation Security Laboratory (TSL) measures
detection rates for security-relevant threats for all X-ray and
millimeter wave imaging systems used in U.S. airports, but
does not distribute the results since they are considered
classified [14]. Despite the sensitivity of the results, some
groups have published studies investigating different aspects
of human task performance in aviation security. For example,
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researchers at the Center for Adaptive Security Research and
Applications (CASRA) have investigated how bag screening
task performance is affected by such factors as: screener
training [22]; visual knowledge [33]; screener age, gender
[30] and other demographic factors [4]; clutter [33]; object
orientation [33]; 2D vs 3D imaging [16]; screener work
breaks [7]; and image enhancement techniques [27]. There
does not appear to be much, if any, published work studying
the effect of image quality on task performance in aviation
security. This is somewhat surprising, given the importance
that is placed on image quality, as evidenced by the
considerable resources devoted to image-quality standards
[19], the wide use of such standards for people screening [2],
checked [18] and carry-on [11] baggage scanning, and the
reported economic benefits that such standards bring [25].

The U.S. military has devoted considerable effort toward
developing semi-analytical models that predict human task
performance as a function of image quality, particularly at
infrared wavelengths. Early efforts generally concentrated on
resolving power as the metric of choice, using a Johnson
criterion as a threshold. The Johnson criteria give the
resolving powers necessary to detect, recognize, or identify a
target based on the number of line pairs on target. In his 1958
paper, Johnson’s empirical measurements suggested that (6.4
± 1.5) line pairs per minimum target dimension were
required for a human operator to identify an object, whereas
only (1.0 ± 0.25) line pairs per minimum target dimension
were needed for detection [21]. Beginning in the 1990s, the
U.S. Army Night Vision and Electronic Sensors Directorate
(NVESD) spearheaded the development of a series of more
advanced models that gradually matured into night vision
integrated performance model (NV-IPM) [37]. The NV-
IPM task-performance model is a spatial-frequency-domain
model for predicting human task performance based on the
properties of the target, imager, and the human visual system.
In addition to the tanks, self-propelled guns, and trucks that
the model was initially validated against, the model has also
been used to predict face recognition [36] and ship detection
performance [39]. More details about NV-IPM can be found
in [35] and [36]. For a more complete historical review of
the task-performance models that are relevant to military
applications, see Vollmerhausen and Jacobs [40].

In the context of visible light (VL) imaging, early stan-
dardization efforts in task-based video quality assessment
led to the development of Recommendation ITU-T P.912,
which introduced basic definitions, methods of testing, and
protocols for conducting subjective psychophysical experi-
ments, all for developing better was to evaluate the quality of
videos arising in target recognition tasks [9]. Another major
effort is theDHS S&TVideoQuality in Public Safety (VQiPS)
working group, which was initiated in collaboration with
the NIST Public Safety Communications Research (PSCR)
program, to provide guidance documents and requirements
regarding the appropriate use of video systems for public
safety. Some later work has investigatedmethods of assessing
video quality for task-based video to study the effect of

compression and other scene characteristics such as: target
size, lighting conditions, and temporal complexity [8, 23, 24].

We are not aware of any task-performance studies
related to portable X-ray security imagers. In this article, we
describe our work performing such a study, with particular
emphasis on the effect of image quality on detection
performance. We also show how such data can be used
to inform the development of future standards and as
part of novel image-quality research. We plan to make the
database available to researchers for use in other ways,
for example, as a benchmark for machine-learning-based
automatic detection algorithms for IED components (please
contact us if you are interested in using the database as part
of your research).

The database has already been used in Gupta et al [12] to
developmodels that predict the effect of image quality on the
detection performance. The suite of task prediction models
described in that paper is referred to as quality inspectors of
X-ray images (QUIX) andwas based on perceptually relevant
natural scene statistics (NSS). This was the first work of its
kind, and would not have been possible without the database
that we describe in detail in this manuscript.

2. NIST-LIVE X-RAY IED IMAGE-QUALITY
DATABASE

The database of X-ray images of IEDs, which we refer
to as the NIST-LIVE X-ray IED image-quality database
was created in two steps. First, a set of pristine images
of the IEDs and IED components were produced using
a high quality X-ray imaging system. Next, we developed
physics-based synthetic image-quality degradation models
that allowed us to create a much larger database, by applying
varying levels of image-quality degradation to each pristine
image. The pristine images still have some noise and finite
spatial resolution, and are called pristine because they were
generated using a high quality imaging system and to
distinguish them from the degraded images.

