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Abstract. One of the primary functions of visual perception is
to represent, estimate, and evaluate the properties of material
surfaces in the visual environment. One such property is surface
color, which can convey important information about ecologically
relevant object characteristics such as the ripeness of fruit and
the emotional reactions of humans in social interactions. This
paper further develops and applies a neural model (Rudd, 2013,
2017) of how the human visual system represents the light/dark
dimension of color—known as lightness—and computes the colors
of achromatic material surfaces in real-world spatial contexts.
Quantitative lightness judgments conducted with real surfaces
viewed under Gelb (i.e., spotlight) illumination are analyzed and
simulated using the model. According to the model, luminance
ratios form the inputs to ON- and OFF-cells, which encode local
luminance increments and decrements, respectively. The response
properties of these cells are here characterized by physiologically
motivated equations in which different parameters are assumed
for the two cell types. Under non-saturating conditions, ON-cells
respond in proportion to a compressive power law of the local
incremental luminance in the image that causes them to respond,
while OFF-cells respond linearly to local decremental luminance.
ON- and OFF-cell responses to edges are log-transformed at a
later stage of neural processing and then integrated across space
to compute lightness via an edge integration process that can be
viewed as a neurally elaborated version of Land’s retinex model
(Land & McCann, 1971). It follows from the model assumptions that
the perceptual weights—interpreted as neural gain factors—that
the model observer applies to steps in log luminance at edges
in the edge integration process are determined by the product
of a polarity-dependent factor 1—by which incremental steps in
log luminance (i.e., edges) are weighted by the value <1.0 and
decremental steps are weighted by 1.0—and a distance-dependent
factor 2, whose edge weightings are estimated to fit perceptual
data. The model accounts quantitatively (to within experimental
error) for the following: lightness constancy failures observed
when the illumination level on a simultaneous contrast display is
changed (Zavagno, Daneyko, & Liu, 2018); the degree of dynamic
range compression in the staircase-Gelb paradigm (Cataliotti &
Gilchrist, 1995; Zavagno, Annan, & Caputo, 2004); partial releases
from compression that occur when the staircase-Gelb papers
are reordered (Zavagno, Annan, & Caputo, 2004); and the larger
compression release that occurs when the display is surrounded by
a white border (Gilchrist & Cataliotti, 1994). c© 2020 Society for
Imaging Science and Technology.
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1. INTRODUCTION ANDOVERVIEW
In the natural world, one of the key functions of visual
perception is to estimate properties of material surfaces.
Surface color is one such property, which in turn conveys im-
portant information about many other ecologically relevant
properties of both objects and agents such as the ripeness
of fruit and the emotional reactions of humans in social
interactions. For this reason, and because of the obvious
importance of color in technology, attempts to quantify and
model human color perception have a longstanding history
in the visual perception literature.

Some of the key recent work on this problemhas focused
on the simplified—and dimensionally reduced—problem of
achromatic color perception; that is, the perception of gray
levels of achromatic surfaces, also known as ‘‘lightness’’
perception. In the domain of lightness, a host of competing
models have been proposed to account for a rapidly growing
range of quantifiable visual phenomena. The pros and cons
of some of these models will be discussed below.

One of the properties of lightness perception that makes
it interesting to study is that the perceived gray level of an
achromatic surface can be strongly affected by the spatial
layout of other surfaces in which the target surface is
embedded. This produces to what are often called visual
‘‘illusions’’—situations in which the apparent ‘‘color’’ of a
surface is strongly affected by the context in which it is
viewed.Although there exists a large amount of disagreement
among theorists regarding the correct explanation for these
spatial context effects, a common starting point of many of
the proposed explanations is luminance contrast. That is, the
perceived lightness of a surface is thought to depend on a
spatial comparison of the intensity of the light reflected from
the surface measured relative to the intensity of the light
reflected from other nearby surfaces. Luminance contrast
also forms the starting point for the model described here.

Perhaps the simplest and most well-known example
of the influence of luminance contrast on lightness is the
phenomenon known as simultaneous contrast, in which a
gray paper presented against a dark background appears
to be a lighter shade of gray than a physically identical
paper presented against a white background. Figure 1(a)
illustrates a display that is only slightly more complex
than the standard simultaneous lightness contrast (SLC)
display but is nevertheless able to test competing theories of
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Figure 1. (a) Perceptual demonstration of edge integration in lightness.
The two disks and the two annuli are identical, but the disk and the annulus
on the left both appear lighter than the disk and the annulus on the right
because the background luminance is lower on that side. The lightness of
each disk can be modeled as a weighted sum of steps in log-luminance
steps at inner and outer borders of the annuli surrounding the disk (see
Eq. (1)). (b) Diagram of the disk/annulus stimulus used by Rudd and
Zemach [44] to test the edge integration model, with the luminances of
the disk, annulus, and background field labeled D, A, and B. The symbols
ξDA and ξAB denote the locations of the edges (i.e., the luminance steps)
between the regions D and A and between A and B, respectively. Note
that this stimulus is similar to the disk/annulus configuration on the left side
of panel (a), but with a homogeneous dark background rather than a
gradient background.

how luminance contrast is utilized by the visual system to
‘‘compute’’ lightness. The disks and the annuli on the two
sides of this figure are identical in both size and luminance,
but the disk and the annulus on the left appear lighter than
the disk and annulus on the right. The effect is due to
luminance contrast with respect to the background field,
which is darker on the left than on the right. A simple
model of simultaneous contrast would predict that whereas
the left annulus may look lighter than its surround, the left
disk would look darker than the surround due to perceptual
contrast with its lighter surround [24]. Instead, both the left
annulus and the disk appear lighter, demonstrating a type of
assimilation. Indeed, it appears as though the human visual
system adds up the steps in luminance along a path from the
background field to compute each disk’s lightness.

In previous work, Zemach and I experimentally inves-
tigated and mathematically modeled this perceptual edge
integration phenomenon using disk–annulus stimuli in
which the disks were either luminance decrements [44] or
luminance increments [43] with respect to their surrounding
annuli. In these experiments—unlike in Fig. 1(a)—the disk–
annulus pairs were always presented against a homogeneous
dark background. For both incremental and decremental
disks, the results were well described by amodel in which the
disk lightness was determined by a weighted sum of the steps
in luminance (measured in log units) from the background to
the annulus and from the annulus to the disk, with the edge
weights decreasing as a function of the distance of the edge
from the disk. This idea is expressed mathematically by the
equation

8D =wDA(logD− logA)+wAB(logA− logB), (1)

where 8D is the disk lightness; D, A, and B are the
luminances of the disk, annulus, and background field; and

wDA and wAB are weights given to the disk/annulus and
annulus/background edges ξDA and ξAB, respectively, in the
process of computing the disk lightness. Fig. 1(b) illustrates
how these concepts can be applied to model the lightness of
the disk on the left side of Fig. 1(a). Note that Eq. (1) can be
viewed as a modified version of the retinex algorithm of [29],
in which the assumption that equal weights are applied
to all steps in log luminance across the image has been
replaced with the assumption that the weights applied to the
disk/annulus and ring/background edges may be different.

A conceptually similar model was proposed earlier
by [35, 46], who posited that lightness depends on a sum
of weighted steps in Michelson contrast in which the
size of the edge weights decays spatially as a function of
distance from the target. Rudd and Zemach [44] verified
this assumption in their experiments but showed that their
model based on sums of steps in log luminance gave a
better account of psychophysical data. However, the most
important innovation of the work by Rudd and Zemach
was to model lightness matches obtained with incremental
and decremental disk/annulus stimuli separately. By doing
this, they established that the weights applied to edges in
the lightness computation differed not only as a function
of distance from the target but also for incremental and
decremental stimuli.

