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Abstract. For the visual world in which we operate, the core issue
is to conceptualize how its three-dimensional structure is encoded
through the neural computation of multiple depth cues and their
integration to a unitary depth structure. One approach to this
issue is the full Bayesian model of scene understanding, but this
is shown to require selection from the implausibly large number
of possible scenes. An alternative approach is to propagate the
implied depth structure solution for the scene through the “belief
propagation” algorithm on general probability distributions. However,
a more efficient model of local slant propagation is developed as
an alternative. The overall depth percept must be derived from
the combination of all available depth cues, but a simple linear
summation rule across, say, a dozen different depth cues, would
massively overestimate the perceived depth in the scene in cases
where each cue alone provides a close-to-veridical depth estimate.
On the other hand, a Bayesian averaging or “modified weak fusion”
model for depth cue combination does not provide for the observed
enhancement of perceived depth from weak depth cues. Thus,
the current models do not account for the empirical properties of
perceived depth from multiple depth cues. The present analysis
shows that these problems can be addressed by an asymptotic,
or hyperbolic Minkowski, approach to cue combination. With
appropriate parameters, this first-order rule gives strong summation
for a few depth cues, but the effect of an increasing number of cues
beyond that remains too weak to account for the available degree of
perceived depth magnitude. Finally, an accelerated asymptotic rule
is proposed to match the empirical strength of perceived depth as
measured, with appropriate behavior for any number of depth cues.
© 2020 Society for Imaging Science and Technology.
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1. INTRODUCTION

The world in which we have to operate is three-dimensional
(3D; or four-dimensional, if we include time variations),
so it is critical that we have a thorough representation of
its full-dimensional layout in order to be able to navigate
it effectively. The manner in which two-dimensional (2D)
depth cues are combined to provide a full-dimensional depth
map of the world in which we operate has a deep history
but no current resolution, to my knowledge. To illustrate the
issue, consider the case of depth from texture in perspective
projection (Figure 1). Li & Zaidi [1] show that radically
different forms and degrees of depth structure are perceived
as a function of the orientation of textural information
relative to the depth structure being depicted. (Note that
these plaids are derived from uniform sinusoidal gratings,
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so there is no noise to render a given orientation noisy
of variable other than quantal fluctuations; hence an ideal
observer should extract the same depth structure from each
variant.) The one-dimensional perceived depth profile for
one observer (the author) is depicted in the green traces
above each texture. (Li & Zaidi used an ordinal measure of
depth structure, so their data cannot be used for quantitative
comparisons of the strength of the depth percept.) The full
texture is an 8-orientation (8-O) plaid depicting a three-cycle
sinusoidal depth structure in perspective. The subsequent
textures are a reduced plaid of just the vertical (V) and the
(modulated) horizontal (H) orientations alone, the combined
horizontal and vertical (H + V) plaid, and the full 8-O
plaid. Physically, each separate orientation contains the full
information about the geometric depth structure, but it can
be seen that the depth effect is much stronger for the H than
for the V orientation and that the effect is roughly additive
for the two combined into an H/V plaid. Including the other
six orientations for the 8-O plaid, however, does not further
enhance the perceived depth, but tends to slightly reduce it.
(The oblique components alone also elicited strong depth
structure percepts [1]).

The point of the demo in Figure 1 is to illustrate the
concept of depth cue combination and its rules of operation,
not to focus on this specific example for quantitative analysis.
Qualitatively, it shows that perceived depth is not controlled
by an averaging process, for then the depth of (H + V)
would be less than for H alone, whereas it is closer to
an additive summation process. Conversely, the perceived
depth cannot be controlled purely by a simple additive
process because the perceived depth for the 8-O plaid should
be (roughly) four times greater than for the 2-orientation
(H + V) plaid, whereas here it operates close to an
averaging principle. The contribution of the present work
is to show that current theoretical treatments of depth
cue combination are incapable of accounting for empirical
depth cue combination results and to provide a general
cue combination principle that can do so. This demo
thus encapsulates the thorny issue of the cue combination
principles of operation, as developed below.

