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Abstract. A new color space, IGPGTG, was developed. IGPGTG
uses the same structure as IPT, an established hue-uniform color
space utilized in gamut mapping applications. While IPT was fit to
visual data on the perceived hue, IGPGTG was optimized based
on evidence linking the peak wavelength of Gaussian-shaped light
spectra to their perceived hues. The performance of IGPGTG on
perceived hue data was compared to the performance of other
established color spaces. Additionally, an experiment was run to
directly compare the hue linearity of IGPGTG with those of other
color spaces by using Case V of Thurstone’s law of comparative
judgment to generate hue-linearity scales. IGPGTG performed well
in this experiment but poorly on extant visual data. The mixed results
indicate that it is possible to derive a moderately hue-linear color
space without visual data. c© 2020 Society for Imaging Science
and Technology.
[DOI: 10.2352/J.Percept.Imaging.2020.3.2.020401]

1. INTRODUCTION
Gamut mapping is an important process by which colors
specified within one device’s color gamut are mapped to
fit within or fill out the color gamut of a second device.
Typically, gamut mapping involves adjusting the chroma
and lightness of colors while holding hue constant because
changes in hue are generally more objectionable [17]. Thus,
it is important for the color space where gamut mapping
occurs to accurately predict perceived hue. The degree to
which a color space maps stimuli of the same perceived
hue to the same hue angle represents its hue linearity. In a
hue-linear color space, it is simple to adjust the chroma of
a color without changing its perceived hue by adjusting the
color along the line that passes through the achromatic origin
(an iso-hue line). In a color space with poor hue linearity,
changing chroma or lightness also changes the perceived hue
although this crosstalk can be reducedwith the use of look-up
tables [7]. Thus, performing gamut mapping in a color space
with poor hue linearity could lead to hue differences between
input and output devices. Thus, hue linearity is an important
feature of color spaces used for gamut mapping.

Although CIELAB is a commonly used uniform color
space, significant hue non-linearity has been documented
in CIELAB for purple-blue (PB) colors [1, 17]. This non-
linearity—and the demand for a color space that better
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predicts perceived hue—has led to the development of color
spaces with improved hue linearity such as IPT in 1998 [2]
and Jzazbz in 2017 [18]. These color spaces consist of amatrix
transform from CIE XYZ coordinates to LMS pseudo-cone
space, a non-linear compression in cone space, and a matrix
transform from LMS to an opponent coordinate system,
where one dimension (I in IPT) corresponds to lightness
and the other two dimensions correspond approximately to
red versus green (P) and yellow versus blue (T), similar to
CIELAB’s coordinate system. The hue of stimuli in IPT is
quantified by its polar angle in the PT plane relative to the
+P axis.

In general, these color spaces are derived by mathemati-
cally fitting transformations to experimental visual data. For
example, IPT improved on the hue linearity of CIELAB and
CIECAM97s by fitting the transformation from CIE XYZ
to IPT to constant hue datasets from Hung and Berns [9]
and Ebner and Fairchild [3] in addition to measurements of
the Munsell color order system [10]. IPT has proven to be
successful in subsequent experiments [19], and it has formed
the basis for Dolby’s ICTCP color space [20].

Experimental results from Mizokami et al. [15] opened
up a new path to the development of a hue-linear color
space. The paper connected spectral properties to perceived
hue. Specifically, the researchers found that Gaussian-shaped
light spectra of varying bandwidth but the same peak
wavelength were perceived by observers to have the same
hue [15]. This result would suggest non-linear compensation
in the neural coding of color to account for the fact
that single-peak-wavelength Gaussian spectra would have
different cone excitation ratios at different bandwidths [15].
For neural coding to be connected to Gaussian spectra,
though, it would be required that Gaussian spectra serve as
an effective representation of the stimuli that we encounter in
natural scenes. Further work by this research group explored
whether Gaussian spectra ‘‘could accurately approximate
natural spectra with a small number of parameters’’ [14].
They found that Gaussian spectra performed similarly to
linear models with the same number of parameters [14]. In
conjunction, these results establish the plausibility of using
features of Gaussian spectra to optimize a color space for hue
linearity as opposed to fitting the transformations to visual
data.