To account for these findings and other data from the
literature regarding lightness–darkness asymmetries (e.g. [5,
13, 17, 21, 22, 50, 51]), Rudd [38] proposed a neural model
based on an elaborated version of the edge integration
model. One implication of this neural theory of lightness
computation is that the weights associated with edges in
the perceptual edge summation are determined by two
independent factors: the distance of the edge from the target
region whose lightness is being computed and the edge
contrast polarity. That is,

wi =ω(di)× n(ρi), (2)

wherewi is the weight associated with an edge i in computing
the target lightness, ω(di) is a function that depends only
on the distance of edge i from the target and whose value
decreases monotonically with di, and n(ρi) is a factor that
depends on the contrast polarity ρi of edge i. In the context
of the disk/annulus display illustrated in Fig. 1(b), the neural
model implies that the weights applied to edges in the
process of computing the disk are determined by the distance
between ξDA and ξAB and the contrast polarities of ξDA and
ξAB.

Rudd [38, 41] further argued that (1) the contrast-
polarity-dependent factor n(pi) arises at a neural level from
the differing responses to ON- and OFF-cell responses,
(2) these differing response properties of ON cells and
OFF cells provide a general explanation of well-known
asymmetries in the magnitudes of lightness and darkness
induction, and (3) the edge integration theory developed to
explain lightness perception in the context of disk–annulus
stimuli can be extended to account for lightness computation
in a wide range of visual stimuli.
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The current paper takes a significant step in this last
direction by showing how the neural edge integration model
can be successfully applied for the explanation of lightness
judgments made with real-world illuminated material dis-
plays. In particular, here I use the neural model to account
for recent results in which a failure of lightness constancywas
observed when the level of illumination of a simultaneous
contrast display was changed [53], and also to account for
quantitative Munsell matches made to papers arranged in
staircase-Gelb and scrambled-Gelb formations [6, 13, 14, 17,
52]. In these perceptual studies, a display consisting of a
small number of surfaces was viewed in a spotlight within an
otherwise dimly lit room. Experiments of this type—which
have been referred to by Zavagno, Daneyko, and Liu as ‘‘Gelb
illumination’’ experiments—have been postulated to reveal
the rules governing lightness computation within isolated
frameworks of illumination [13, 17]. Application of the
neurocomputational model to data from such experiments
allows for direct comparisons of the performance of the neu-
ral model with that of other theoretical lightness models that
have been proposed to account for these and similar data.

1.1 Proposed Neural Origin of the Contrast-Polarity Edge
Weighting Factor n(ρi)
Before applying the model to the explanation of these
experiments, I first elaborate in this section the part of the
neural model that explains how ON- and OFF-cell responses
relate to lightness perception in human observers. It is well
known that incremental and decremental steps in image lu-
minance are encoded by separate populations of ON-center
and OFF-center neurons in the primate early visual system
(e.g., retina, lateral geniculate nucleus (LGN), and early
visual cortex). Both cell types possess circularly-symmetric
center–surround receptive fields. ON-cells respond when
the neurally weighted amount of light falling within their
receptive field centers exceeds the weighted amount of light
falling within their spatial surrounds. OFF-cells respond
when the neurally weighted amount of light falling within
their receptive field surround exceeds the weighted amount
of light falling within their receptive field centers [1, 23, 27].

A physiological model that is often used to model the
response of a generic neuron to its input is the Naka–Rushton
function [34], which is defined by the equation

R(λ)= Rmax

(
λn

λn+ σ n

)
, (3)

where R(λ) is the neural response to an input λ, Rmax is the
value of the neural response to the saturating input, σ is the
input level that produces a half-saturating neural response,
and n is the exponent of a power law that relates R(λ) to λ for
small values of λ.

To model the responses of ON- and OFF-cells, I will
assume here that the neural input λ in Eq. (3) is different for
each of these two cell types and expressed by the equations

λon =


γ (IC + Id)
IS+ Id

, γ (IC + Id)≥ IS+ Id

0, γ (IC + Id) < IS+ Id
(4a)

and

λoff =


IS+ Id

γ (IC + Id)
, IS+ Id ≥ γ (IC + Id)

0, IS+ Id < γ (IC + Id),
(4b)

where IC and IS are the intensities of the light falling on
the receptive field centers and surrounds, Id is spontaneous
neural activity that is indistinguishable from effects of retinal
photoisomerizations (i.e., ‘‘dark noise’’), and γ models the
weight given to the receptive field center relative to the
surround.

It follows that for light intensities well above the dark
noise level, the model ON-cell input is proportional to the
luminance ratio IC/IS and the model OFF-cell input is
proportional to the luminance ratio IS/IC . The exponent
n in Eq. (3) that transforms these inputs according to a
power law might be a property either of the neuron itself
or of neural circuitry along the visual pathway from the
photon absorptions to the LGN. The model is agnostic with
respect to the physiological origin of n, which need not be
a property of the neuron itself. In what follows, we will
assume that n differs for ON- and OFF-cells and argue that
this difference has important implications for perceptual
asymmetries between lightness and darkness [38, 41]. This
assumption of different exponents for ON- and OFF-cells is
a key assumption of the neural lightness model.

An implication of the system of Eqs. (3), (4a), and (4b)
is that the half-saturation constant σ corresponds to the
contrast ratio at which the neural response equals Rmax/2
(assuming that the dark noise contribution Id is negligible).
For sufficiently large input luminance ratios, the neural
response Eq. (3) saturates at the value Rmax. For sufficiently
small input ratios, the neural response is related to the input
luminance ratio by a power law that is characterized by
the exponent n. In the later case, we say that the cell is
operating in its optimal encoding range. For the purpose
of modeling the perceptual results discussed in this paper,
I will assume that the ON- and OFF-cells were always
operating in their optimal encoding range in the experiments
modeled and thus that these cells performed a power law
transformation of their luminance ratio inputs. However,
the full model expressed by Eq. (3) suggests that dark noise
plays a significant role in lightness perception when display
luminances are sufficiently low and that neural saturation
may come into play when the dynamic range of the display is
increased beyond the levels encountered in the experiments
modeled here.

To apply this model of ON- and OFF-cell responses to
lightness perception, we need to make some more specific
assumptions about the values of the ON- and OFF-cell
exponents non and noff. Billock [2] fit the spiking response
of an individual ON-cell in the lateral geniculate nucleus
of macaque monkeys recorded by De Valois, Abramov, and
Jacobs [9] with a power law regression model and estimated
non = 0.27 (see Figure 2). His result indicates that the
ON-cell response is highly compressive even in its optimal
operating range. In what follows, I will begin by assuming
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Figure 2. The quantitative mapping between luminance input and the
spike-rate response of an ON-cell response recorded by De Valois,
Abramov, and Jacobs [9] is a power law with an exponent of 0.27
(r2 = 0.85) over the range of inputs tested. On the log–log plot of R(I)
versus I , the model equation R(I)= κ In takes the form of a straight line
with intercept log κ and slope n (see the arrow). The value of the ON-cell
exponent nON = 0.27 is the slope of the least-squares linear model of the
neural response. The spike-rate data were taken from Table 10 of [36]
and the luminance efficiency data were taken from http://www.cvrl.org
(figure and caption adapted from [2]).

this value for the ON-cell exponent and I will also assume
that the exponent for OFF-cells is noff = 1. In other words,
in the optimal operating range, the ON-cell response will be
assumed to be proportional to (IC/IS)0.27 and the OFF-cell
response to be proportional to IS/IC .

1.2 Assumed Logarithmic Transformation of ON- and
OFF-Cell Responses
ON- and OFF-cells will both respond to the presence of
an edge when it is in proper spatial alignment with their
neural receptive fields. ON-cells will respond on one side of
the edge and OFF-cells will respond on the other side. The
lightness model assumes that the cortical mechanism that
computes the lightness of a target patch, such as the disk in a
disk-annulus display, takes as its input only the responses of
ON- and OFF-cells that are located on the side that points
in the direction of the target patch. The outputs of ON-
and OFF-cells that respond to the other side of each edge
are somehow filtered out of the lightness computation, even
when the edge participates in the neural edge integration
process. This should make it clear that the lightness model
proposed here is not strictly a low-level physiological model.
This idea is illustrated and further elaborated in Figure 3,
which shows how the computationalmodel developed earlier
for disk/annulus displays can be generalized to account for
the lightness of a target paper in a staircase-Gelb display, a
display that is discussed in more detail below. For a more
complete description of the processing stages assumed by the
neural model, see [39, Fig. 1] and the full description of the
model presented in [41].