2. DEPTH CUE COMBINATION THEORIES: A
CRITIQUE

The two main competing theories are undifferentiated

Bayesian selection or the strong fusion model (Biilthoff &
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Figure 1. Examples of static textures of different orientation compositions, all depicting the same physical threecycle depth structure modified from Li &
Zaidi [1], but giving very different strengths of perceived depth from texture as indicated in the profiles above each texture (with the upward direction
coding "far depth”). The three-cycle geometric depth sfructure used to compute the texture perspective modulations is shown at far left. VWeak depth is
evoked by the verticalstripe texture [especially if viewed close to avoid the spurious shading cue). Strong depth is seen for the (perspectively modulated)
horizontal-stripe texture. Strong depth is seen for both the 2- and 8-orientation plaids.

Yuille [2]; Nakayama & Shimojo [3]; Likova & Tyler [4])
and depth cue combination or weak fusion models (Landy
et al. [5]; Maloney & Landy [6]). The strong fusion model
is effectively a formalized version of the Gregorian theory of
perceptual hypothesis testing (Gregory [7, 8]) that perception
consists of the probabilistic match of prior perceptual
hypotheses to the available data. Thus, the strong fusion
model implies that we have a full 3(4)D representation of
any scene (or scene component) that we might encounter
in the world, and the task of perception is to select among
the probabilistic matches of this array of 34D models to
any scene we may encounter. The “+” sign is included
because many scenes may include motion, three dimensions
of defining color encoding, texture encoding, and so on. (For
example, color would be a defining perceptual attribute of the
ripeness of fruit, or a national flag, and so on.)

2.1 Simple Linear Summation

The modified weak fusion (MWF) model [5, 6] is presented
as operating with linear summation of the depth cues (as
developed in more detail below), although it actually includes
a normalization term (see Eq. 3) that makes it an averaging
model that would provide no summation of multiple weak
cues. Thus, it is important to understand that simple linear
summation (red curve in Figure 2), which would allow for
increasing perceived depth, D, as more cues are included,
would radically overshoot the veridical level after more
than a few cues, once there were enough cues to sum to
the veridical level. On the other hand, the expected value
of the MWF averaging model would never deviate from
veridical perceived depth (green dashed curve in Figure 2),
violating the results of many depth cue combination studies.
Specifically, for the MWEF averaging model with four equally
weighted cues, (1 + 1+ 1+ 1)/4 = 1, whereas for a linear
summation model, 1 + 1+ 1 + 1 = 4. The prescription
suggested to avoid this problem is to include some cues
to flatness (d; = 0), here exemplified as contributing with
equal strength to any one depth cue (blue curve in Figure 2).
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Figure 2. Modeling perceived depth as a function of number of depth
cues. Simple linear summation (red line) for set of equal weak depth cues
(di = 0.2 in this example) fakes five cues to reach the veridical level
(D= 1) but then overshoots if further cues are added. MWF weighted
summation [green dashed curve) assumes that all cues are veridical, so
perceived depth should always remain veridical regardless of the number
of depth cues. Adding a unitary flainess cue (dy = O; blue curve) to the
MWF model produces a nonlinear asymptotic function that asymptotes
slowly toward veridicality, but fails to reach it even with 12 depth cues.

Specifically, for the MWF averaging model with two equally
weighted cues, (0 + 1)/2 = 0.5, whereas for the true additive
model 0 + 1 =1, and the (equally weighted) depth would
never be less than veridical. While including the flatness
cue(s) does provide for some degree of depth enhancement
through depth cue combination, the blue curve in Figure 2
shows that the enhancement is far too slow to reach the
asymptotic veridical value even with as many as a dozen
depth cues.

Moreover, this option of incorporating cues to flatness
only applies to the presentation of stimuli on (flat) visual
displays. It does not apply to the perceived flattening of the
known 3D environment in reduced cue situations, such as
when closing one eye, because the 3D world has no cues to
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flatness. The MWEF hypothesis of Landy et al. [5] is based on
the assumption that each depth cue alone is in fact veridical,
though noisy, and thus any combination of depth cues
should give an unbiased (i.e., full depth) impression, though
weighted to the least noisy cue. The fact that perceived depth
is itself less than veridical at larger viewing distances in
full-cue situations (Erkelens [9]), and that closing one eye
reduces perceived depth in otherwise full-cue situations (in
which there are no cues or priors to flatness!) invalidates
the MWF model as presented. (Note that, in practice, when
trying the one-eye-closure experiment, it is important to wait
for, say, 10 s, to allow the memory of the binocular depth
structure to dissipate before assessing the depth. The eye
should then be re-opened to allow a direct comparison of the
monocular view with the refreshed binocular view.)