Work by Mirzaei and Funt [12, 13] related to catego-
rizing object colors added more evidence to the efficacy of
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using the peak wavelength of Gaussian spectra as a hue
predictor. Their approach involves finding a wraparound
Gaussian spectrum that is metameric to a stimulus under
a specified illumination and using the peak wavelength
of the Gaussian spectrum as a direct hue descriptor [13].
(A wraparound Gaussian spectrum is where a function
at 780 nm continues at 380 nm up to the wavelength
complementary to the peakwavelength. This is one approach
that allows the entire chromaticity diagram to be represented
by Gaussian functions, including purple andmagenta colors,
which requires preferential stimulation of S and L cones
versus M cones.) The researchers used the peak wavelength
hue descriptor to train a genetic algorithm to optimize
hue boundaries for Munsell colors [13]. They found that
their Gaussian-based systemworked better than CIECAM02
for this task. These results agreed with other qualitative
measurements [13].

However, there are several issues with using peak
wavelength as a direct descriptor of hue. Narrowband
Gaussian spectra with peak wavelength at either end of the
visible range (e.g., greater than 700 nm) have identical or very
similar chromaticities even as the peak wavelength varies.
This singularity would lead to ambiguity in the method
and would cause visually identical stimuli to be mapped to
different hue bins. Additionally, the Mirzaei & Funt method
is tailored to being an illuminant-invariant descriptor of
object colors and was not developed for use as a color space
to perform gamut mapping. As such, the research did not
include the standard quantitative assessment of hue linearity
that could be directly compared with other color spaces: a
measurement of the angular spread of constant hue loci [19].

An alternative approach explored here is to use Gaussian
spectra to generate predicted constant hue loci, which can
then be used to optimize a color space transform where
points on a constant hue locus map to the same hue angle.
This approach is similar to the derivation processes for
IPT [2] and Jzazbz [18] although where the constant hue loci
for those color spaces were the result of visual experiments,
these constant hue loci are generated from Gaussian spectra
of a single peak wavelength. The color space derived in this
article following the above method is referred to as IGPGTG
given that the form of the transform was chosen to match
IPT’s definition. This allowed a direct comparison of the
efficacy of the Gaussian-based hue loci for generating a
hue-linear color space with the traditionalmethod of hue loci
based on visual data.

The use of a color space to test the Gaussian hue
hypothesis posited by previous papers [13–15] addresses the
shortcomings of previous attempts described above. Because
Gaussian spectra are used as parameters in the optimization
process as opposed to being used as direct hue descriptors,
problematic singularities for long-wavelength narrowband
spectra are avoided. Additionally, the structure of the color
space allows for direct use in gamut mapping applications.
This structure also requires less computation time than that

of the Mirzaei & Funt method, which requires a Gaussian
metamer to be calculated for each stimulus [13].

Two experiments were conducted to compare the hue
linearity of IGPGTG with that of other established color
spaces—CIELAB, CAM16-UCS, and IPT—and the Munsell
color order system. The experimental results indicated that
IGPGTG matched or exceeded the hue linearity of the
comparison color spaces.

Existing visual data related to perceived hue were
transformed into IGPGTG as an additional validation of the
color space’s hue linearity. In this case, IGPGTG performed
much more poorly than the comparison color spaces. The
mixed results of the experiment and the visual data analysis
indicate that a color space derived from Gaussian spectra is
plausible but is unlikely to supplant established color spaces.

Hue linearity is one aspect of broader hue uniformity.
Much research has also gone into measuring uniform hue
scaling [4], which relates to the uniformity of differences
between hue angles. Hue scaling uniformity is a measure
of whether the difference in hue between colors with hue
angle 0◦ and colors with hue angle 10◦ is the same as the
difference in hue between those with hue angles 10◦ and 20◦.
Hue-linearity uniformity, as we use it here, is a measure of
whether all colorswith hue angle 10◦ have the sameperceived
hue. For the purpose of this article, only hue linearity was
evaluated given its special importance in gamut mapping
applications as discussed above.

2. COLOR SPACE DEVELOPMENT
The structure of IPT served as the basis for IGPGTG. IPT
coordinates are defined by their transformation from 1931
CIE XYZ coordinates with a D65 white point. XYZ values
are first transformed to an LMS cone space using a 3-by-3
matrix transform. Non-linear compression is applied to each
dimension in the LMS cone space before another 3-by-3
matrix transforms the LMS coordinates into IPT coordinates,
where I represents the brightness/lightness dimension and
P and T represent chromatic dimensions of perception
(roughly, red versus green and yellow versus blue). For
more information on the structure of IPT, see [2]. This
structure was deemed appropriate for IGPGTG because of
its invertibility, simplicity (while still providing the same
number of degrees of freedom for optimization as used to
derive other hue-linear color spaces), and the success of IPT
as a hue-linear color space.