The spatial summation of edge responses that
occurs in the process of neural edge integration is
assumed to take place in logarithmic coordinates. In

Figure 3. This figure shows how the edge integration model developed
to explain lightness computation for disk/annulus displays can be
generalized to compute the lightness of a target paper in a staircase-Gelb
display. It also clarifies how the model differs from low-level filtering
accounts of lightness. ON- and OFF-cells in the lateral geniculate nucleus
will respond on opposite sides of each edge in this display. However,
only those cells that respond on the side of an edge that points toward
the target (illustrated) are assumed by the model to make a contribution to
the edge integration computation. Edge integration occurs along paths
that are directed from the background toward the target location, as
indicated by the red arrows [39]. This could be accomplished by a simple
neural summation across large receptive fields [37, 38, 41]. In the full
neurocomputational model [41], edge integration is assumed to occur
beyond area V4 in the ventral stream of the visual cortex at a processing
stage beyond which midlevel processes such as boundary completion
and border ownership are known to occur (in area V2), and these neural
image segmentation processes are expected to make a contribution to
the final percept in appropriate contexts by further modifying the gains of
the edge encoding cortical neurons whose outputs are spatially integrated
to compute surface lightness (see [41] for further details). However, these
additional assumptions are not required to explain the data modeled in
the present paper and therefore will be neglected in what follows.

other words, it is the quantities non[(log Ic − log Is)]+ and
−noff[(log Is− log Ic)]+ (where the mathematical operator
[ ]+ models half-wave rectification) that are summed in
neural edge integration, not the raw ON- and OFF-cell
responses modeled by the system of Eqs. (3), (4a), and (4b).
This implies that the neural response to an edge at the
level of the edge integration computation will depend on the
step in luminance at the edge, measured in log units, as
required by the Rudd–Zemach edge integration model for
disk–annulus stimuli (Eq. (1)). Another implication is that
the neural weight given to an edge in the edge integration
process will be proportional to the exponent n of the ON- or
OFF-cells that mediate the edge response. As a consequence
of the logarithmic transformation of the ON- and OFF-cell
responses, the exponent n that characterizes the power law
response of these ON- and OFF-cells to luminance ratios
is converted to a neural gain factor [41]. Thus, given the
choice of parameters non = 0.27 and noff = 1, the gain
applied to an incremental edge will be only 0.27 times as
large as the gain applied to a decremental edge. This feature
of the model–that logarithmic transformation of these ON-
and OFF-cell responses transforms power law exponents
into neural gain factors–will be shown in what follows
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to be critical to the model’s success in fitting quantitative
psychophysical data.

1.3 A Simple Example to Illustrate the Behavior of the
Model
To help the reader understand how the model works, in this
section I briefly review a previously published experiment in
which subjects matched the lightness of two square patches,
each surrounded by a frame and presented simultaneously on
a computer monitor [38]. The squares were equal in width
(1.06◦) and both were luminance decrements with respect to
their surrounding frames, but the frame on the right (target)
was narrower (0.19◦) than the frame on the left (1.78◦). The
subject’s task was to adjust the luminance of the left square to
match the two squares in lightness. This task was performed
at 12 levels of the background luminance, ranging from a
background luminance that was well below the luminance
of either square to a value that was well above the common
luminance of the frames.

According to the neural edge integration model, the
lightness of each square is computed from the sum of
weighted steps in log luminance at the inner and outer
edges of the frames. Each edge weight is determined by the
product of two separable functions: the function ω(d) that
depends only on the distance of the edge from the square
and the contrast-polarity-dependent factor non or noff, which
characterizes the neural gain applied to the edge.

The neural model asserts that the step in log luminance
at the outer edge of each frame contributes to the lightness of
the square that is surrounded by that frame, so we expect that
changing the background level will influence the lightness
of each square. However, if the influence of the background
were the same for the target and match stimuli, any effect of
changing the background would cancel out in the process
of generating a lightness match. In the experiment, the
influence of the outer frame edge was expected to be greater
on the target side of the display because that edge was closer
to the square on the target side than it was on the match
side, and the model asserts that the weights given to edges
in the lightness computation tend to decrease with distance.
Thus, changing the background luminance was predicted to
affect the appearance of the target squaremore than it did the
appearance of the match square.

The first model prediction that was tested was the
prediction that there should be any effect of changing
the background at all. A more stringent model prediction
that was also tested was that the effect of changing the
background should depend on the contrast polarity of
the outer frame edge. Specifically, when the background
luminance was smaller than the common luminance of the
frames surrounding the target squares, it was predicted that
the magnitude of the induction effect from the background
should be only |non|/|noff| as large as when the background
luminance is greater than the frame luminance. Given
the values of non and noff assumed here, the ratio of the
background induction strengths measured under the two
conditions should therefore equal 0.27.

Figure 4. Dependence of the lightness of a target square surrounded by
a higher luminance frame on the luminance of the remote background
field (from Rudd [38]). The neural edge integration model simulated
here predicts that the slope of the matching plot should be about
0.27 times as large when the luminance of the background field
is smaller than the luminance of the surround frame than when it is
larger. This prediction is confirmed by the average data from the two
observers. In the case of Observer AH, the ratio of the slope when
the background luminance is less than the frame luminance to the slope
when the background luminance is greater than the frame luminance
is (−0.0642/− 0.2059) = 0.3118. In the case of Observer JA, the
ratio of the slope when the background luminance is less than the frame
luminance to the slope when the background luminance is greater than
the frame luminance is (−0.0608/−0.2861)= 0.2125. The average
of the two slope ratios is (0.3118+0.2125)/2= 0.2613.

The actual lightness matches made by the two experi-
mental subjects are plotted in Figure 4. The equations on
the plots are the least-squares linear regression models of
the matches made by each of the two experimental subjects,
with separate regressionmodels fit to the data corresponding
to the background luminance ranges B < F and B > F .
The ratios of the slopes of the least-squares linear models
associated with these two luminance ranges were 0.21 and
0.31 for each of the two observers, and the average slope
was 0.26. Therefore, the average data conforms closely to the
model prediction.

It should be emphasized that the change in the
magnitude of the background change effect occurred not at
the background luminance at which the contrast between
each square and the background changed sign but instead
at the background luminance at which the outer frame
edge switched from being an increment to a decrement,
as predicted by the model. Thus, the experimental results
strongly support a model of the square lightness based on
the hypothesis that the outer frame edge sums with the
square edge to determine the square lightness, as opposed,
say, to an alternative model in which lightness is determined
by a long-range comparison of the target luminance to the
background luminance. One influential model of lightness
perception that is therefore ruled out by these results is
Gilchrist’s lightness anchoring theory, which asserts that the
lightness of any given region in the image is computed by a
direct comparison of that region’s luminance to the highest
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Figure 5. Schematic illustration of the lighting setup used by Zavagno,
Daneyko, and Liu [53] in their Gelb-illuminated SLC experiment. The SLC
displays were directly illuminated by a theatrical spotlight hidden from the
observer’s view. The white paper on the walls and ceiling was positioned
for another experiment but not illuminated in the experiment modeled here
(adapted from Zavagno, Daneyko, and Liu [53]).

luminance in the region’s framework of illumination [13,
15–17]. The fact that the background luminance influenced
the target luminance in this experiment even when it was
the lowest luminance in the display also refutes the idea
that lightness is determined only by a comparison with the
highest luminance in the display.

It should be noted that Gilchrist has also incorporated
a second anchoring rule—called the ‘‘area rule’’—into his
theory, which posits that changes in the size, but not the
luminance, of regions in the target’s surround having a
luminance lower than that of the target can produce changes
in the target appearance, most notably by making the target
appear self-luminous [17, 31]. But the area rule should not
have been a factor in the background change experiment or
in any of the other experiments whose results are modeled in
this paper since no changes in the sizes of contextual surfaces
occurred in these experiments. Thus, the area rule can be
neglected for present purposes. Therefore, when I refer to
anchoring theory in the present paper, I mean a simplified
version of anchoring theory in which the only anchoring
rule is anchoring to the highest luminance with the target’s
framework of illumination.