2.2 Full Bayesian Cue Combination

The Bayesian concept is that the 3D map is derived by
comparing the 2D information in the image to the 2D
projections of all possible 3D scenes that we might encounter.
The full Bayesian cue combination rule is then that the
depth map is selected according to the best, or maximum
a posteriori (MAP), estimate from among all possible scenes,
given the image data impinging on the eyes that incorporates
an array of depth cue information. Note that in most cases
this perceptual 3D map selection is achieved within a few
hundred milliseconds. The absurdity of this proposal become
evident as soon as we realize the trillions of possible scenes
that the human may encounter, and indeed the proportion
of them that could conceivably reside in memory relative
to the number that may be encountered for the first time.
To quantify this in orders of magnitude, we may consider
that the surface of the earth has an area of ~500 trillion
square meters, so if each square meter constitutes a different
station point, and the effective field of view is 1 steradian,
the total number of different views would be ~6 quadrillion.
Obviously, these assumptions can be adjusted to suit different
conceptualizations of distinct scenes, but this calculation
gives a first approximation to the scale of the Bayesian
proposition.

If we assume that the human encounters a new scene
every second or so, the maximum number of scenes that an
adult could have encountered in a lifetime would be only
of an order of one billion, or a miniscule fraction of the
sextillion possible scenes, so there is no conceivable memory
that could have established the basis for selecting from the
possible scenes that could actually be encountered by an
earthbound traveler. Thus, while the Bayesian model could
possibly operate to tell us which of our everyday scenes of
familiar territory we are encountering, there is no possibility
that it can explain our ability to comprehend the depth map
of any novel scene on earth that we might encounter.

J. Percept. Imaging

010501-3

3. GUIDED HYPOTHESIS TESTING OR MID-LEVEL
CONSTRUCTIVE BAYESIAN CUE
INTERPRETATION

Since the full Bayesian approach is combinatorially implau-

sible, is there a version of this theory that could plausibly

be neurally implementable? To do so, we need to take into
account that depth cues can be both sparse and ambiguous

(Tyler & Kontsevich [10]; Tyler [11]). Rather than simply

surveying trillions of possible scenes to find a match, it is far

more plausible that the visual system uses some reliable depth
information as a local starting point and follows a mid-level
constructive Bayesian strategy of assuming that the scene is
made up of a variety of surfaces extending from this local
starting point to other points of reliable depth information

(see Likova & Tyler [4]).

While still incorporating prior information about the
structure of the world, this “constructive Bayesianism” is a
far different proposition as to how the prior information is
used (e.g., Su, Cormack, & Bovik [12]). By restricting the
Bayesian priors to a succession of local options, it reduces the
MAP implementation to a manageable number of choices.
Once the local surface slant is determined, the constructive
Bayesian approach would resemble the “search for dense
surfaces” operation proposed by Julesz for solving the depth
map of random-dot stereograms (RDS). Once started, the
process could rapidly sample the local slant regions around
the edge of the initial region, seeded by the slant of the initial
region, thus reducing the choices to be sampled by many
orders of magnitude if the surface is continuous through each
new sample. In this way, the flexible Bayesian prior that the
solution is a two-parameter surface can be used to construct
the most likely surface implied by the concatenation of
available depth cues. It has, in fact, been implemented as a
computational algorithm for the binocular disparity cue by
Sun, Zheng, & Shum [13].

3.1 Mathematical Development

Local Bayesian priors are typically implemented as “belief
propagation” through what is known (confusingly) as a “fac-
tor graph”, but what will be termed here a belief propagation
net (BPN). A “belief” is a probability distribution of the
current local solution of the problem in hand (which is the
depth map of the visual scene). Thus, for a depth propagation
algorithm such as those of Sun, Zheng, & Shum [13] for
disparity, of Potetz & Lee [14] for shading, etc., the current
result of each iteration of the BPN is the distribution of the
likelihood of each possible depth (from, say, 10 cm to 0o) at
each node in the BPN. Such beliefs propagate by Bayesian
multiplication such that:

pij(d) = H (dij. pic1,j—1(d), pis1,j—1(d), pi—1,j41(d),
pit1jr1(d)), (1)

