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Abstract. The authors present a framework for image-based
surface appearance editing for light-field data. Their framework
improves over the state of the art without the need for a full “inverse
rendering,” so that full geometrical data, or presence of highly
specular or reflective surfaces are not required. It is robust to noisy
or missing data, and handles many types of camera array setup
ranging from a dense light field to a wide-baseline stereo-image
pair. They start by extracting intrinsic layers from the light-field
image set maintaining consistency between views. It is followed
by decomposing each layer separately into frequency bands, and
applying a wide range of “band-sifting” operations. The above
approach enables a rich variety of perceptually plausible surface
finishing and materials, achieving novel effects like translucency.
Their GPU-based implementation allow interactive editing of an
arbitrary light-field view, which can then be consistently propagated
to the rest of the views. The authors provide extensive evaluation
of our framework on various datasets and against state-of-the-art
solutions. c© 2018 Society for Imaging Science and Technology.
[DOI: 10.2352/J.Percept.Imaging.2018.1.1.010502]

1. INTRODUCTION
Light-field technology offers many advantages with respect
to traditional 2D imaging, as it enables depth estimation,
refocusing, as well as view-dependent effects such as glossy
reflections and motion parallax that are desirable in many
applications such as virtual reality (VR). Typically narrow-
baseline light fields with dense angular views and low
spatial resolutions are considered due to the accessibility of
inexpensive capturing hardware such as the Lytro camera.
Since such light fields exhibit strong redundancy of data
between views and offer only a limited freedom in virtual
camera placement and manipulation, sparse and wide-
baseline light fields are increasingly gaining attention [1].
In this work, we present a framework to extract consistent
intrinsic components (e.g, shading and reflectance) of sparse
light-field data in order to simulate different perceptual
effects that alter the appearance of the objects in the scene.
Unlikemost light-field-basedmethods [2, 3], we do notmake
any strong assumptions on the structure of the light-field
data. We do not require high number of views or small
baselines; however, our approach generalizes to such cases
as well.
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Surface appearance and material editing is often
achieved by a full inverse rendering where a 3D geometry is
estimated along with an environment map [4], and then an
altered version of the scene is rendered. The quality of such
results are subject to the soundness of the extracted geometry
and environment map, which might require highly specular
objects in the scene [4, 5] or the sky visibility [6]. Even
modest amounts of inaccuracy or noise in the reconstructed
3Dmodel and lighting can lead to visible artifacts that might
easily ruin all material editing efforts. In fact, such inverse
rendering approaches might not be strictly required, as
recent findings on material discrimination and recognition
indicate that the human visual system (HVS) does not
perform physically correct inverse optics simulation [7, 8].

A general study of such heuristics is done in [9]
and [10]. Specific analysis of human perception with respect
to glossiness and translucency is carried out in [8] and [7],
respectively. Further, in [11], the authors discuss the link
between spatial frequency bands of an image and material
perception. Overall it has been shown that HVS relies
on built-in heuristics that connect certain image patterns
with material properties. The above indicates that editing
image patterns by skillful filtering of different intrinsic layers
may provide better visual quality than artifact-prone full
inverse rendering.

Inspired by the band-sifting concept, proposed by
Boyadzhiev et al. [12], we simulate the appearance of
different materials and surface structures consistently on
light-field data. Instead of band sifting the luminance
channel, we process intrinsic layers, which significantly
increases the variety of material edits, as they can precisely
be targeted on textures, geometric details, or glossiness.
Due to intrinsic layer separation we can introduce new,
perceptually justified band-sifting operations, which lead
to meaningful appearance changes such as opaque-to-
translucent object conversion. We can also make more
profound editing effects, for the appearance changes that
have already been demonstrated by Boyadzhiev et al.,
without unwanted side effects.

Contributions: We propose a framework for light-field
appearance editing with the following contributions.

• An intrinsic image decomposition method which, un-
like existing work, is capable of handling wide-baseline
light field assuring consistency between views.
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• Extension of the band-sift filtering using intrinsic image
layers to improve its performance and robustness while
maintaining consistency between views.
• Demonstrate how to reproduce and manipulate com-
plex perceptual appearance effects (e.g, translucency,
pearlecency, wetness) by means of purely image-based
methods.
• GPU-based interactive image editing framework.

2. RELATEDWORK
In this section, we discuss existing solutions to image, video,
and light-field decomposition into intrinsic components.
Then, we summarize the work on light-field manipulation,
with special focus onmaterial and appearance changes. Since
such efforts are relatively sparse, we broaden our discussion
to the manipulation of single images and videos with similar
goals in mind.