2. MODELING LIGHTNESS JUDGMENTSMADE
WITH REAL-WORLD ILLUMINATEDMATERIAL
SURFACES

2.1 Zavagno, Daneyko, and Liu [53]
Zavagno, Daneyko, and Liu [53] (hereafter, ZDL) measured
both the magnitude of the overall SLC effect and the
perceived lightnesses of the individual incremental and
decremental targets in an SLC display as a function of the
intensity of a spotlight illuminating the display. The display
was located in an otherwise dimly lit room (Figure 5). The

experiment was carried out with four types of SLC displays,
including a ‘‘classic’’ SLC display and three modified SLC
displays in which luminance gradients were added to the
target’s surround (Figure 6). Here, I discuss only the Munsell
matches made to targets in the classic SLC display.

The main experimental question that Zavagno and
his colleagues were interested in was whether the overall
magnitude of the SLC effect and the lightnesses of the
incremental and decremental SLC targets would remain
constant when the intensity of the spotlight was varied.
In other words, would simultaneous lightness contrast
exhibit lightness constancy? As shown in Figure 7, lightness
constancy did not hold in the experiment. Instead, the
lightness of both the incremental and the decremental targets
increased monotonically as the level of the illumination
increased. In what follows, I show how this failure of
lightness constancy can be understood both qualitatively and
quantitatively as a consequence of neural edge integration.

In the ZDL experiment, changing the illumination level
also changed the luminance ratio at the outer edges of the
SLC display; that is, at the edges between the display and the
dark background against which the display was presented.
According to the neuralmodel, changing the luminance ratio
of a remote edge can change the perceived reflectance of an
arbitrary target patch as long as the remote edge is within the
spatial range of the brain’s edge integration computation.

In the ZDL experiment, the remote edge was always a
luminance increment, so the edge integration model predicts
that increasing the illumination level should increase the
perceived reflectance of the SLC target, regardless of whether
the target patch itself is a luminance increment or decrement.
This prediction was verified by the lightness matches plotted
in Fig. 7. According to the model, the magnitude of the
lightness increase should depend on the product of the
luminance step in log units at the outer edge of the SLC
display and the weight given to this edge in the neural edge
integration computation. The edge weight, in turn, is the
product of the distance-dependent function ω(d) and the
ON-cell exponent non (Eq. (2)). We do not know the exact
form of ω(d); we only know that its value decreases with
distance of the outer display edge from the target, so we
cannot predict the exact amount of constancy failure that
should be observed. Nevertheless, the neural model places
an upper limit on the degree of constancy failure. That value
is non, the value that would be expected if there were no
spatially dependent falloff in the weight given to the remote
edge.

In the ZDL experiment, the illumination level was varied
over a range of about 2.5 log units, as indicated by the
change in target luminance on the x-axis in Fig. 5. This
follows from the fact that the target luminance variation was
achieved by changing the illumination level while keeping
the target reflectance fixed. Themodel therefore predicts that
the perceived reflectance of the targets should vary by at
most 2.5× 0.27 = 0.675 log units (assuming non = 0.27).
In the actual experiment, increasing the illumination level
over the 2.5 log unit range increased the lightness of both
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Figure 6. The four types of SLC displays studied by Zavagno, Daneyko, and Liu [53] (figure from Zavagno, Daneyko, and Liu [53]).

Figure 7. Munsell matches made to the incremental and decremental
targets in a classic SLC display plotted against the target luminance on
a log–log scale (from Zavagno, Daneyko, and Liu [53]). The horizontal
dashed line indicates the target’s actual reflectance (in log units). Error
bars denote standard errors of the mean. Target luminance was varied
by changing the intensity of the spotlight that illuminated the display. The
horizontal red line with the double arrows has been added to indicate that
the spotlight intensity, and therefore also the target luminance, was varied
over a total range of about 2.5 log units. As the target luminance varied
over this range, the target lightness estimates varied by about 0.3–0.4
log units (vertical red line).

incremental and decremental targets by roughly 0.3–0.4 log
units (the best estimate differs for the two target types, but
the difference is within the error bars). Thus, the observed
degree of lightness constancy failure is at least consistent with
the upper limit set by the model. If it were not, the model
would be disproven. If we go a step further and assume that
the model holds and that non = 0.27, then we can estimate
the value of ω(d) at the distance of the remote edge—which
was located at 1.49◦ from the SLC target center—from the
equation 2.46 log unit × ω(1.49◦) × 0.27 ∼= 0.37 log units.
From these values, we estimate ω(1.49◦)∼= 0.56.

2.2 Cataliotti and Gilchrist [6]
In a pioneering study on the topic now known as lightness
anchoring, the Gestalt psychologist Adehar Gelb [12]
illuminated a piece of black paper by a spotlight in an
otherwise dimly lit room. Despite the fact that the paper was
actually black (i.e., had a low surface reflectance), the paper
appeared to observers to be white when presented in the
spotlight. Gelb then surrounded the actual black paper by a
true white paper and the black paper now appeared darker
than the white paper.

Cataliotti and Gilchrist [6] repeated Gelb’s experiment
with added variations. Following Gelb, they first presented
their observers with a single black paper isolated in a
spotlight. Under these conditions, the black paper appeared
white (as shown earlier by Gelb). Next, they introduced
a dark gray paper into the spotlight abutting the black
paper. The dark gray paper then appeared white and the
actual black paper appeared relatively darker than the
white-appearing dark gray paper. Papers with progressively
higher reflectances were then introduced into the spotlight
one at a time until the spotlight contained a total of five
papers, ordered in reflectance from true black to true white.
When the five ordered papers were viewed together in the
spotlight, the paper with the highest reflectance appeared
white and the lightnesses of the other four papers were
positively correlated with their actual physical reflectances.
Importantly, however, the perceived reflectances of the five
papers—as measured by Munsell matches—did not scale in
direct proportion to the physical reflectances of the papers.
Instead, the perceived dynamic range was only about 1/3 as
large, in log units, as the actual range of paper reflectances in
their experiment, as determined in a subsequent quantitative
analysis by Rudd [38].

In a related experiment, Cataliotti and Gilchrist ([14];
see also [17]) surrounded the five papers in the staircase-
Gelb series with a white border and discovered that this
manipulation had the effect of decompressing the perceived
dynamic range of the spatially well-ordered papers. Although
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they did not report quantitative measurements of the
magnitude of this decompression, the authors reported
in their abstract that the perceived range of the paper
reflectances was more similar to the actual reflectance range
of the papers (i.e., ground truth) when the white border was
present than when the papers comprising the staircase-Gelb
series were presented against the dark background.

To account for this decompression effect, Gilchrist has
suggested the white border serves to perceptually insulate
the papers in the Gelb series from the larger framework of
illumination defined by the room in which the experiment
was conducted [17]. According to this hypothesis, when
the white border is absent, the visual system maps the
actual range of paper reflectances into the much narrower
range of perceived reflectances in order to accommodate
the larger range of luminances present in the global visual
environment of the room. This interpretation is consistent
with the principle of co-determination, originally proposed
by Kardos [25]; see also [17], [13], which asserts that the
lightness of a given surface within a scene is determined
by a weighted average of the lightness that is computed by
comparing the luminance of that surface to the luminances
of the other surfaces belonging to the same illumination
framework as the target surface (in this case, the framework
of Gelb papers) and the lightness that is computed from
a comparison of the target surface’s luminance to all of
the surfaces within the larger visual environment (in this
case, the entire room). These principles of grouping by
illumination frameworks and co-determination are key
tenets of Gilchrist’s anchoring theory. I will return to the
discussion of these principles again below.

2.3 Zavagno, Annan, and Caputo [52]
Zavagno, Annan, and Caputo [52] (hereafter, ZAC)
replicated the staircase-Gelb experiment of Cataliotti and
Gilchrist with two added conditions in which the same
five papers were spatially reordered in two different ways.
Figure 8—reprinted from ZAC’s article—illustrates the
spatial orderings of the papers under their three experimental
conditions, denoted as Series A, B, andC. TheMunsell values
of the papers were 2.0, 4.0, 6.0, 8.0, and 9.5 [33], which
correspond to measured log reflectances 0.4942, 1.0792,
1.4778, 1.7716, and 1.9543 (Daniele Zavagno, personal
communication, December, 2018).