2.1 Pristine Images
The image database was created with the intent that it
reflect images, including distorted images, that would be
encountered by practicing bomb technicians in the field. In
particular, we concentrated on improvised explosive device
(IED) scenarios where IED components were hidden in
backpacks, boxes, trashcans, and other everyday containers.
We obtained IEDs from a commercial source that specializes
in manufacturing explosive simulants and inert IEDs for
testing and training purposes. There were seven basic IED
designs and some basic information about each is given in
Table I. It is common to divide an IED into four major
component types: explosive charge; activator; initiator; and
power source. The explosive charge is the bulk material that
releases the majority of energy in an explosion. By analogy,
the equivalent component in a chemical IED would be the
one or more bulk chemicals in the device. An activator
is a component that can render the device operable or
inoperable, for example, an arming switch, sensor, or remote
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Table I. Details of the inert IEDs used in this study, including the activation and initiation methods as well as the type of charge and power source utilized.

IED type Switch/activator Detonator/initiator Charge/explosive Power source

Suitcase IED Cell phone trigger and arming switch. Once armed,
the device can be remotely activated by calling the
cell phone.

Commercial blasting cap and
cast-TNT booster

ANFO simulant 6 V Lantern battery

Photocell activated pipe bomb Photocell and arming switch. Once armed, the
device is activated by exposure of circuit to light
(e.g., by opening the bag or box containing the
IED).

Squib Metal pipe bomb 2× D batteries

Anti-probe IED Two layers of Al foil separated by paper. Activated
by physical entry attempt which causes foil layers
to touch and complete circuit.

Commercial blasting cap C4 simulant 2× D batteries

Chemical IED Microswitch to arm. Commercial blasting cap Liquid chemical simulants 2× D batteries

Laundry detergent PVC pipe
IED

Ball tilt switch and arming switch. Once armed, the
device is activated by ball switch which is triggered
by physical movement of IED.

Squib Smokeless powder
in PVC pipe

2× 9 V batteries

Steel plate IED Timer and arming switch. Once armed, the device is
activated by an analog timer.

Squib Black powder simulant 1× 9 V battery

Pressure cooker IED Radio-controlled servo switch (remote activated). Squib Black powder simulant 4× AA batteries

Figure 1. A few examples of the pristine X-ray images from the NIST-LIVE X-ray image database.

activation device. The initiator is the component that causes
the charge to initiate, for example, a commercial blasting
cap can be used to detonate a secondary high explosive. The
power source is a component that provides power to the other
devices in the IED, for example, a battery that is used to set off
a detonator. Sometimes a fifth component is listed, namely,
the body that the IED is contained in (e.g., pipe or pressure
cooker etc.).

The pristine images were generated using two portable,
battery powered, pulsed X-ray sources. Such sources are
almost ubiquitous among bomb technicians in the United
States of America, since they are generally smaller, lighter,
and higher energy than portable continuous, constant-
potential sources. One source was a lightweight (about
2.1 kg), lower energy (approximately 150 keV maximum)
pulsed X-ray source, while the other was a larger, heavier,
(about 5.3 kg) and higher energy source (approximately
270 keV maximum). The images were collected using PSP
imaging plates (about 36 cm × 43 cm), at a source-to-
detector distance of 200 cm, and read using a dedicated
PSP reader. The pristine images had a grayscale depth of 16
bits, a pixel pitch of nominally 65 µm, and each image was
approximately 5300× 6300 pixels.

The pristine image database consisted of images of the
seven IEDs in Table I as well as images of benign everyday
objects that could potentially be used to conceal an IED, such
as a trash can or toolbox. To create a larger variety of images,
the IEDs were imaged from a number of angles and in a
variety of situations. For example, IEDs were imaged out in
the open, and in trashcans, toolboxes, and backpacks. Some
were imaged through steel sheets and some had a laptop
placed in front of them to add clutter to the image. By this
process, 58 pristine X-ray images were generated. A subset of
these were later used in the human study and some examples
of these are shown in Figure 1. Since the images had more
pixels than could be displayed on a typical computermonitor,
and since they had 16 bits of grayscale depth, it was generally
necessary to zoom and adjust the contrast to see all the detail
present in the images (see Figure 2). Since the design of each
IED was known, a set of ground-truth bounding boxes and
component labels were created.