2.1 Intrinsic Image Decomposition
The term intrinsic images is first introduced in the literature
by Barrow and Tenenbaum [13] to refer to mid-level compo-
nents like reflectance and shading. A comprehensive survey
of Intrinsic Image Decomposition methods is presented by
Bonneel et al. [14] where different methods are categorized
based on their assumptions and choice of priors. Here, we
focus on methods that employ additional scene information
beyond a single RGB image and discuss representative
examples of such methods.

Chen et al. [15] use RGB-D to implement surface
normal priors. Nonetheless, a depth image does not provide
enough information about the scene to perform a full
inverse rendering and complexities like cast shadows remain
ambiguous. Similarly stereo matching-based methods [16]
use disparity to infer some level of geometric information
in order to introduce additional constraints and improve
the results while maintaining consistency between the two
views. Image sequences containing camera or scene motion
could be used to further resolve ambiguities [17].Multi-view
stereo-based methods [6, 18] use a 360◦ view of the scene to
extract full geometry and environment map.

Light field as a special case of multi-view stereo,
provides some level of angular information which could
improve decomposition in the presence of view-dependent
components such as specularity [3]. In addition, disparity
information can be extracted which allows the inclusion of
geometry prior. Similar to the case of stereo and RGB-D,
geometry cues might not be helpful in resolving complexities
like cast shadows. However, multiple instances of the same
datamight improve the decomposition robustness, e.g., in the
presence of noise.

To the best of our knowledge, there are two intrinsic
image decomposition methods for light fields in the litera-
ture [2, 3]. They both require highly dense light field with
small baselines. On the contrary, our method is capable
of handling a sparse set of views and a large baseline. In
terms of optimization priors, we show that by focusing on

reliable and well-crafted priors, we are able to outperform
existing methods which often use more complex priors [14].
Our method is capable of handling both dense and sparse
light field.

Artusi et al. [19] provide an extensive survey on
specularity removal in natural images. While a vast ma-
jority of intrinsic image decomposition methods ignore
specularities [2, 16, 17, 20], some successful attempts have
also been reported [3, 21, 22]. However, these methods
focus on narrow-baseline, dense light fields, and are not
directly applicable to sparse light fields. Also, while aiming at
physically correct specularity extraction, many failure cases
are reported for suchmethods [23] thatmight lead to visually
disturbing artifacts, e.g, for large area highlights. In our
application the extraction of specularity layer can lead to
many interesting appearance editing effects. We resort to
more approximate solutions that donot lead to obvious visual
artifacts in our appearance editing at the expense of physical
correctness. A detailed review of gloss perception is done in
a recent study by Chadwick et al. [24]. We take inspiration
from [8] and [10] to extract a psuedo specular/highlight layer
from a given image.

2.2 Image/Light-field Editing and Enhancement
Multi-scale edge-preserving image decompositions have
been used to enhance image detail or to achieve other image
appearance changes or transfers [25–29]. We also perform a
multi-scale image decomposition, but we apply it to intrinsic
image layers, which gives us a better control over the wide
range of effects we can produce. Recently, deep/machine
learning methods have been successfully used for overall
image appearance changes and various stylizations [30], but
spatially selective, continuous range, and large scopematerial
editing that is intuitive to the user has not been demonstrated
so far.

Light-field manipulations [31] focused mostly on re-
targeting [32], shape deformation [33], in-painting and
recolorization [34], compositing [35], and morphing [36].
However, research on light-field appearance editing is
relatively sparse [37, 38], and the key problem that is
considered there is intuitive propagation of sparse user edits
to all views [39, 40].

2.3 Image/Light-field Material Editing
Material appearance editing based on a single image has
widely been investigated [4, 5, 41–45]. In all these cases,
an attempt of inverse rendering has been performed. Since
the problem of reconstructing all needed data from a
single image is strongly under-constrained [46], manual
intervention might be required to reconstruct the missing
scene lighting or geometry information [5, 44].

Gryaditskaya et al. [23] recover such information from
light fields, which is then employed in a spatio-angular
filter that enhances the roughness of glossy objects. To our
knowledge, this is the only work where material appearance
editing has been investigated for light fields, and while
the full inverse rendering has not been performed, the
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Figure 1. Flowchart of the complete system for image-based material appearance editing in light fields.

filtering quality relies on the accuracy of normal vector
reconstruction. The scope of roughness manipulation is
limited and even simple roughness reduction has not been
shown in this framework.

Many successful editing examples have been presented
in the discussed work, which was greatly facilitated by
the limited sensitivity of visual system for even substantial
departures from physical correctness [5, 7, 8, 47]. However,
the 3D scene data, as required by these techniques, is
often reconstructed with low precision, which might lead to
visible artifacts, or at best reduce the generality of proposed
manipulations. In this work, we rely on a much simpler,
purely 2D approach, and we take an inspiration from the
work of Boyadzhiev et al. [12] who introduce the band-sifting
operations.