The Munsell matches made to the individual papers
in each series are also plotted in Fig. 8. Clearly, the spatial
ordering of the papers in the Gelb series matters. For
example, the lowest reflectance paper appears darker when
it appears next to the white paper in Series C than when it
appears next to the second lowest reflectance paper in Series
A. This is an important result because it runs contrary to
the central claim of anchoring theory that the lightness of
each individual paper in any given series is determined by
the ratio of that paper’s luminance to the luminance of the
highest luminance paper in the series and not by proximity.
If anchoring theory were correct, the spatial ordering of the
papers should make no difference.

Figure 8. The staircase-Gelb effect and lightness compression. The data
labeled ‘A’ are the average lightness matches made to the papers in a
staircase-Gelb display in which the five squares are arranged in order
from darkest to lightest. The curves labeled B and C indicate lightness
matches made to the same papers after the spatial arrangement of the
papers was altered as shown in the inset in the lower right of the figure.
The spatial arrangement of the papers was altered in two different ways
to position the white square next to the black square. The theoretical lines
on the plot correspond to the lightness assignments expected from the
highest luminance anchoring within the local illumination framework of the
papers and the global illumination framework of the room, according to
anchoring theory (figure and caption adapted from Zavagno, Annan, and
Caputo, 2004).

Another noteworthy feature of the results plotted in
Fig. 8 is that thematchesmade in Series A (the staircase-Gelb
series in which the papers were ordered from darkest
to lightest) replicate the compression effect observed by
Cataliotti and Gilchrist in their original staircase-Gelb
experiment, both qualitatively and quantitatively. I fit a
least-squares linear regression model to the data from Series
A and obtained a slope estimate of 0.30, which is close to the
cube-root compression exhibited in Cataliotti and Gilchrist’s
experiment with the staircase-Gelb series presented against a
dark background [38].

According to the neurocomputational model, the light-
ness of a homogeneous surface, such as one of the papers
in these experiments, is determined by a sum over neurally
weighted steps in log luminance computed at the surface
borders and at other nearby edges that are oriented roughly
parallel to the surface borders [41, 54]. In the ZAC
experiment, the ‘‘other nearby edges’’ were the edges between
papers in the Gelb series that were not the edges of the target
paper itself. Edgeweights are assumed to decaywith distance,
so we anticipate that the borders of the target paper itself
will make the largest contribution to the edge integration
computation for each individual paper.

To discover whether the model can account for the
matches made by the observers in Series A, B, and C,
I proceeded in a stepwise manner. I first simulated the
behavior of a reduced version of the neurocomputational
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model in which only the immediate borders of each paper
contribute to that paper’s lightness. Then I added the effects
of other neighboring borders one by one, beginning with
the next closest borders. I first report the results for the
first-order model in which only the immediate borders
of each paper contribute to the paper’s lightness. In the
simulation, incremental steps were weighted by the neural
gain factor 0.27 and decremental steps by the gain factor 1.0.
Since papers in Zavagno et al.’s study were square-shaped,
the weights assigned to each of the four paper borders in the
simulation were determined solely by the contrast polarity of
each border and not by the relative border length, which was
equal for all four borders of each paper.

The results for the first-order model are presented in
Figure 9(a). The plots at the top of the figure are the actual
matches made by observers in Series A, B, and C; the plots at
the bottom are the simulatedmatches. Clearly, the two sets of
plots do not align.However, themismatch is largely remedied
by renormalizing the model output so that the largest output
of the neural computation in each series appears white (i.e.,
matches a Munsell 9.5 standard) as shown in Fig. 9(b).
This was accomplished by adding a different constant to the
output of the simulated data from each series. Note that
the normalization rule applied here is not the same as the
anchoring rule adopted in Gilchrist’s anchoring theory and
in some versions of the retinex colormodel (e.g., [28]), which
is that the highest luminance always appears white.

In previously published work, I have explained why I
believe that the white anchoring happens at a processing
stage beyond that of edge integration, and thus at a stage
of neural processing at which information about luminance
per se has been lost [38, 39, 41, 43]. For example, the
anchoring rule applied here allows for the appearance of
two simultaneously presented highest luminance targets
to appear different depending on the differing spatial
compositions of their local contexts, while the highest
luminance anchoring rule would predict that they should
both appear (equally) white regardless of their spatial
context [39, 43]. As discussed above, anchoring theory
asserts that the appearance of any given target surface
should not be affected by changes in the luminance of any
lower-luminance contextual elements in the image unless
those elements change size [13, 17].

The first-order model with white-level anchoring does
a pretty good job of accounting for the matches made
by ZAC’s observers. Nevertheless, there is some residual
mismatch between the real and simulated lightnessmatching
results even after applying the highest output anchoring
rule. To quantify this residual error, I compared the total
sums-of-squares error for all 15 simulated versus actual
match pairs plotted in Fig. 9(b) to the total sums of squares
of the 15 actual matches around their grand mean. This
calculation yielded an average error of 5.8%.

I next varied the initial value of non = 0.27 in steps of
0.01, while keeping all other elements of the model fixed,
to search for the parameterization of the first-order model
that minimized the average error. A model with non = 0.22

Figure 9. Comparison of the lightness matches made in Series A, B,
and C of ZAC’s study with the predictions of a neural model based on
a weighted average of the incremental and decremental steps in log
luminance at the four edges of each paper. In the simulations, incremental
steps in log luminance were weighted by the experimentally measured
ON-cell exponent 0.27, and decremental steps in log luminance were
weighted by the assumed OFF-cell exponent 1.0. (a) Simulated matches
for the neural model without white anchoring. (b) Simulated matches shifted
upward to make the paper producing the highest model output in each
series match a Munsell 9.5 standard.

produced the least-squares error of 3.0%. With non fixed
at this new value, I varied noff in increments of 0.01 and
discovered a new error minimum (3.02% versus 3.03%) at
the value noff = 0.99. Since this value of noff was extremely
close to the originally assumed OFF-cell exponent of 1.0, I
continuedmy stepwise analysis with the assumed parameters
non = 0.22 and noff = 1.0. A plot of the first-order model fits
obtained with these parameters is presented in Figure 10.

To simulate the full neural model that includes edge
integration—that is, the effects of other parallel paper edges
in the series in addition to the edges of the target paper—I
fixed the values of the ON- and OFF-exponents at the values
non = 0.22 and noff = 1.0 then added the influences of
nearby edges to the lightness the calculation of each paper’s
lightness in pairs based on the number of edges away from
the target each pair was located, weighting all steps in log
luminance that incremented along a path directed toward
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Figure 10. Same as Fig. 9(b) except with the ON-cell exponent set to
0.22, the value that produced the least-squares error for the model fit to
the psychophysical data from all three series combined.

that paper by the value 0.22 and all steps in log luminance that
decremented in the direction of that paper by the value 1.0.

The size of the papers used in the study was 2.38◦ ×
2.38◦ (Daniele Zavagno, personal communication, July
2019). Thus, the second-ordermodel included the four paper
borders plus the two parallel borders that were each located
2.38◦ from the target paper, the third-order model included
all of these borders plus the two parallel borders that were
located 4.76◦ from the target paper, and so on. In those cases,
only one additional border was present at a given distance. In
such cases, one additional border was added to the model at
the corresponding stage of the simulation process.

To compute the weight given to any given edge,
the contrast-polarity-dependent weighting factor for that
edge was multiplied by an independent, distance-dependent
weighting factor that depended only on the distance of
each pair of edges from the target paper. I also weighted
the contribution of each edge—regardless of distance—by
the same proportionality factor of 0.25 that I had applied
to the four paper edges in the first-order model because
any added edges were expected to produce their effects
by the principle of parallelism [54] with the target border,
which itself received a length-proportional weighting of 0.25.
Thus, the total weight assigned to each edge in the lightness
computation depended on three independent multiplicative
factors: the distance of the edge from the target, the edge
contrast polarity, and the proportion of the target edge that
was parallel to the influencing edge.