2.2 Image Degradation Model
Image degradation algorithms were developed based on the
underlying physics of the imaging system as well as empirical
observations about the noise properties of similar portable
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Figure 2. An image of an IED that is obscured behind a steel sheet. The
area inside the green box contains the switch. Much more detail is visible
when basic enhancement methods are used on these high fidelity images,
as is evident in the expanded and contrast-adjusted area shown inside the
blue box.

X-ray systems. Degradation models were created to reduce
the spatial resolution of the images and to corrupt them
with spatially correlated noise (SCN). Using these models,
we were able to expand the database of pristine images into a
much larger database of varying quality images.We shall first
describe our generative noise model, and then our model for
reducing the spatial resolution.

It is common in X-ray imaging, and in X-ray physics
more widely, to assume that the counts received by individual
X-ray detector elements follow Poisson counting statistics.
The data plotted in Figure 3 are from a typical pristine
image in our database, and were taken from the regions
with lower variance-to-mean ratio (i.e., relatively flat). The
image shows the roughly linear relationship between local
mean and local variance that one would expect from a
system exhibiting Poisson-like photon-counting statistics.
We therefore developed a syntheticmodel of image noise that
would also show Poisson-like local statistical properties.

Let us assume that a detector element receives an average
of λ counts during its integration time, and that each
count yields an equal grayscale response. In this situation,
the probability of detecting x counts follows a Poisson
distribution with mean λ:

Pr(x)=
e−λ(λ)x

x!
. (1)

Figure 3. Scatter plot of the local variance in grayscale (measured over a
31 px by 31 px region) as a function of the mean grayscale of that region.
These data were taken from one of the pristine X-ray images, so many of
the regions showed high variance due to the structure of the image content
(e.g., edges). These high variance regions are not included in this plot, in
particular, only that quarter of the data with the lowest variance-to-mean
ratio is shown. This is why the plotted data has a flat diagonal ceiling to
it.

In the limit of high counts, it can be shown that this
distribution can be approximated by a Gaussian distribution
with a standard deviation of

√
λ (i.e., a variance equal to λ).

These observations can be used to determine the
relationship between pixel grayscale units I and the corre-
sponding number of absorbed X-rays N [17], which can be
assumed to be linear for the imaging plate detectors at the
dose levels considered in this work [1]

I = g ·N , (2)

where g is the gain of the imaging device, measured in
average grayscale units per photon interaction event. One
consequence of these relations is that the image will exhibit a
constant variance-to-mean ratio on locally flat regions of the
image

Var[I ]
E[I ]

=
g 2
·Var[N ]
g ·E[N ]

= g
λ

λ
= g , (3)

where Var[I ] and E[I ] are the variance and expectation value
of I . This equation can be used to determine g from the slope
of the data in Fig. 3.

This model can be used to introduce greater fractional
noise, by simulating an image with fewer counts. Starting
with the pristine image, Iprist(x, y), let us assume we wish to
model the noise associated with an image that had k times
fewer counts. The effective number of counts, Neff, would be
equal to N/k, and the expected noise distribution would be
a normal distribution with a standard deviation of

√
N/k.

These values could be determined in grayscale units using the
previously determined coefficient, g . We can then calculate
the simulated noisy image, Nnoisy(x, y), using

Nnoisy(x, y)=
Nprist(x, y)

k
+Nnoise, (4)
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Figure 4. Noise power spectra (NPS) were measured for a variety of portable X-ray systems marketed to bomb technicians. The y-axes are in units of
(grayscale units)2 and the x-axes are in units of cycles/mm. (a) A typical NPS obtained from one of the systems. The NPS follow a αf−p form with a fitted p
value of approximately 1.84. The error bars represent the standard error based on the independent NPS estimated from each row. (b) The NPS measured
for all investigated systems are plotted against frequency. Each spectrum was normalized to have a value of 1 at 0.04 cycles/mm. The black line shows
our SCN noise model, which we set to have frequency dependence that represented a worst case scenario of p = 2 (i.e., a large but representative
gradient). Uncertainties on the experimental points are generally in the 1% to 30% range, but have been left off (b) to make the trends more visible.

whereNnoise is randomly sampled fromanormal distribution
with a variance of N/k, representing the simulated additive
noise that one would expect due to the reduced counts being
simulated. Since the signal is reduced by a factor of 1/k and
the additive noise is reduced by a factor of 1/

√
k compared to

the expected level of noise in the original image, the fractional
noise is increased by a factor of

√
k. Since Iprist had some

natural noise before the simulated noise was added to it, the
level of noise in the final image is

√
1+ k times the noise in

Iprist. This is slightly larger than the intended value of
√
k,

but close enough for the large values of k considered here
(k= {8, 16, 32, 64, 128, 256, 512, 1024}).