where the first element of the product operator IT is the initial
input solution to the depth d at node i,j and the other four
elements are the distributions of neighboring depth solutions
ond.
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If we replace the 2D index i,j with the more general
index i of the successive neighbors around each node j (which
generalizes to index any form of connectivity through the
BPN), we have the general expression:

k

pi(d) =[] (dj. pij(d)) . )

i=1

This approach, however, is very computationally expensive
and neurally implausible (e.g., [14]). A rather more efficient
approach is to constrain the propagation of full distributions
under the assumption that they approximate Gaussian
distributions that can be characterized by their first two
moments, the mean m and the reliability represented by
the variance 2. Thus, since the mean of the product of
Gaussian is equal to the sum of their means weighted in
inverse proportion to their os, Eq. (2) becomes:

k k
1
dj(m, o) =7 <§ (mij/o?ip), [} :wng NE)
i=1 i=1

The current proposal for guided hypothesis testing is, instead
of propagating depth solutions, d, to propagate local slant
solutions, s(@, ¢), such that:

k
B mi; (0, $)
55 (m (6. 4) .06, 8) = ¢ (; (m)

k 0'3(0 ’ ¢) ’ (4)
J
i=1

where sj(0, ¢) = djg.¢) (m) — dj(9,¢) (m), with j(0, ¢) being
a net node adjacent to node j in direction (0, ¢) and i being
the local slants at points adjacent to point j, excluding those
in the direction of propagation [32].

3.2 Applications of the Constructive Bayesian Approach to
Cue Combination

In particular, this constructive Bayesian approach can be
used to extrapolate the surface over regions of indeterminate
depth in sparse cue situations containing null, or NaN, values
in the cue map. Where the null surface region is adjacent to
local depth cue information, the Bayesian surface prior can
be applied to the null, or NaN, regions in the form of the
assumption that, in the absence of surface cues, the surface
continues in the same orientation and depth as in adjacent
regions where it was defined. This is the spatial equivalent
of Newton’s first law of motion that objects will continue in
straight-line motion unless perturbed by an external force.
Here, the rule is that, unless perturbed by further depth
cues, surfaces will continue to extend at a uniform slant
throughout the scene (as looking at a large ground plane or
wall), so the local slant is predictive of the extension over
large regions, allowing for rapid propagation of local solution
to large regions of the visual field. The property of surface
continuity, and its extension to higher derivatives, allows for
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the extended use of mid-level Bayesian constraints in solving
the depth construct problem [10].

The issue is complicated by the existence of transpar-
ent, translucent, and reflective surfaces, which incorporate
multiple surface information along any visual direction line
involved, such as in a wireframe cube or the ambiguous
random-dot stereograms of Julesz & Miller [15]. The visual
system now has to understand the multiple 3D surface
structure of the scene in depth. Tyler & Kontsevich [10]
argued that this structure is resolved serially through the
construct of the attentional shroud, which first extrapolates
to one surface structure (usually the nearest) and then the
other, or others, one surface at a time. The same process
is proposed for monocular depth cues to multiple surface
structure such as the Necker cube, which is seen first
protruding in depth and then receding, in alternating flips.
The percept of the cube is inherently a three-dimensional
one, but it is notable that the solutions are only seen one at a
time.

In summary, this conceptualization may be expressed as
Tyler’s Rules of Visual Surface Structure:

1. Changes in physical surface slant tend to be accompanied
by changes in depth cue information.

2. In the absence of perturbing depth cues, the slant of a
surface region is equal to the slants of its adjacent regions.

3. Transparent and reflective surfaces may incorporate
multiple surface information along any visual direction
line.

4. BEYOND WEAK FUSION CUE COMBINATION
In terms of slant, the standard starting point is the
MWF theory of cue combination of Landy, Maloney, and
colleagues [5, 6, 16-18], which is considered to be the
reigning theory of depth cue fusion. As confirmed with them,
MWE is not a meaningful theory for depth as experienced in
the world, because perceived depth deviates radically from
the veridical estimate. This can be seen in any view down
a parallel street, corridor or railroad track (Figure 3), in
each of which the perspective is seen as converging rather
than parallel, indicating that the depth impression is reduced
relative to its veridical extent. (This converging perspective
impression is expected in the printed illustrations, which
have both binocular and textural cues to flatness, but viewing
similar scenes in the full-cue context of everyday life will
verify that they are still seen with converging perspective.)
The lines always appear to converge to some extent, even
though we know that they must be parallel and treat them as
such motorically as we navigate through these environments.
Although we may be able to estimate the metric distance
by cognitive training, the visual structure of the everyday
full-cue scene always appears to be at least somewhat
trapezoidal toward the vanishing point rather than the fully
parallel rectanguloid shape of its physical structure. This
distorted visual impression establishes that the perceived
depth is never veridical in such full-cue distance perception,
as has been determined empirically by Erkelens [9], who