Figure 11 presents the results of the simulation of the full
edge integration model corresponding to the set of distance-
dependent weighting factors illustrated in Figure 12(a). This
set of weighting factors produced a total squared error
of 1.55% under the choice of contrast-polarity-dependent
parameters non = 0.22 and noff = 1.0. I found that I could
reduce this error to 1.48% by slightly increasing the value
of noff from 1.00 to 1.03, but any further increases in noff
increased the percent error. Changes in the value of non did

Figure 11. Simulated lightness matches for Series A, B, and C
corresponding to the least-squares parameterization of the full neural
edge integration model. The ON-cell exponent was here set to the
value 0.22 and the OFF-cell exponent was set to the value 1.0. The
distance-dependent components of the edge weights were set at the values
plotted in Fig. 12.

not improve the model fit. I concluded that any deviations
from the value noff = 1.0 were likely to be due to noise.
Therefore, the results shown in the plots correspond to the
model where non = 0.22 and noff = 1.

The distance-dependent weighting function plotted
in Fig. 12(a) was obtained under the assumption that
each remote edge had the same effective length as a
target edge (i.e., was assigned a proportionality factor of
0.25), as described above. Fig. 12(b) plots an alternative
distance-dependent weighting function that was computed
by assuming that the influence of each successive edge
decreases in proportion to the inverse of the two-dimensional
(2D) spatial angle (in the plane of the SLC display) of
the remote edge length with respect to the target paper’s
center. Both simulation results are shown here because
it is not clear which of these assumptions, if either, is
correct. Both correspond equally to the model fits shown
in Fig. 9 that produce a total squared error of 1.55%.
However, it is worth noting that the distance-dependent
weighting function plotted in Fig. 12(a) is consistent with
the estimateω(1.49◦)∼= 0.56 obtained above by applying the
edge integration model to the data from Zavagno, Daneyko,
and Liu, whereas the weighting function plotted in Fig. 12(b)
is not. Thus the results favor the model corresponding to
Fig. 12(a).

These conclusions are important, so it is worth ex-
plaining them out in more detail. The distance of the
remote edge to the target edge in ZDL’s SLC display was
1.27◦. From Fig. 12(a), we can estimate that the edge
weight corresponding to this distance is about 0.54, so the
correspondence is almost exact for the first model of the
distance-dependent edge weighting factor (and within the
error of the estimate of the degree of lightness constancy
failure in ZDL’s experiment). The distance from the remote
edge to the target center in the display was 1.49◦. According
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Figure 12. The distance-dependent component of the edge-weighting
function that produced the simulation results presented in Fig. 11
calculated in two ways. (a) Calculation based on weighting the
contrast-polarity dependent and spatially dependent components of the
weights for each edge by the proportion of the target border that
paralleled the edge whose contribution was weighted. The value of the
distance-dependent weighting factor at the location of the target border
was here normalized to 1.0. (b) Same as (a) except that the proportionality
factor was computed from the 2D angle that the contributing edge
subtended with respect to the center of the paper whose lightness was
being computed. No normalization was applied.

to the second model, whose distance-dependent edge
function is plotted in Fig. 12(b), the edge weight at that
distance should be about 9.0, which is more than 1.5 times
larger than the value of 0.56 that we estimated from the
degree of lightness constancy failure in ZDL’s experiment.
The first model is plausible, while the second model is not.

2.4 Lightness Compression Evaluated for a Single
Decremental Edge
The neural model accounts for the overall compressed
dynamic range of the perceived reflectances of the papers
in the staircase-Gelb and scrambled-Gelb experiments by
assuming that only the neural responses to those steps in
log luminance that increment in the direction of the target
paper (i.e., the neural edge response derived from ON-cell
responses) are compressed in the process of computing that
paper’s lightness relative to the size of the true physical

Figure 13. Predicted shift in the log perceived reflectance (y -axis) of the
darkest Gelb paper when its neighboring paper in Series A is replaced
by the paper with the highest reflectance in Series B: an increase in the
neighboring paper of 0.875 log units. The observed shift is predicted
on the basis of the assumption that the darkness-inducing effects of
decremental edges and each edge of the square target paper contributes
1/4 of the total influence of the steps in log luminance at the target’s
edges to the target lightness. The influence of other edges in the scene
that are oriented parallel to the target paper’s edge have also been taken
into account here, but their total influence on the lightness of this particular
target paper was small (see text for details).

reflectance steps. Luminance decrements, on the other hand,
are assumed to be represented veridically by the humanvisual
system. The idea that decremental steps in log luminance are
represented veridically is an important property of themodel
that deserves an independent check.

To test this prediction of the model, I examined how the
darkest (Munsell 2.0) paper was differentially influenced by
its neighboring papers in Series A and B of the ZAC study. In
Series A, the darkest paper was positioned next to a Munsell
4.0 paper (the second lowest reflectance in the series) while
in Series B, it was positioned next to the Munsell 9.5 paper
(the highest reflectance paper in the series) (Fig. 7). In the
first-order model, the perceived reflectance of the 2.0 paper
depends on a weighted average of the luminance steps in log
units at the four paper borders. Three of these steps in log
luminance were the same in Series A and B, but one was
different. The one that was different was the decremental step
between the neighboring (either Munsell 4.0 or 9.5) paper
and theMunsell 2.0 target paper. According to the first-order
model, a change in reflectance of the neighboring paper
should therefore alter the perceived lightness of the 2.0 paper
by an amount equal to 1/4 of the step in log reflectance at
the border between the 2.0 paper and its neighboring paper.
Changing the log reflectance of the immediately neighboring
paper from 1.0792 (in Series A) to 1.9543 (in Series B) should
therefore decrease the perceived reflectance on the target
paper by 1

4 (1.9543–1.0792)= 0.21878 log units.
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Taking into account the influence of the other parallel
edges, the full neural edge integration model predicts a
slightly smaller shift in the perceived reflectance of about
0.1960 log units. Figure 13 illustrates this predicted lightness
change graphically. The horizontal red arrow in the figure
indicates the distance in log units between the physical
reflectances of the Munsell 4.0 and Munsell 9.5 papers that
neighbored the target Munsell 2.0 paper in Series A and
B, respectively, while the vertical red arrow indicates the
predicted shift in the perceived reflectance of the Munsell
2.0 paper in going from Series A to Series B. As can be seen
from the figure, this prediction of the neural edge integration
model is verified. The significance of this confirmation of
the model cannot be overstated because it supports the
key hypothesis of the model that the reflectance ratios
at decremental borders are represented veridically by the
human visual system even while the reflectance-to-lightness
mapping exhibits dynamic range compression on the whole.
If the visual response to decremental edges was compressed
by the same amount as that the visual response to incremental
edges are here assumed to be, the predicted shift in lightness
would be only about 1/5 to 1/4 as large as it was actually
measured to be. Hence these result provide strong evidence
that incremental steps in log luminance only are compressed
in the neural computation of lightness.

2.5 Effect of Adding a White Border to the Staircase-Gelb
Display
As mentioned above, Gilchrist and Cataliotti [14] reported
that surrounding a staircase-Gelb display by a white border
brought the observers’ lightness judgments more in line with
the physical luminance ratios in the display (see also [17]).
To investigate whether the edge integration model mimics
this effect, I repeated my simulation of the model’s response
to the papers presented in Series A, but with the same
arrangement of five papers instead presented against a
background consisting of a Munsell 9.5 paper. Figure 14
presents the results of this simulation together with the actual
and simulated results for Series A when presented against
a dark background. The line in the figure labeled ‘‘ground
truth’’ indicates the matches that observers would make if
their lightness judgments were veridical. As can be seen
from the figure, the model exhibited a strong release from
compression in the direction of veridicality when a white
background was added to the display.

To help quantify the magnitude of the observed change
in the overall amount of dynamic range compression pro-
duced by the model in the presence of the white border, I fit
linear regression models to the lightness matches performed
by Zavagno et al.’s observers when the staircase-Gelb display
was presented against a black background and to the
simulated matches produced by the model when the same
stimulus arrangement of papers presented against a white
background. The estimated slope for the actual Series A data
was 0.30, while the slope of the simulated data corresponding
to the white border condition was 0.85. For comparison, the
log–log slope corresponding to a veridical reflectance match

Figure 14. Comparison of the simulated output of the neural edge
integration model in response to Series A (staircase Gelb) when the display
is presented against a white background to the model’s output in response
to the same arrangement of papers when they are presented against
a dark background. The results from the simulated white background
condition are consistent with the Gilchrist and Cataliotti’s report [14] that
surrounding the staircase-Gelb display by a white border tends to shift the
lightness matches closer to the physical ratio scaling of the papers (i.e.,
ground truth).