The first step in optimizing the transform to IGPGTG
was to choose Gaussian-shaped spectra to be used for
optimization. To fully and evenly sample the gamut of
possible stimuli, the peak wavelength and the bandwidth
of Gaussian spectra were optimized to fit an evenly spaced
grid of coordinates in CIELAB (Figure 1). The simulated
spectrawere then grouped into sets of equal peakwavelength,
which would be expected by our model to have the same
perceived hue. Each peak-wavelength group contained at
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Figure 1. CIELAB a∗b∗ coordinates corresponding to the single (green)
and double (magenta) Gaussian spectra used for optimization. The
spectral locus is shown in black. All points in this figure have L∗ = 50.

least 32 spectra to ensure full chroma sampling for each
group.

Gaussian spectra can be used to generate metamers to
any color except colors that correspond to the stimulation of
L and S cones without M cone stimulation. (Such colors are
typically purple or magenta.) To represent these colors for
optimization, spectra consisting of two Gaussian functions
were simulated, one with a central wavelength of 380 nm
and the other with a central wavelength of 700 nm. The
hue of such combined Gaussian spectra can be controlled
by the ratio between the bandwidths of the two Gaussian
functions. A spectrum’s chroma can be controlled by the
overall bandwidth of the function. Since the two Gaussian
functions overlap, the greater of the two functions at each
wavelength was taken as the radiance of the spectrum at that
wavelength. Double Gaussian spectra were simulated to fit
an evenly spaced grid of coordinates in CIELAB (Fig. 1). The
stimuli were then grouped based on the ratio between the
380 nm and 700 nm functions’ bandwidths with at least 32
spectra in each group. (The bandwidth ratios within each
group were set equal.)

For each unique spectrum, the total radiance was
adjusted to match nine luminance levels corresponding to
Munsell values 1–9 for a D65 white point at 100 cd/m2. CIE
XYZ coordinates were calculated for each spectrumusing the
1931 Standard Observer with 1-nm sampling.

The transform from XYZ to IGPGTG was then non-
linearly optimized in MATLAB to minimize the root-mean-
square (RMS) hue angle difference from the mean hue angle
for stimuli with the same peak wavelength (or the same
bandwidth ratio for double Gaussian spectra) by using IPT
as the starting point for optimization. A second optimization
objective was to minimize the difference between the IG
and I (from IPT) values for each stimulus. Using multiple

Figure 2. PGTG coordinates of the single (green) and double (magenta)
Gaussian spectra used for optimization. Hue angle spread is not evidence
of a lack of hue linearity but rather represents the limit of optimization.

luminance levels ensured that the optimized formula could
handle a variety of luminances. However, this method also
involved the assumption that Gaussian spectra of the same
peakwavelength but different luminance levels have the same
hue. The Bezold–Brücke hue shift effect suggests that this
assumption may not hold true for nearly monochromatic
spectra [6]. Additionally, to avoid the trivial solution to
the optimization problem where all peak wavelengths are
mapped to the same hue angle, a third optimization objective
was added. The objective was for the transform to evenly
space the hue angle of 40 Munsell colors with value 5 and
chroma 5. The weight of this objective was minimized as
much as possible without causing optimization to revert to
the trivial solution. The optimized transform (Eqs. (1)–(5))
had mean and maximum hue angle standard deviations of
2.3◦ and 14.1◦, respectively, for the 31 sets of Gaussian
spectra used in optimization (Figure 2). There was a 8.5%
root-mean-square difference between IG and I values for the
Gaussian optimization spectra. It should be noted that the
hue angle spread for these points does not directly represent
a failure of hue linearity. Rather, the spread present for certain
hues in Fig. 2merely represents the limits of the optimization
process to map Gaussian spectra of equal peak wavelength to
the same hue angle. Although it is plausible that including
additional parameters in the XYZ to IGPGTG transform
would improve the optimization, there was circumstantial
evidence that the improvement would have been minimal as
the optimization function did not use all of the degrees of
freedom provided to it. Additionally, changing the form of
the transform would reduce our ability to directly compare
this method of fitting to the fitting process used for IPT.