Jan.-June. 2020



Tyler: Accelerated cue combination for multi-cue depth perception

Figure 3. Perspective views of Times Square, an office corridor and a railroad track. Each evokes a substantial depth impression when fixating the vanishing
point, but a pronounced degree of perceived convergence remains. Even in the full-cue situation of reaHife viewing of such scenes, the perspective is sfill
seen as converging rather than parallel, indicating that the fullcue depth impression is reduced relafive fo its veridical extent.

provides a perspective-space model for these effects that
is able to simultaneously predict the perceived, distances,
sizes, and angles of full-cue scenes by means of the single
parameter of the distance of the vanishing point.

4.1 Mathematical Development

This result is significant because the prevailing weak fusion
theory is that the overall perceived depth D is a Gaussian-
reliability weighted linear sum of the veridical depths from
individual depth cues, ¢ [5, 17]

D=Z dc/ocz, wherez I/GC2 =1, and Zd(;zl forall c,
Cc Cc Cc
(5)

and where the d. in their theory are assumed to be veridical
readouts of the depths.

In other words, they assume that ) d. =1 for all ¢,
which means that D = 1 for all combinations of weights
(meaning that all depth estimates are noisy but always
veridical on average). So, as expressed in Landy, Maloney, &
Young [5], the theory only predicts the variance of each depth
cue, but does not allow for any form of reduced depth percept
as is experienced in the world. This seems a severe limitation,
since many depth cue measures show non-veridical depth
perception from individual cues, including those in their own
studies (such as Johnston et al. [19], see Figure 4).

More specifically, Landy, Maloney, & Young, [16] and
Landy et al. [5] structure their MWF theory to apply locally
to all points in the visual field:

D(x,y) = _dc(x.y) /0l (x.y).

where Z l/ocz(x,y) =1, forall (x, y), (6)
c
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Figure 4. lllustration of the asymptotic and accelerated asymptotic

depth cue combination rules, under the assumptions that they have equal
Bayesian weights of 0.5 of the Bayesian norm for the depth of the depicted
object.

and where the bar over the d, variable represents its mean
over the parameter used to estimate the variance such as time
samples (which is unspecified in the cited sources).

By doing so, the authors imply both that the reliability
weighting differentially affects the mean perceived depth at
each (x, y) location in the visual field, and that this local
effect on the perceived depth contribution from any one
depth cue, ¢, is affected by the reliability at that location in
all other depth cues.

4.2 Implications of the Modified Weak Fusion Theory

This particularity of the MWEF theory thus implies that the
depth structure of the scene will vary locally across the
scene, which seems to predict complex fluctuations in the
perceived depth over time as the reliability for each local
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region is defined. They do not specify the time constant
of the reliability estimation (or even whether it has a time
constant), but in order to be applicable to real-life viewing
of visual scenes, the reliability estimation would have to
have a time constant as short as 300 ms, the average time
between saccades to different points in a visual scene. If
it were any longer, the reliability estimation would persist
across saccades to inappropriate regions of the current visual
space, where a different scene structure had prevailed prior to
the saccade. For these reasons, it seems much more plausible
to assume that the reliability is estimated across the scene as
a unitary variable for each depth cue, ¢ (Eq. (5)).