(i.e., ground truth) would be 1.0. By these measures, adding
the white border had the effect of relieving about 79% of
the dynamic range compression observed when Series A was
presented against a dark background in ZAC’s original study
((1.0− 0.85)/(1.0− 0.30)= (100%− 79%)).

The modeling results are thus consistent with Gilchrist
and Cataliotti’s report that adding a white border tends
to counteract the compression effect observed when their
staircase-Gelb stimulus is presented against a dark back-
ground. However, the neural model’s explanation of this
decompression effect differs fundamentally from the one
proposed by Gilchrist and his colleagues. According to
their lightness anchoring theory, the white border acts to
perceptually insulate the illumination framework of Gelb
papers from that of the larger visual environment of the
room, with the result that the visual system more accurately
scales the reflectance ratios of the papers within the series.
The neural edge integration model instead explains the
effect of the white border on the basis of the fact that
more of the paper borders in the display are luminance
decrements with respect to the immediate surround when
the white border is present. Since decremental steps in log
luminance are represented veridically in the neural model
(as verified through post-hoc data analysis above), while
incremental edges are not, replacing the incremental steps
in log luminance at the borders between the Gelb papers
and the dark background with the decremental steps in
log luminance at the borders between the same papers and
a white background has the overall effect of bringing the
lightness matches more in line with ground truth.
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3. GENERAL DISCUSSION
It has been shown here that a neural model based on
the principle of edge integration can account for lightness
matching data from experiments performed with material
displays illuminated by a spotlight in an otherwise dimly
lit room (Gelb illumination) as well as for data from
experiments conducted with disk/annulus and square/frame
stimuli presented on computer monitors. In the case of the
material displays, the model explains real-world failures of
lightness constancy as well as key quantitative properties of
perceptual dynamic range, including lightness compression
and various releases from compression.

The neural model combines edge integration with
distance and contrast-polarity edge weights plus a renormal-
ization of the highest output of the neural edge integration
process to appear white. Together, these assumptions result
in a model in which lightness depends not only on a
spatial extended (beyond local contrast), but also spatially
windowed, analysis of the visual scene. The purpose of this
analysis is to combine local contrast measures across space
to establish a scale of perceived reflectance that applies to a
substantial region of the image [37].

Themodeling results reported here confirm a keymodel
prediction that the influence of spatial context on lightness
declines with distance. Themaximumextent of this influence
is estimated here to be about 10◦. This result is consistent
with previous measurements of the spatial extent of the
contextual influence on lightness based on experiments
conducted with disk-ring [44] and in other experimental
lightness and brightness paradigms (e.g., ([8, 26, 30, 47])).

The neural model produces a distorted representation
of real-world surface reflectances. Because the edge weights
in the model depend on both the distance of the weighted
edge from the target and the edge contrast polarity, and
because the weighted edges themselves depend on local steps
in log luminance, the perceptual rescaling of reflectance that
the model produces depends on both the geometric and
photometric properties of the target surface and other surface
in the target’s visual environment. Incremental steps in log
luminance are perceptually compressed, while decremental
steps in log luminance are represented veridically. But even
the influences of decremental steps on lightness depend
on distance. The overall lightness scaling produced by
combining incremental and decremental luminance steps
through the process of edge integration accounts for the key
behavioral properties of lightness matching observed here,
including constancy failures, lightness compression, and
various releases from compression. The model’s assumption
of distance-dependent and contrast-polarity-dependent edge
weights can be usefully compared to the assumptions of the
original retinex model of Land andMcCann [29], which also
(implicitly) assumed that lightness is computed from a sum
of steps in log luminance, but with edge weights that were
uniformly equal to 1.0. Unlike the present model, retinex
predicts veridical ratio scaling and lightness constancy with
respect to changes in spatial context [37], contrary to the
results of the experiments whose results were modeled here.

3.1 Implications of These Results for Other Models of
Lightness Perception
In this section, I critique some competingmodels of lightness
perception in light of the results reported above.

3.1.1 Gilchrist’s Lightness Anchoring Theory
Anchoring theory is a spatially global theory of lightness
computation in the sense that the lightness of any given sur-
face in an image is determined by an arbitrarily long-range
comparison of the target surface’s luminance with the highest
luminance within the target’s illumination framework. This
long-range comparison is not based on ratios at edges but
instead on the ratio of the luminance of the target surface
to that of the highest luminance in the target’s framework of
illumination. In anchoring theory, these two surfaces do not
have to be contiguous.

Several of the empirical findings reported in this paper
provide strong evidence against anchoring theory. First, as
demonstrated by the background change experiment, the
lightness of any given target surface can be influenced by
the luminances of surfaces within the image that have a
lower luminance than the target, including regions that have
the lowest luminance in the image as a whole. This finding
alone is enough to refute the claim that lightness is based
solely on the comparison of a surface’s luminance with that
of the surface having the highest luminance. Furthermore, as
mentioned above, this conclusion holds even when there is
no change in the area of any surface that has a luminance
lower than that of the target surface, so that the area rule
of anchoring theory cannot be invoked as an alternative
explanation of the results discussed in this paper.

Second, contextual elements in the vicinity of a target
tended to influence the target’s lightness more than spatially
distance elements in the experiments analyzed here, even
when the near and far contextual elements were presented
withing the same illumination framework as the target (as
in the Gelb illumination experiments modeled here). This
finding directly refutes the assumption of a global perceptual
comparison of the luminance of each surface to that of the
highest luminance of the sort assumed by anchoring theory.

Third, anchoring theory treats the well-known asym-
metries in the strengths of lightness and darkness induction
(e.g. [5, 13, 17, 21, 22, 43, 44, 50, 51]) in an all-or-none
fashion. Anchoring theory’s sole mechanism for addressing
these asymmetries (again ignoring the area rule, which does
not to the experiments modeled here) is highest luminance
anchoring. Although the neural model proposed here is in
agreement with anchoring theory on the need for a white
anchor, it assumes that the white anchor corresponds to
the highest output of the edge integrator rather than to
the highest luminance per se. The assumption that it is
the highest edge integrator output, rather than the highest
luminance, that appears white has been demonstrated in
previous research to provide a better account of the full
panoply of results pertaining to white point anchoring [37,
38, 41, 43]. Furthermore—and perhapsmore importantly—a
mechanism other than anchoring is needed to fully account
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for the overall pattern of lightness–darkness asymmetries
documented in the literature. The neural model provides
this additional mechanism in the form of asymmetries in
the neural gains applied to incremental and decremental
steps in log luminance that result from the different response
characteristics of ON- and OFF-neurons in early visual
pathways. Critically, anchoring theory provides no account
of how lightness is influenced by changes in the luminance
or proximity of scene elements other than the surface with
the highest luminance, while these consequences emerge
naturally from the asymmetric processing of incremental and
decremental luminance steps assumed by the neural model.

Importantly, the neural model accounts for both com-
pression and release from compression in the Gelb effect on
the basis of the model’s assumptions about asymmetric pro-
cessing of incremental and decremental luminances without
the need to invoke the ancillary assumptions of grouping by
the illumination framework and co-determination proposed
by anchoring theory to explain these same effects. This is not
to say that grouping and segmentation do not play any role
in lightness perception, but these concepts are not needed
to account for staircase- and scrambled-Gelb illusions. The
issues of grouping and segmentation will be addressed in
future work on the neural model.

3.1.2 ODOGModel
The oriented difference-of-Gaussians (ODOG) model [3]
comprises a bank of 42 oriented difference-of-Gaussians
filters tuned to seven spatial scales and six orientations.
ODOG computes brightness by convolving the input image
with all 42 filters and then summing the filter outputs across
spatial scales, with the higher spatial frequency mechanisms
assigned higher weights. The outputs of the resulting six
orientation channels are independently normalized by their
root mean square contrasts evaluated across the entire image
then summed to produce the model output.