While the stationary Poisson noise described so far
is important, many X-ray imaging systems also exhibit
noise with more spatial structure, which we will refer
to as spatially correlated noise (SCN). We surveyed 17
commercially available portable X-ray systems, all of which
were marketed to bomb technicians. Each system included
a portable detector and a portable X-ray source, and while
some systems used the same source models, all 17 had
different detector designs. The noise power spectrum (NPS)
of each system was recorded after the detector was irradiated
from approximately 2 m. All the systems showed an NPS
whose magnitude decreased with increasing frequency, and
most showed an exponential decrease over part ormost of the
frequency range up to the Nyquist frequency. The empirical
densities of the NPSwere fit to the noise densitymodel αf −p,
and it was found that the best-fit values of p generally fell in
the range between 0.3 and 2. A typical example NPS and fit is
shown in Figure 4(a). Fig. 4(b) shows all the measured NPS
as well as the NPS associated with our SCN model.

The final noise model was taken as the product of the
Poisson and SCN noise models, so that the model has the

appropriate properties with respect to spatial frequency and
intensity. The additive noise field,NSCN,noise, is then given by
the equation

NSCN,noise(x, y)= SCN (x, y)
√
Nnoise
k
+ η, (5)

where SCN (x, y) is a noise field having a power spectrum
proportional to f −2 that has been normalized to have unit
local variance as described in Appendix A. The constant
η accounts for other sources of noise that might become
significant at low count rates, that we have empirically set to
a value of 1.

The spatial resolution of the images was also degraded.
Spatial resolution can be affected by a range of factors and
phenomena, from pixel pitch to source-size broadening.
Whatever the factor that limits the spatial resolution of a
system, in the context of threat identification, the end result
is an attenuation of the higher frequency components of the
signal associated with the threat. We chose to model this
effect by using Gaussian blur, such as one might see when
spatial resolution is limited by source broadening. In the
remainder of this work, we use the term blur to refer to
the degradation of the spatial resolution. The reduction in
spatial resolution was simulated by applying five different
levels of blur to each image, using Gaussian kernels with
standard deviations of σb = {8, 16, 32, 64, 128} pixels. In
cases where the pristine images were degradedwith blur only,
they had an unnaturally smooth appearance. In these cases,
we used the SCN noise model described earlier to restore
representative noise to the blurred image (k= 1). This value
of k corresponds, approximately, to the level of noise in the
original image.
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Figure 5. Some examples of components that appear in the NIST-LIVE X-ray IED Image-Quality Database with varying image quality. The top row shows a
switch, the middle row a battery as viewed through thin steel, and the bottom row shows a detonator in a cluttered environment. These images are regions
of interest of approximately 700 pixels × 1300 pixels. These 16-bit pixel values in these image patches have been rescaled to 8-bit with the darkest
pixel(s) being mapped to a grayscale value of 0 and the brightest pixels being mapped to a grayscale value of 255. The image quality was degraded
such that σb = 16 and k = 64.

The final degraded image Ndegr(x, y) was generated
using

Ndegr(x, y)=
Nprist(x, y)

k
∗Gσb(x, y)+NSCN,noise(x, y),

(6)

where Gσb(x, y) is a circularly symmetric, normalized
Gaussian kernel of standard deviation σb pixels. Figure 5
shows a selection of zoomed-in regions of various IED
components as they appear in the database at different levels
of degradation.
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Figure 6. Example images are shown that demonstrate how the bomb technicians enhanced and labeled the images from the NIST-LIVE image database.
(a) An image of the chemical IED behind a laptop. The bomb technician has successfully labeled the microswitch, battery, and blasting cap, but not
the liquid chemical simulants. In the top center of the image, the brighter rectangular region shows where the bomb technician enhanced brightness and
contrast. (b) An image of the photocell IED in which the bomb technician was able to identify the pipe bomb and power source, but not the photocell
initiation mechanism or arming switch.