Conversely, there are situations in which depth per-
ception is known to vary locally, principally when viewing
unfamiliar random-dot stereograms (RDS; Julesz [20]). In
such cases, the depth may be perceived as appearing in one
region while it initially remains incoherent in other regions.
The depth surface then appears to spread out from the seeded
core, either with or without the aid of eye movements (Saye
& Frisby [21]). This could be regarded as some form of MWF
integration as the continued sampling of the local image
builds up the reliability of the local depth estimates. However,
it is not clear that this is a valid interpretation because the
visual image is not changing as viewing time increases (in the
case of static RDS). The same array of “valid” and “spurious”
(or intended and unintended) local disparities activates the
array of local disparity detectors at each point in the RDS
image over time. What is happening neurally is that the
depth surface solution in one region seeds the solution in
an adjacent region (Samonds, Tyler, & Lee [22]) in a form
of “belief propagation” or local Bayesian prior refinement
rather than a reduction in the reliability of the local signals,
per se. Thus, the MWF relationship of Eq. (6) should be
restructured to reflect the sequential propagation of the
local prior from regions where a solution has been found to
adjacent regions. It is interesting that this perceptual behavior
tends to asymptote with repeated viewing to an ability to
see the whole stereoscopically depicted surface rapidly in a
single glance (Goryo & Kikuchi [23]; MacCracken, Bourne,
& Hayes [24]), implying that the depth surface prior becomes
an accessible memory trace that can be activated immediately
on re-viewing the particular RDS, even many weeks or
months later.

Landy, Maloney, & Young [16] do not specify what
happens for situations like pictorial depth or “reverspectives”
(physical images that counteract real slants with reversed
perspective patterns), but here the theory would not apply
because the depth cues are discrepant, with some being zero
or negative, and hence do not conform to their restriction
that the theory only applies where the differential cues are
not too discrepant. This is why Young, Landy, & Maloney
[17] implemented a Perturbation Theory of depth cue
combination, because they allow small perturbations around
the veridical depth values to test their theory, but not large
discrepancies.

However, this restriction essentially implies that their
formulation of the MWF cue combination theory Eq. (6)
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does not apply to real-world depth perception in general,
because the perceived depth in the world derives from the
full scope of twelve or more depth cues (Trommershauser,
Kording, & Landy [25]: Goldstein & Brockmole, [26] p.
229) some of which are much weaker than others (e.g.,
Likova & Tyler [4]), particularly in situations where there
is only sparse information for a particular cue. In Chen &
Tyler [27], for example, we showed that disparity carried
by typical luminance shading cues is about 4x weaker than
the monocular shading cue in generating perceived depth,
and as much as 30x weaker than full-spectrum disparity
information depicting the same shading surface. Application
of the theory to such situations, and also for all depth
perceived in pictures, print or electronic displays is forbidden
by this restriction, leaving us with no viable theory for
many of the predominant cases for depth perception. On
the other hand, under the weighted averaging principle of
MWE, multiple unbiased depth cues per se do not add up,
by definition, to more than veridical depth.

Where the theory can provide some degree of promotion
is in situations where some depth cues are reliable cues
to flatness, rather than veridical depth structure (Yuille &
Biilthoff [28]; Saunders & Chen [29]). However, in the data
from Johnston, Cumming, & Landy [19] that are serving as
the testbed for the present analysis, disparity and motion cues
are weakened in some cases by cue-specific manipulations
that do not change the configuration of the competing cues
to flatness, as would be required by MWE. And they do not
provide a quantitative account of the promotion that they
observe in the MWF framework. In both these respects, the
MWF framework is incomplete. (In principle, depth cues
can be scaled according to an appropriate function of their
controlling variables such as vergence angle for disparity or
head velocity for motion parallax, as discussed by the MWF
proponents, but such functions are not implemented in their
formal analyses. Such scaling would be termed “biasing” in
their terminology, and is formally incompatible with their
unbiased theoretical framework for cue combination.)

4.3 A Practical Depth Cue Combination Rule

In the context of these problems with the MWF model, a
more realistic approach to depth cues might be to regard
them as modulations around Gogel’s [30] specific distance
tendency (SDT) of ~1.5 m, which has various manifestations
(including a specific distance of the internal screen with eyes
closed).

Dx.y) =SDT+ ) [dilx. )/ +5 )] @)

In this formulation, a cue is not fully veridically
expressed unless its variance is zero, but veridicality is closely
approximated when ;< 1.