Like IPT, IGPGTG assumes a D65 white point. For
stimuli with a different white point, it is recommended
to transform the stimuli’s XYZ values using CAT16, the
chromatic adaptation transform embedded in CAM16,
before converting to IGPGTG [11]. This is done by converting
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the XYZ values to the LMS cone space and then applying
a von Kries type adaptation, where the LMS values of the
stimuli are scaled to the LMS values of the test white point.
The scaled LMS coordinates are then transformed back into
XYZ, where they will have a D65 white point [11].

Once the stimuli have been transformed to a D65 white
point, the optimized IGPGTG transform is L

M
S


lin

=

 2.968 2.741 −0.649
1.237 5.969 −0.173
−0.318 0.387 2.311


XY
Z
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(
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(
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)0.427

(4) IG
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 =
 0.117 1.464 0.130

8.285 −8.361 21.40
−1.208 2.412 −36.53


 L
M
S

 . (5)

3. COLOR SPACE VERIFICATION
3.1 Visual Data on Hue Uniformity
One method to compare color spaces’ ability to predict
perceived hue is to use existing datasets. The Munsell color
order system [1, 10], the NCS system [1, 8], and the Hung
and Berns dataset [9] all specify colors that have the same
perceived hue according to visual experiments. Analyzing
how color spaces handle these datasets thus provides insight
into their hue linearity.

Colorimetric coordinates of 40 Munsell constant hue
loci, 24 NCS constant hue loci, and 12 hue loci from the
Hung and Berns dataset were transformed into IGPGTG,
IPT [2], CIELAB (using a D65 white point) [1], and
CAM16-UCS (using a 100 cd/m2 D65white point with a dim
surround) [11]. In an ideal hue-linear color space, all of the
colorimetric coordinates for a singleMunsell/NCS/Hung and
Berns hue locus would map to a single hue angle. Thus, the
RMS difference from the mean hue angle for colors within
one hue locus is ameasure of howwell these four color spaces
perform in their prediction of hue. This is a standard metric
used to quantify the hue linearity of color spaces [19]. The
results of this analysis are shown in Figures 3–5.

IGPGTG performs more poorly than the three compari-
son color spaces for both the Munsell and NCS datasets with
especially poor performance in Munsell. However, IGPGTG
was able to match the performance of CIELAB for the
Hung and Berns data. Nonetheless, the results indicate that
IGPGTG has worse hue linearity than the comparison color
spaces.

Figure 3. Median and 90th percentile root-mean-square hue angle
difference from mean hue angle over 40 Munsell hues for four color
spaces. Lower values indicate greater hue linearity according to the
Munsell data.

Figure 4. Median and 90th percentile root-mean-square hue angle
difference from mean hue angle over 24 NCS hues for four color spaces.

3.2 Experiment 1
3.2.1 Motivation
A psychophysical experiment was designed and imple-
mented to directly compare the hue linearity of IGPGTG to
three color spaces and a color order system all known for hue
linearity: IPT, CIELAB, CAM16, and Munsell.

3.2.2 Methods
A paired comparison stimulus presentation was used to
compare color space predictions for 11 hues. Each stimulus
consisted of a two-by-three grid of color patches with the
same hue angle in the test color space (or the same Munsell
hue for the Munsell system) (similar to Figure 6). Stimuli
were generated by transforming six Munsell colors with the
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Figure 5. Median and 90th percentile root-mean-square hue angle
difference from mean hue angle over 12 Hung and Berns hue loci for
four color spaces.

same hue—and a range of chromas and values—into the test
color space. Each color’s hue angle was then set equal to the
mean hue angle in that color space for the set. This provided
similar variations in lightness and chroma between sets of
stimuli for different color spaces. Eleven hues were tested,
corresponding to tenMunsell hues spread evenly throughout
the hue circle plus 10PB, since this is a known hue problem
for hue linearity in CIELAB [9].