The relationship between image statistics and re-
flectance perception is discussed in [9, 10]. In [8], the
perception of glossiness is explored using visual cues. Band
sifting is a simple and effective technique for image-based
material editing based on above findings. The basic idea
is to do a multi-scale decomposition of luminance channel
into a set of subbands. And then selectively manipulate
these subbands based on frequency, amplitude, and sign. The
manipulation is pretty simple where the selected part of
subband is either boosted (multiplied by a factor greater than
1) or reduced (multiplied by a factor between 0 and 1). The
above relationship between 2D frequency bands andmaterial
perception is discussed in [11].

We are different from [12] in the way that we introduce
a new invert operation in addition to the previous reduce
and boost operations. By applying operations individually on
intrinsic layers, we are able to achieve new kinds of material
editing effects. Moreover, the range of these manipulations is
also increased.

Intrinsic images/videos have been used for material
editing [17, 48], but only recoloring and tone mapping
curve manipulations have been demonstrated, respectively,
for the reflectance and shading layers. In this work, we
additionally consider the specular layer, and a wider scope
of material manipulations.

3. OVERVIEW
In this section, we provide an overview of our framework
for appearance editing as shown in Figure 1. The input

light field is first white balanced and then decomposed into
mid-level intrinsic layers (Section 4). These layers allow us
to control different aspects of the surface appearance such as
texture (reflectance), fine geometrical details (shading), and
glossiness (specularity). By applying band-sifting operations
to each layer separately and combining them together, we
achieve novel appearance and material looks (Section 5).

4. LIGHT-FIELD INTRINSIC LAYER
DECOMPOSITION

We base our intrinsic image extraction on Grosse et al. [49]
providing a simplified dichromatic reflection model Eq. (1),
where an input image I is described as the sum of diffuse Id
and specularC components, and the diffuse component itself
consists of shading S and reflectance R.

Ix = Idx +Cx = Sx ·Rx +Cx . (1)

Here the multiplication and addition operations are
pixel wise. For brevity, we omit pixel coordinates x unless
required. It is common in the literature to use logarithmic
scale in order to further simplify the Id term into id = s+ r .
In the above formulation lower case letters id , s, and r denote
the respective log values of Id , S, andR. Aswe are dealingwith
light fields, we enforce consistency between views by jointly
optimizing over all pixels in all views.

4.1 Pre-processing
Real-world scenes are often illuminated by non-white light
sources and contain glossy surfaces with specular highlights,
which is typically ignored by existing intrinsic decomposition
methods [2, 16, 17, 20]. In this work, we introduce a
pre-processing step to correct illumination color and extract
specularity. This allows us to simplify intrinsic image
decomposition to the generic problem, where it is assumed
that Lambertian surfaces are lit by achromatic light. In
Figure 2, we show our decomposition results with and
without this pre-processing step for a better and fairer
comparison to the above mentioned methods.

We estimate the illumination chroma using the general
gray-world approach [50], which is based on the assumption
that ‘‘the pth-Minkowski norm of a scene is achromatic after
local smoothing.’’ We based our illumination estimation on
Eq. (17) in [50], and we found that p= 3 performed well for
our goals. To white balance each image, we divide each pixel
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Figure 2. Comparison of the reflectance layer extraction using our (with/without the pre-processing step consisting of specularity removal and white
balancing), Graces et al. [48], Meka et al. [17], and Bell et al. [20] methods. Light fields for two natural scenes composed of 101 views (1 cm baseline
between neighboring views) have been used and only the first and last views are shown. As Garces et al. and Meka et al. rely on dense data, all 101
views are used. But for our method, we subsample only 11 equally spaced views (10 cm baseline). For Bell et al. we perform decomposition separately on
each view. While no method is perfect, our reflectance results contain much less shading, specularity, and no patch-like artifacts. Our results are consistent
not only between view, but also within each view (e.g. the red chair). Please refer to the supplementary material for the shading results. Original images
are taken from [67].

color by the estimation of normalized illumination color
(preserving its brightness).

As our approximate specular layer extraction is based
on band-sifting operations, we provide all relevant details in
Section 5.1 after band sifting is properly introduced.

4.2 Reflectance and Shading Layer Extraction
Current light-field decomposition methods use epipolar
images to derive the intrinsic layers [2, 3]. This requires
narrow-baseline and dense light fieldwith a known structure.
Our method, on the other hand, is designed for sparse light
fields and wide baselines where such techniques are not

applicable. Therefore, we regard light field as a generalization
of stereoscopic images, andwe refer tomethods that consider
stereo pairs [16, 51].