The operating philosophy of the brain seems to be to
treat single depth cues as unreliable but to place strong
weight on converging evidence from multiple depth cues
(Yuille & Bilthoff [28]). This approach suggests that the
depth map can be constructed from some form of Bayesian
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combination of all possible depth maps from the multiple
cues. The problem is that, in order to specify the depth
structure of the visual scene, we need to decode the depth
information from the variety of available depth cues, many
of which are inherently sparse across space. All depth
cues are sparse wherever the scene has uniform shading.
Additionally, disparity and motion cues are sparse wherever a
correspondence cannot be established. This is where the cues
would need to be filled in by the mechanism of interpolation
to generate the resultant depth map (Likova & Tyler [4]),
perhaps with feedback down to the early areas again.

A key point is the depth scaling for each of the depth
cues. Note that, if they are sparse, they are subject to
discontinuities between the depths specified by each of the
cues, unless they are all consistently scaled. Disparity cues
are scaled by the convergence angle, which is a joint function
of interocular distance and convergence distance. Motion
parallax cues are scaled by the rate of head motion and
the fixation distance. As Belhumeur et al. [31] showed, the
shading cue is subject to a bas-relief ambiguity (although
this may be resolved by the self-illumination cues). Texture
cues are scaled by the absolute texture size. Thus, there is no
unitary scaling variable for the various depth cues, and the
cue combination map must have a rescaling mechanism by
which to combine the sparse cues for minimum mismatch
in the resultant depth map. It presumably relies on a set of
default assumptions (Bayesian priors) that it brings to the
typical situation, but has the ability to rescale the variables
when encountering unusual situations.

Thus, a more realistic rule might be a hyperbolic
asymptotic formulation:

(2 [de )/ (a2 2)])
Yid:

where z =1 : k indexes the depth cues.

This function has the effect of summing over the depth
cues up to the veridical depth that determines the asymptotic
summation value of multiple cues. The cue-specific scaling
constant a, represents the degree to which each depth cue
is a non-veridical Bayesian norm even in the absence of
competing cues. Note that this is a model of the perceived
depth in the absence of cognitive priors, not of the fully
cognitive distance estimation. (For example, when you look at
the images of Figure 3 monocularly, they may evoke a sense
of several inches of depth into the page (or screen), with a
reduced effect when viewing binocularly. Cognitively, you
know that there is actually zero depth, but you also know
that it is a picture of a parallel-sided corridor with a depth
of many meters. Thus, although you have a single—though
possibly time-varying—depth percept, it evokes an interplay
among multiple cognitive interpretations of what the depth
structure “actually” is depicted.)

The resultant framework can account for a general
weakness in individual depth cues, since the weighted aver-
age will always fall somewhere between the extreme values
being combined. However, if all depth cues are individually

D=|1-1/ (8)
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weak, it cannot account for the tendency of depth cues to
reinforce each other to provide a veridical representation.
This reinforcement is captured by a hyperbolic Minkowski
rule for the cue combination:

p p
k 0_22 2 k dz/az 2
o) (i
1

1 Tz

k 5
do
+ — , )

where dj is the SDT for each depth cue that includes priors
from set points on vergence and accommodation cues, and
the Minkowski exponent p is a free parameter of the model.

The simple asymptotic (blue dashed line) and acceler-
ated asymptotic (full red line) principles for multiple depth
cue combination are illustrated in Figure 4 for the particular
case that the net Bayesian weights are equal for all depth
cues and the Minkowski exponent is an empirical parameter
set to p = 6 for the present case. (The equations apply for
all varieties of the combinations of inherent cue values and
their associated Bayesian weights, but the case of equal net
weights is the most straightforward form to illustrate.) The
simple asymptotic principle (blue dashed curve) achieves
the result that individual weak depth cues do not add up
to supranormal depth representation when many cues are
combined (as they would for simple linear summation as
soon as the number of cues exceeded their strength relative
to the veridical level), nor do they average to the same net
value as the individual cues (as they would for a literal
averaging principle). Instead, the simple asymptotic values
increase toward the Bayesian norm value that presumably
approximates the veridical depth value, if past experience is
an accurate guide.

However, as illustrated by the blue dashed curve in
Figure 4, the simple hyperbolic function of Eq. (8) does
not satisfactorily reach asymptote for even a large number
of consistent depth cues, whereas the experimental results
discussed in the following require an accelerated cue
combination rule such as that of Eq. (9), illustrated for the
specified parameters by the red curve in Figure 4. This
equation now provides for the requisite rapid achievement of
the Bayesian norm level with two or three consistent depth
cues, while avoiding both supernormal summation or the
failure to reach asymptote for many cues.