There are a large variety of commercial portable X-ray
systemsmarketed to bomb squads, with varying form factors
and image quality. These systems show a diversity of noise
properties, and we could not hope to analyze them all,
particularly given the restricted number of subjects we
had access to. Instead, we chose to vary two important
parameters (blur and noise) using a representative noise
power spectrum. In the interest of mapping these parameters
over the full region interest, we varied them over a range
such that the subjects began to fail at their detection task.
This means that many of the images exhibit more extreme
distortions than are observed for typical commercial systems.
One also tends not to see commercial systems that are
extremely noisy with excellent spatial resolution, or with very
low noise but poor spatial resolution. We chose to include
such images because it allowed us to understand the effects
of blur and noise separately. Moreover, we have found in
many previous studies that using a wider range of distortion
severities (than might appear in practice) helps in building
better, more accurate, and predictable models overall.

3. MEASURING THE IDENTIFICATION
PERFORMANCE OF BOMB TECHNICIANS

We recruited 41 U.S. trained bomb technicians to view
images from the database and label the IED components
they could locate and identify. (The National Institute
of Standards and Technology Research Protections Office
reviewed the protocol for this project and determined it
meets the criteria for ‘‘exempt human subjects research’’
as defined in 15 CFR 27, the Common Rule for the
Protection of Human Subjects.) All U.S. bomb technicians
are trained at the Hazardous Devices School, where X-ray
interpretation is taught using the XTK software, hence XTK
was also used to conduct this study. In most cases during
the study, the bomb technicians used the same computers

that they would use for their field work. The computers
were generally consumer-grade devices, except perhaps for
some ruggedization. The bomb technicians were recruited
with the help of the National Bomb Squad Commanders
Advisory Board (NBSCAB), who connected us with regional
contacts in different areas. All of our data were collected in
the vicinity of three cities: Washington, D.C.; Denver, CO;
and Jacksonville, FL. Each bomb technician participated for
around 15 mins to 90 mins and were asked to undertake the
following steps:

• View a series of X-ray images that may or may not
contain an IED.
• Enhance the image to the extent necessary to search
every region. This would generally involve some
zooming and contrast manipulation, since both the
size and dynamic range of the images cannot be fully
represented on consumer displays.
• Label the following IED component types, when iden-
tified: switches; detonators; explosive charges; power
sources, with a bounding box and text describing the
component. If no components were found, the image
should be labeled with ‘‘empty’’ or ‘‘nothing.’’

The XTK software saved the labels in ametadata file that
could be easily read for the purpose of data analysis, and some
example labels are shown in Figure 6.

The bomb technician task-performance data were an-
alyzed with respect to the known image-quality parameters
that were varied in the image database. This allowed for
the identification of task-performance trends as a function
of image quality and the development of models to predict
performance. Figure 7 shows example task-performance data
for a particular IED component. Component type is omitted
because the results could be considered sensitive. In Fig. 7(a),
we can observe the region in the noise–blur plane where the
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Figure 7. Some example task-performance data for a particular IED component and a particular clutter state. (a) Each point represents an attempt by a
bomb tech to locate a particular component, when that component is present. If the point is blue, the component was found (red indicates that it was not).
A small amount of random position variability was included so that it is possible to see how much data are present at each grid point. The blur level is
quantified by σb in units of pixels and the noise level is quantified by k which is dimensionless. The spacing between levels would be linear when plotted
on a log scale. (b) This plot represents task performance for the blur = 0 line from the left plot. The orange line shows a logistic regression model that has
been fitted to all the data in the left figure. Agresti–Coull binomial confidence limits are shown.

bomb technicians could no longer locate and identify this
particular IED component. One can also fit models to this
data to predict task performance in the entire noise–blur
plane, including where there were no measurements (see
Fig. 7(a)). A logistic regression model with the following
form, was used to predict the probability of identification,
PID, as a function of the known noise and blur values. The
model was fit to the measured task-performance data for
each component and clutter state. Example results are shown
in orange in Fig. 7(b) and as expected, task performance was
strongly affected by image quality.

Another strong effect observable in the data was the
negative effect of clutter on task performance. We will not
quantify the magnitude of the clutter effect, however we can
provide someoperational recommendations.When an image
is strongly affected by clutter, it would be prudent to take
additional images from other angles when it is possible. This
may make some components visible that were obscured by
clutter in the original image.