Stimuli were presented on a calibrated Eizo ColorEdge
CG279X LCD monitor with DCI primaries and a D65 white
point at 400 cd/m2. The backgroundwas achromatic and had
a CIELAB lightness of 50. For each stimulus presentation,
observers were shown two sets of patches for the same
hue. They were asked to determine ‘‘which set of patches is
most uniform in hue.’’ (Uniformity of perceived hue among
patches of the same hue angle is a direct measure of the
hue linearity of the color space.) With 11 hues and 5 color
spaces, this led to 110 paired comparisons per observer.
Paired comparisons were presented in random order, and
the arrangement of each stimulus was randomized. Fifteen
observers (7 females and 8 males) with normal color vision
participated in the experiment.

3.2.3 Results
Observer responses were analyzed using Case V of Thur-
stone’s law of comparative judgment [5]. Individual re-
sponses were compiled into matrices for each hue, where
each matrix entry was the number of times that the color
space corresponding to the columnwas chosen over the color
space corresponding to the row. Converting these values to
z-scores and then averaging along each column lead to the
color space’s scale value on an interval scale of hue linearity
for each hue [5]. These scale values are relative and are
z-scores scaled in units of standard deviations along the
psychological dimension being tested. A scale value of zero

indicates that the color space has average hue linearity for
that hue. A color space with a value of one is one standard
deviation better than a color space with scale value zero for
that hue. It is assumed that this assessment of hue linearity
is unidimensional and that the uncertainty in psychometric
judgments is normally distributed with equal dispersion.
The assumption of equal variances required by Case V was
confirmed using a chi-square test following the method
described by Engeldrum [5].

Ninety-five percent confidence intervals for the scale
values were estimated using a formula developed by Mon-
tag [16]. The Montag formula is based on a Monte Carlo
simulation, and it uses the number of stimuli and the number
of observations to estimate the uncertainty in scale values
calculated using Case V of Thurstone’s law of comparative
judgment. The results are shown in Figure 7. For seven of the
hues, there was no significant difference in hue uniformity
for the five color spaces. For 5P, CIELAB and CAM16
performed slightly better than IPT and Munsell. For 5YR,
IGPGTG performed significantly worse than the other four
color spaces. For 5PB and 10PB, IGPGTG and IPT performed
significantly better than the other three color spaces, with
CIELAB performing worst for 10PB.

3.3 Experiment 2
3.3.1 Motivation
A second experiment was performed to further investigate
the poor performance of IGPGTG for the 5YR hue. This was
also a confirmation that an improvement to the transform
used to adjust the white point of the optimization spectra did
not significantly change IGPGTG’s performance.

3.3.2 Methods
As Gaussian spectra increase in bandwidth, their chro-
maticity approaches that of Illuminant E, the equal energy
spectrum. Thus, the Gaussian spectra used to optimize the
matrix transform would naturally have a white point of
Illuminant E had we not transformed the white point to D65.
Prior to performing the second experiment, we switched
from using a von Kries type transform in XYZ space to using
CAT16, the chromatic adaptation transform embedded in
CAM16 [11]. The IGPGTG definition was then re-optimized,
resulting in Eqs. (1)–(5).

The second experiment repeated the methodology of
the original experiment. However, only the three hues with
significant results in Experiment 1—5YR, 5PB, and 10PB—
were used. The stimuli for 5YR in Experiment 1 contained
both orange and brown patches. Observers reported that it
was difficult to judge hue across this color name boundary.
Therefore, for Experiment 2, 5YR was split into two sets
of stimuli: orange and brown. Additionally, the process by
which stimuli were generated for this hue was modified to
reduce the overall color difference between different sets
of patches. The hue angle in the test color space was still
constant within each set of patches.
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Figure 6. GUI design for Experiment 2.

Seventeen color normal observers (8 females and 9
males) completed the 40 paired comparisons for Experi-
ment 2 using the same physical parameters as those in
Experiment 1. The only other modification was a thin gray
border added around each patch to reduce any effect of
simultaneous contrast (Fig. 6).

3.3.3 Results
Observer responses were again analyzed using Case V of
Thurstone’s law of comparative judgment. The results for
the four scales are shown in Figure 8. Interestingly, IGPGTG
was now judged to have similar hue uniformity as the other
color spaces for both the orange and brown stimuli from
5YR, which is a significant improvement compared with
the results from Experiment 1. This result suggests that
the poor performance of IGPGTG on 5YR in Experiment 1
was due to an uncontrolled overall color difference for
the 5YR IGPGTG patches from the patches for other color
spaces in Experiment 1 and the difficulty in judging hue
across the orange/brown color name boundary. IGPGTG
performed similarly well for the 5PB and 10PB hues as it
did in Experiment 1, indicating that using the new white
point correction before optimization did not affect the color
space’s hue prediction. Compared with its performance in
Experiment 1, CAM16 performed better in 5PB and worse
in 10PB. Munsell was judged to have higher hue uniformity
for 10PB in Experiment 2 than it had in Experiment 1.