5. QUANTITATIVE COMPARISON OF CUE
COMBINATION PRINCIPLES

These two asymptotic principles can be compared with
the data of Johnston, Cumming, & Landy [19] for depth
estimation of elliptical cylindrical figures defined by disparity
and motion cues, by setting them to appear as the
criterion shape of circular cylinders. These data were not
in fact modeled in any of the co-authors’ publications
even though they provide a strong test of their theoretical
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Combined Stereo + Motion Depth Cue Scaling
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data replotted from Johnston, Cumming & Landy (1994)

Figure 5. The sfereo + motion depth matching data of Johnston, Cumming, & Landy [19], replotted as adjusted depth matches, compared with their
Bayesian averaging rule (orange dashed bars and red lines) and the accelerated asymptotic principle of Eq. (?) (pink dashed bars). Blue bars—depth from
stereo only; green bars—depth from motion only; red bars—depth from stereo + motion (S + M). Note that the Bayesian averaging rule produces poor
predictions when both depth cues are weakened, whereas the accelerated asympiotic principle matches the data in all conditions within experimental

error.

framework. Their data for three participants, transformed
as the reciprocals of the adjusted depth matches to provide
estimates of the strength of depth percepts, are shown
in Figure 5. The cue combination results (red bars) are
compared with the predictions of the Bayesian averaging
rule of Eq. (5) (orange bars and horizontal red lines) and
the present accelerated asymptotic principle of Eq. (9) (pink
bars) for full-cue conditions (leftmost panel), and also with
the combinations of two conditions to weaken the stereo
cue (the 200 cm viewing distance), the motion cue (only
two-frame motion), or both. The key target is the prediction
of the perceived depth in the combined stereo and motion
condition (red bars) from those in the separate stereo
only, and motion only, conditions (blue and green bars,
respectively). It can be seen that the Bayesian averaging
fails to capture the tendency for enhanced depth from
the combined cues (as recognized by the authors of the
study), whereas the Accelerated Asymptotic prediction is
accurate within experimental error because it provides for
the significant promotion of the perceived depth from the
combinations of weak depth cues.

The most important case is that of the fourth panel
of Figure 5, showing veridical depth perception for the
combination of two cues weakened to the 50% level, which
implies that only a process providing for linear summation
from just these two cues (without the reweighting constraint
that the weights should sum to 1) can account for this
behavior, implying that no third cue to flatness was involved.

More specifically, from Eq. (5), we have:
Dy =dy/o{ +e,Dy=dr/05 +e, (10)

where d; and dj are the two individual depth cues, and ¢
is the contribution of any residual cues to flatness (which
were minimized as far as possible in this experimental
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situation). Since the data show that D; = D, =~ 0.5 for both
conditions, it implies that:

(di/ol + &)+ (dr/o5 +6) =1 (11)
and that:
Diya=di/o? +dyjo? +e=1. (12)
Hence:
difol+e+dyjo} +e=di /ol +drjo}+e  (13)
and thus:
2e=¢ (14)
which is only true if:
e=0. (15)

Thus, under the assumptions of an unconstrained linear
model, the quantitative values of the fourth panel of Figure 5
are compatible only with the conclusion that cues to flatness
played no role in the perceived depth, which is therefore
inconsistent with the MWF model.

6. CONCLUSION

The analysis shows that, although the net depth percept must
be derived from the combination of information from all
available depth cues, a simple linear combination rule will
drastically overestimate the perceived depth in the scene
in cases where each cue alone provides a close-to-veridical
depth estimate. On the other hand, the predominant model
of Bayesian averaging, or the “modified weak fusion” model
of depth cue combination, does not provide for the observed
enhancement of perceived depth magnitude from weak
depth cues. These problems can be addressed with an
Accelerated Asymptotic rule that shows strong summation
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for two or three depth cues but rapidly asymptotes toward
the full-cue level beyond that number of depth cues. This
model is validated on published cue combination data that
are inconsistent with the predictions of the “modified weak
fusion” model. This analysis therefore lays the groundwork
for more realistic assessment of human depth perception
characteristics in both the full-cue situation of the everyday
world and the reduced and/or conflicting depth cue situation
of the ubiquitous visual displays of the artificial environment.
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