The ODOG model has been shown to be capable
of providing a qualitative explanation of many standard
brightness/lightness illusions [32], including the results of a
study performed with staircase-Gelb display and scrambled-
Gelb displays on a computer monitor [4]. Because the scale
of its largest filters is about 6◦, the ODOG model might
also be able to account for the distance-dependent falloff
in contextual influence on target lightness discussed and
modeled here. However, it seems unlikely that the ODOG
could explain quantitative properties of the dynamic range
compression observed in the ZAC study, and even less likely
that it could account for the fact that decremental steps in log
luminance at individual edges were represented veridically
by the visual system in the same experiments. To account
for such effects would seem to require a mechanism for
asymmetric lightness and darkness encoding, which ODOG
lacks because the linear filters on which the ODOG is based
treat increments and decrements symmetrically.

Relatedly, the use of linear cortical filters to model
visual perception—which is often considered as one of
ODOG’s strengths because it is thought to reflect the

properties of known physiological mechanisms—is brought
into question by the physiological evidence cited here for
a strong compressive response in macaque LGN ON-cells,
which are commonly believed to be part of the visual pathway
that mediates primate color vision. It is unclear at present
how these seemingly conflicting views of the underlying
visual physiology are to be resolved.

The ODOG also lacks any form of lightness anchoring,
which is needed to account for the fact that Cataliotti
and Gilchrist’s and ZAC’s subjects always matched the
highest lightness paper in each series to a white (Munsell
9.5) standard. On the other hand, in the study that was
conducted to test ODOG’s ability to explain results like
the ones modeled here, but with the stimuli presented on
a computer monitor [4], the lightness of the simulated
highest luminance paper depended on that target’s position
in the series in which it was embedded. This suggests
that the simulated highest luminance paper did not always
appear white and, thus, that the computer-generated and
monitor-display stimuli were not processed in the same
way as the real-world illuminated stimuli employed in the
experiments modeled here.

Finally, psychophysical evidence supports the conclu-
sion that a full account of lightness perception requires image
segmentation mechanisms that are not included in ODOG
or other low-level filter models (e.g. [26]). Consistent with
the perceptual evidence for image segmentation in lightness
is evidence from neurophysiology for neural mechanisms
supporting such image segmentation cues as illusory contour
completion [49] and border ownership [55] located in area
V2 of the visual cortex. I have previously addressed this
issue and proposed that such mechanisms could play a role
within the overall architecture of my neural model by further
modulating the gains of visual neurons at a processing
stage that comes before the stage of edge integration in a
feedforward circuit in a manner that is consistent with the
cortical architecture of known neural image segmentation
mechanisms cited above ([39], Fig. 1; [41]). Since image
segmentationmechanisms are not required to account for the
lightness phenomena modeled in the present paper, I have
mostly ignored them here. Nevertheless, the fact that they
have a place in the larger neural circuit that I have proposed
as a physiological substrate for cortical lightness computation
distinguishes my approach from that of low-level filtering
models such as the ODOG.

3.1.3 Stiehl, McCann, and Savoy [48]
Stiehl et al. proposed a lightness model in which dynamic
range compression is produced by a combination of in-
traocular scattering and neural processing. In their model,
intraocular scattering produces a compressive power law
mapping of physical reflectance to retinal illuminance, and
the nervous system subsequently performs a logarithmic
mapping of retinal illuminance to lightness.

In principle, intraocular scattering might explain the
compressive power law response of the LGN ON-cells
observed in the data of De Valois et al. [9]. If scattering
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was the correct explanation for the ON-cell compressive
response, however, we would expect OFF-cells to exhibit
a similar compressive behavior. In the course of the
modeling described in the present paper, multiple checks
were performed to verify that decremental luminance ratios
at edges were represented veridically by the visual system as
a whole, while incremental luminance ratios at edges were
subject to compression, including a direct test in which only
the luminance ratio at a single decremental edge was altered
(see Fig. 13). In each case, the assumption that decremental
edges are represented veridically at the perceptual level was
verified. Thus, if intraocular scattering indeed produces a
compressive response in both ON- and OFF-cells, then an
additional neural mechanism located subsequent to the LGN
would be needed to explain why this compression does not
apply to the perception of decremental luminance steps,
while it does apply to the perception of increments. If, on the
other hand, the ON-cell compression seen in neural data is
not due to scattering, then it is not clear how scattering could
influence perception. Therefore, it is difficult to see how the
model proposed by Stiehl et al. can be reconciled with the
overall pattern of results presented here.

Another argument against the hypothesis that intraoc-
ular scattering explains perceptual lightness compression is
that spatial filtering in the human nervous system likely
filters out the effects of the slow luminance gradients
produced by scattering. Although the ON- and OFF-cells in
the LGN do transmit information about the DC luminance
level, cortical neurons such as simple cells arguably exhibit no
suchDC response. It is the point of view of the currentmodel
that the outputs of such DC-suppressing cortical neurons
(including edge detectors) for the basis for the cortical
representation of surface lightness. This idea will be further
addressed in future work on the model.

3.1.4 Perceptual Filling-inModels of Grossberg and Colleagues
The model proposed here has important points of common-
ality with the brightness ‘‘filling-in’’ models first proposed
by Grossberg and his colleagues [7, 19, 20] in the 1980s,
and subsequently incorporated into a complex and sophis-
ticated model of cortical visual processing called FACADE
theory [18].

Like the filling-in models proposed by Grossberg et al.,
the present model proposes that the visual nervous system
first encodes information about edges and borders, then
uses this information to construct a cortical representation
of surfaces and objects. However, the present model differs
from Grossberg’s theory in important and testable ways. The
mechanism that Grossberg and colleagues have proposed to
account for the filling of surface properties is a diffusing
neural signal that propagates from the locations of surface
borders within one or more topological maps of the visual
environment and stops when it reaches the next border (see,
for example, [10, p. 58]). This is how surface properties are
confined to the surface region itself according to their model.

The results presented here raise serious obstacles for
such diffuse-to-border-type filling-in models by demon-

strating that information about multiple incremental and
decremental luminance steps is spatially summed by the
visual system to compute lightness. This would seem to rule
out a mechanism in which information about the luminance
step at an edge literally spreads from the location of that
edge to fill in only the region between that edge and the
next edge in a neural map because the implied blockage of
information flow would make edge summation impossible.
For this reason, I have proposed an alternative mechanism
to explain how perceptual filling-in of surface properties
occurs in the brain. According to this alternative model, edge
summation is performed by large-scale receptive fields of
color representing neurons at a subsequent stage of neural
processing [37, 38, 41]. This alternative account of cortical
visual processing has not been developed to the level of
sophistication as that of Grossberg’s group, it nevertheless
worth emphasizing here that the current approach is both
well-defined and distinctly different from Grossberg’s model
of how edge information is utilized by the brain to construct
a cortical representation of surfaces and objects in the visual
environment. Furthermore, my model makes predictions
that can be tested against the predictions of diffusive filling-in
models. One of these predictions is, in fact, tested here by
the demonstration that edge integration occurs in a variety
of perceptual contexts and is thus a fundamental mechanism
contributing to the perceptual computation of lightness.

3.2 Outstanding Issues and Future Extensions of the Model
Previous work on the model has motivated the introduction
of several components of the model beyond those discussed
here. These include contrast gain control [37–39, 41, 42,
45], top-down gain control of edge weights based on
edge classification [37, 41], and individual differences in
the spatial extent of edge integration [41]. These model
properties were not discussed in the present paper because
they were not needed to model the data under investigation.

Because ON- and OFF-cells possess center–surround
receptive fields, the neural model proposed here can also
spatially integrate luminance gradients in addition to hard
edges (see [41]). This model property has previously been
used, in conjunction with the model’s contrast gain control
property, to simulate the phantom illusion: a lightness illusion
in which surrounding targets with luminance gradients can
reverse the apparent contrast polarity of the target, thus
making increments appear as decrements and vice versa [11,
41]. The fact that the model can integrate both hard edges
and gradients suggests that the model might be extended in
future work to account for the lightness of several novel SLC
displays that Zavagno, Daneyko, and Liu created by adding
additional edges and gradients to the classical SLC display
(Fig. 6).
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