The bomb technician task-performance data described
in this section can be used for numerous purposes. In
Section 4, we will show how its analysis can be used to inform
the development of image-quality standards and to inform
baseline performance requirements. In Section 5, we suggest
some other possible uses for the data and point to some
existing publications that have already made use of it.

3.1 Subject-to-Subject Performance Variation
The primary factors affecting the ability of our subjects to
detect IED components were the clutter state and component
type, but an interesting secondary factor is the subject-to-
subject performance variation. Since all U.S. public safety
bomb technicians are trained at the Hazardous Devices
School, using the same techniques and image manipulation
software, one might naively expect participants to undertake
detection tasks using similar steps and achieve similar results.
However, analogous studies in related areas have measured

and identified a number of factors that are associated
with subject-to-subject differences in performance. Halbherr
et al. showed that the X-ray detection performance of
aviation security screeners was significantly affected by both
the recency and amount of their computer-based training
[15]. U.S. bomb technicians are required to undertake a
recertification course every three years. The National Bomb
Squad Commanders Advisory Board also recommends
that bomb technicians undertake 16 h of training each
month, although only part of this training time would
be devoted to X-ray imaging [28]. Other relevant studies
have shown correlations between detection performance and
other image-based and human factors, such as screener
age. Unfortunately, none of the above studies reported
absolute effect sizes due to ‘‘security and confidentiality
reasons.’’ While many factors can affect the performance of
an individual screener, we will use the word ‘‘skill’’ to refer to
them collectively.

The following mathematical model was used to account
for bomb technician skill. Let PID(σb, k; s,m, l) be the
probability that subject s identifies a component of type m
under clutter condition l ,

PID(σb, k; s,m, l)= S ( β0+β1σb+β2k
+β3,s+β4,m+β5,l ), (7)

where S is a sigmoid and the image-quality parameters β1
and β2 control the effect of blur and noise, respectively. The
skill parameter β3,s depends on the subject, while β4,m and
β5,l are parameters describing the effect of the component
and clutter state on detection. This model was fit to the data
and a set of β3 skill parameters were obtained. To ensure
the skill parameters could be determined with reasonable
accuracy, we restricted the fit to the 24 subjects who analyzed
at least 15 images. The best-fit skill parameters are plotted
in Figure 8, and the mean of their absolute values was 0.62.
Their values represent the shift in log-odds due to the skill
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Figure 8. The best-fit subject skill parameters (β3,s) from the logistic regression model, representing the difference in skill compared to the average observed
in the study. The length of each error bar indicates one standard deviation computed across 100 bootstrapped iterations.

of the subject. For example, let us assume that we observed
a 90% probability of detection for a D sized battery and
a given level of image quality. A participant with a skill
parameter of 0.5 would have a 94% chance of detecting
that component, whereas a bomb technician with a skill
parameter of −0.5 would have an 85% chance. So although
the effect of subject skill is statistically significant for many
participants, the change in detection probability observed in
our studywasmuch smaller than that due to component type,
image quality, or the presence of clutter or shielding. At the
95% confidence level, one subject had a skill parameter that
was significantly better than average, while five subjects had
skill parameters that were significantly worse than average.
Such a result would be expected if the population of bomb
technicians were performing as efficient ideal observers,
since it would be easy to perform worse than average, but
difficult to perform better. This could be an interesting topic
for further research.

4. INFORMING THE DEVELOPMENT OF FUTURE
STANDARDS

Images of the IEEE/ANSI N42.55 test object were collected
under the same conditions as those used for the pristine IED
images. The pristine test-object images were then degraded
using the same degradations as were applied to the IED
images, and the degraded images were analyzed using the
methods in N42.55 standard [20] to yield a set of measured
N42.55 image-quality metrics for each degradation level.
Figure 9 shows the variation of some of the metrics as a
function of blur and noise. It can be observed that the
dynamic range and the noise level in Fig. 9(a) are linearly
related, indicating that the N42.55 dynamic-range metric
captures relevant information regarding the level of noise in
the image. Similarly, a trend between the spatial resolution
and the blur can be seen in Fig. 9(b), although this trend is
affected by noise. The points with low noise show a smooth
trend (blue data), while the points with high noise show less
of a trend (yellow and light green). This should not be a great
surprise, since it is difficult to experimentally estimate spatial
resolution in the presence of very high levels of noise.