4. DISCUSSION
Although extant visual data suggested that IGPGTG has
worse hue linearity than CAM16, CIELAB, and IPT, our
visual experiment indicated that IGPGTG performs equally
well as these color spaces on this metric. It should be
noted that slightly different versions of the IGPGTG formula

were used for the first psychophysical experiment and
the comparison with extant visual data (which is the
formula presented in Eqs. (1)–(5)). Originally, IGPGTG was
optimized using lower-chroma Gaussian spectra to facilitate
the optimization process. However, this led to irregularities
in how high-chroma points were mapped at the interface
between the single and double Gaussian spectra at high
chromas. This issue was addressed through the process
described in Section 2. Because the main improvements to
IGPGTG were made beyond the gamut of colors used in
the experiment, we would expect the final IGPGTG formula
to present similar performance in the experiments. This
expectation was supported by post hoc statistical analysis.

The conflict between experimental results and statistical
analysis of extant visual data suggests that deriving a
color space based on spectral properties alone is plausible.
However, this color space fails to match the hue linearity
of existing color spaces. Typically, uniform color spaces are
fit to visual data alone. Although this approach has been
successful, developing processes by which we can derive
color spaces using first principles is attractive because such
spaces would not be directly dependent on the accuracy
of experimental data and limited to the gamut covered
by such data. However, from a performance perspective,
this work did not find compelling data to support the
use of IGPGTG over the well-established IPT color space.
Furthermore, although a direct correspondence between
spectral properties of Gaussian stimuli and the perceived
hue has not yet been proven, the results of this article
add to the growing body of literature exploring potential
connections [13–15].
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Figure 7. Hue-linearity scales for the 11 hues tested in Experiment 1, which were generated using Case V of Thurstone’s law of comparative judgment. A
scale value of zero indicates that the color space has average hue linearity for that hue. A color space with a value of one is one standard deviation better
than a color space with scale value zero for that hue. 95% confidence intervals were calculated using a method developed by Montag [16]. Statistically
significant scale values had confidence intervals that did not include zero (indicated by ∗). The results indicate that IGPGTG was perceived to have good
hue linearity except for hues 5Y and 5YR.

5. CONCLUSION
A new color space, IGPGTG, was developed using the
premise that Gaussian-shaped light spectra of the same
peak wavelength have the same perceived hue regardless
of bandwidth. IGPGTG was defined by a transform from
CIE XYZ coordinates using the same structure as the
well-established hue-linear IPT color space. The transform
was non-linearly optimized in MATLAB to minimize the
deviation in hue angle for Gaussian spectra of a single peak
wavelength. The hue linearity of IGPGTG was then assessed
using two methods. First, extant visual data on the perceived

hue from the Munsell and NCS color order systems and
the Hung and Berns dataset were transformed to IGPGTG.
This data analysis indicated that IGPGTG has worse hue
linearity than CAM16, CIELAB, and IPT. Second, two visual
experiments were performed in which observers were asked
to directly assess the hue linearity of these color spaces. In
this case, IGPGTG matched or exceeded the performance
of CAM16, CIELAB, IPT, and the Munsell system. These
ambiguous results show that it is at least plausible to derive
a hue-linear color space from first principles without the use
of visual data in the derivation process.
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Figure 8. Hue-linearity scales for the four stimuli sets tested in Experiment 2, which were generated using Case V of Thurstone’s law of comparative
judgment. A scale value of zero indicates that the color space has average hue linearity for that hue. A color space with a value of one is one standard
deviation better than a color space with scale value zero for that hue. 95% confidence intervals were calculated using a method developed by Montag [16].
Statistically significant scale values had confidence intervals that did not include zero (indicated by ∗). The results confirm IGPGTG’s good hue linearity for
5PB and 10PB and suggest that the poor result for 5YR and 5Y in Experiment 1 could have been due to experimental design issues that were corrected
for Experiment 2.
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