A logistic regression model was developed to predict
bomb technician task performance based on metrics derived
from the N42.55 standard. Five metrics were taken directly
from this standard: dynamic range, noise equivalent quanta
(NEQ) at 1 cycles/mm, organic material detection, spatial
resolution (i.e., frequency at which the modulation transfer
function, MTF, drops to 20%), and steel penetration. We
also considered three non-standard metrics as candidates
for inclusion in future revisions of the standard. The
candidate metrics were: MTF_feat , a feature calculated
by integrating the MTF between 0 cycles/mm and 0.25
cycles/mm; similar features, NEQ_feat and NPS_feat were
calculated by integrating theNEQ and noise power spectrum
(NPS) over the range between 0 cycles/mm and 1 cycles/mm.
The predictive model had the form

PID = S

(
β0+

8∑
i=1

βixi

)
, (8)

where S is the sigmoid function, xi is the ith of the eight
features (metrics) described earlier in this paragraph, and βi
is the regression parameter associated with the ith feature.
More complexmodels were also tried, but likely due to lack of
data, they did not give better results for the validation dataset.

The task-performance data were partitioned into dis-
tinct subdatasets, based on factors that strongly affected
task difficulty, and a different PID model was developed
each of these subdatasets. The primary factor affecting
task performance was component type (e.g., a metal pipe
explosive was much easier to detect than a switch). Sepa-
rate models were developed for the following component
types: switches, detonators, power sources, pipe explosives,
non-pipe explosives. The data were further divided into cases
where the components were: obscured by uniform shielding
material, obscured by other objects in the image (e.g., a
laptop or other clutter), not obscured by any significant
shielding or clutter. For each of these categories, a logistic
regressionmodel was fit to the human task-performance data
(e.g., a model for predicting PID,SW ,NO_CL, the probability
of identifying a switch not obscured by clutter). Best-fit
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Figure 9. The IEEE/ANSI N42.55 metrics varied predictably with the level of degradation introduced. (a) The value of the log of the dynamic-range
metric is plotted against the log of the level of noise that was introduced. The color of each datapoint in this plot represents the log of the blur level. (b)
The value of the N42.55 spatial-resolution metric is plotted against the log of the level of blur that was introduced. The color of each datapoint in this plot
represents the log of the noise level.

Figure 10. The importance of each metric is shown based on how
predictive it was of task performance. Specifically, the size of the bar
represents the probability that the metric was included in the logistic
regression model by the forward feature selection scheme. MTF_feat ,
NPS_feat , and NEQ_feat are non-standard features derived from the
MTF, NPS, and NEQ. The NEQ 1 metric is the value of the NEQ at 1
cycles/mm.

values for the β parameters were determined by minimizing
the cross-entropy between the predicted probability and the
observed binary outcome (i.e., either the component was
identified or it was not).

We implemented an iterative forward feature selec-
tion scheme, where the best-performing features were
progressively incorporated into the model. The remaining
unselected feature that best improved the model perfor-
mance was incorporated, iteratively, until no improvement
was observed. To conduct feature-importance analysis,
we randomly divided the dataset into disjoint 80%/20%
train-test sets, then performed fivefold cross-validation on
the training set to obtain the best feature set from each fold.
This process was repeated for more than 1000 iterations to

prevent inconsistencies due to data division bias. Figure 10
shows the relative number of times each feature was selected
across all component and clutter categories. The results
indicate how predictive the metrics were of identification
performance over this dataset, and can be used to impute
the relative importance of similar metrics. For example,
NEQ_feat is more predictive than NEQ_1 so it may be
prudent to replace theNEQ_1 metric in the N42.55 standard
with something similar to NEQ_feat .

We also aimed to learn something about the degree of
image quality necessary to performcomponent identification
tasks. To do this, we considered each metric in isolation
of other similar metrics in order to reduce the effect of
correlation. For example, the MTF20 metric is sensitive to
spatial resolution but fairly insensitive to noise. We therefore
fitted a model of the form

PID = S (β0+β1MTF20+β2k) , (9)

where k is the level of noise introduced and the β parameters
are determined by regression. In the limit of low noise,
this model can be used to determine the threshold spatial
resolution corresponding to a particular identification task.
For example, the value MTF20P50,SW ,NO_CL denotes the
MTF20 value necessary to achieve a 50% probability of
identifying a switch in the absence of clutter (in the limit of
low noise).

Bomb technicians generally need to be able to identify
multiple components in order to understand the design of
an IED and devise countermeasures. With this in mind,
we developed threshold metric values that reflect the ability
to detect multiple components. For example, the value
MTF20ID4 denotes the threshold MTF20 value, where
one could expect to identify four of the five component
classes for which we developed models. In other words,
the identification probability was 80% when averaged over
all component models. All the shielding and no clutter
models were included in the average, but not the clutter
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Table II. Threshold image-quality levels were determined that allowed bomb technicians to successfully identify multiple IED components in X-ray images. The quantity YID3 (YID4)
corresponds to the threshold value of metric Y necessary to expect to find three (four) of the five component classes considered here. An orthogonal ‘‘other variable’’ was included when
metric Y was insensitive to either blur or noise.

N42.55 metric Other variable YID3 YID4
(lower range, upper range) (lower range, upper range)

NEQ at 1 cycles/mm None 1569.15 16533.82
(961.70, 3467.54) (6770.27, 75290.63)

Organic material detection None 1.28 2.29
(1.05, 1.66) (1.87, 3.09)

Dynamic range σb 23.22 59.54
(16.07, 33.03) (42.77, 91.50)

MTF20 k (the noise parameter) 0.53 1.65
(0.15, 0.84) (1.29, 1.94)

model, since we recommend re-shooting from alternate
angles when an image is strongly affected by clutter.
Table II gives threshold values for some N42.55 metrics
of interest. We hope that these threshold image-quality
values might be informative for future working groups
of the IEEE/ANSI standard when considering appropriate
minimum performance requirements for these metrics. If
the reader is interested in threshold image-quality values for
particular tasks, they should contact the authors.

5. SUMMARY AND FUTURE DIRECTIONS
We have described the development of the NIST-LIVE X-ray
IED Image-Quality Database. The database consists of: a set
of pristine X-ray images of IEDs and benign objects; a larger
set of varying quality images of the same objects; ground-
truth labels and bounding boxes for the IED components in
the images; and human task-performance results for locating
and identifying the IED components collected from trained
U.S. bomb technicians. In this work, we demonstrated some
applications of the database, especially informing future
development of image-quality standards. These results could
directly affect future revisions of the N42.55 standard,
both in terms of the choice of metrics, and setting of
appropriate values for minimum performance requirements.
The results could also inform future cost-benefit analyses
by both manufacturers and purchasers, where additional
improvements in image quality may lead to only incremental
improvements in detection.

In recent decades, there has been great interest in devel-
oping metrics and models of the effect of image quality in
security imaging. The database described in this work should
prove valuable for developing and testing these. Indeed, an
early version of the database, which only contained some
of the images and no human task-performance data, was
used to study the natural scene statistics (NSS) of security
X-ray images [13]. More recently, the database was used
to develop a set of NSS-based measures of image quality
along with a no-reference model for predicting human task
performance [12]. It was found that a combination of NSS

and N42.55 metrics was significantly more predictive of task
performance than either was alone, suggesting that these
measures contain complimentary information. That work
was also extended to include multivariate NSS methods [10].

We hope to make the database available to other
researchers to use in other ways (please contact us if you
are interested). For example, the database could be used as
a benchmark for automatic detection algorithms for IED
components, both because it has images with labeled IED
components, and because it includes benchmark human
results. In these, and perhaps other unanticipated ways, we
hope the database will prove to be a useful resource.

APPENDIX A. SPATIALLY CORRELATED NOISE
Here, we briefly describe the algorithm for generating SCN
with a power spectral density proportional to f −α . A field
of spatial frequencies of the same size as that of an image
is generated, denoted by (u(x, y), v(x, y)), representing the
horizontal and vertical spatial frequencies, respectively. The
spatial frequencies are then used to obtain the power spectral
density given by

P(x, y)= (u(x, y)2+ v(x, y)2)
α
2 .

The phases φ of each frequency component of the noise
field are randomly sampled from a uniform distribution with
support from 0 to 2π . Finally a 2D SCN image is obtained
by taking the real part of the inverse frequency transform of
noise with power spectral density P(x, y),

SCN(x, y)= Re(F−1(P(x, y)
1
2 (cos(2πφ)+ j sin(2πφ)))).

It should be noted that the generated SCN coefficients are
normally distributed because of the central limit theorem.
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