Bonneel et al. [14] states that many complex intrinsic
image methods are not better than the baseline for image
editing, and some priors may be even harmful. Please
note that the baseline correspond to simply assigning
chroma to reflectance and brightness to shading. Having
an overcomplex optimization with several weak (ill-posed)
energy terms does not always provide a benefit. Instead,
our intrinsic image optimization is tailored particularly to
appearance editing needs.
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Figure 3. Comparison of the reflectance layer extraction using our, Garces et al., Xie et al. and Chen et al. methods. Each method has a different input:
Ours uses 11 subsampled view (10 mm baseline) and given disparity, Garces et al. uses 50 dense view (2 mm baseline), Xie et al. [16] uses these two
view and given optical flow, and Chen et al. is performed separately for each view given the existing disparity. Note that contrast is lost (the eyes and
text) for Garces et al. and Xie et al., there are inconsistency problems for Garces et al., and more shading component remains for Chen et al.

Since white-balancing operation is performed in the
pre-processing step (Section 4.1), we assume grayscale
shading. The main goal in intrinsic image decomposition
is decomposing pixel intensity into reflectance and shading.
Many works in the literature [2, 16, 52] choose to solve for
shading, and then compute reflectance using, r = id − s.
We found that often existing light-field datasets contain
some inconsistencies regarding image brightness due to
e.g., flickering light. By definition, reflectance is invariant
to illumination. Therefore, we formulate our optimization
by solving for reflectance instead of shading. This further
simplifies formulation of our optimization:

arg min
r

E(r)= λrEr (r)+ λdEd(r)+ λaEa(r)+ λs‖r‖1
(2)

where Er , Ed , and Ea are retinex, disparity, and absolute
shading scale terms, respectively with their corresponding
weights, and λs is a regularization parameter assuring
reflectance sparsity.

We use fixed weights λr = 2, λd = 1, λa = 0.7, and
λs = 0.1 for all the results presented in this article. In the
supplementary materials, we provide an analysis of these
parameter weights along with additional results. Below, we
provide an explanation of each term.

4.2.1 Retinex Term:
One of the most fundamental concepts in intrinsic image
decomposition is Retinex. It can be inferred from the
evaluation results in [14] that themethodswhich use a strong
Retinex constraint achieve results better suited for image
editing. Based on Retinex theory, large derivatives in the
image are attributed to reflectance and small derivatives to

shading. We formulate this as follows:

Er (r)=
∑
m

∑
n∈Nm

[ζmn(rm− rn)2+ (sm− sn)2]

=

∑
m

∑
n∈Nm

[(1+ ζmn)(1rmn)
2
+ (1imn)

2

− 21imn1rmn ] (3)

where m is any pixel in the light-field data, Nm are its
immediate bottom and right neighbors. We used sm = im −
rm,1rmn = rm− rn, and1imn = im− in.

The weight ζmn allows the optimization of reflectance
to differentiate between shading and reflectance edges,
smoothing out the former and preserving the latter. A crucial
step for a good Retinex term is to correctly classify variations
in the image (i.e, edges) to shading and reflectance. Existing
methods often rely only on chroma [2, 16] to find reflectance
edges. This results in disregarding non-chromatic reflectance
edges that are often very important (refer to numbers, eyes,
and text in Figure 3). While [2] tries to solve this issue by
separately detecting the black andwhite pixels, bothmethods
over-smooth the grayscale reflectance edges and are not able
to preserve them (Fig. 3). Bell et al. [20] use a weighted
variation of RGB.

Weuse color gradient,∇Cg , introduced by van deWeijer
et al. [53] to better identify true reflectance edges. This
gives us sharper reflectance edges and avoids flattening and
averaging of strong brightness edges in the reflectance. Many
Retinex-based methods [2, 16] choose a binary weight for
reflectance by applying a threshold. Aswe already remove the
noisy values, we choose a soft threshold scheme to normalize
ψ r
mn in the range of [0, 1]. Even though color gradients

perform reasonably well, we believe that a perception based
reflectance edge would give better results. Modifying the
edge weights based on human perception and analyzing its
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impact would be an interesting idea for future work. Thus,
the final weight ζmn is calculated as follows:

ψ r
mn =

{
0 ∇Cg (rm, rn) < 5
∇Cg (rm, rn) otherwise

(4)

ζmn = (1.0+ e(γ ∗(ψ
r
mn−α)))−1 (5)

where we found α = 5 and γ = 0.5 to perform best in
variety of scenes and datasets. The significance of the retinex
term is to compute the reflectance of different views of
the light field. We do not enforce any similarity constraint
between reflectance of different views in this term. However,
due to joint optimization we get some implicit consistency
between views.

4.2.2 Disparity Term:
This term enforces neighboring views to have a consistent
reflectance. Therefore, we first need to compute correspon-
dences for such view pairs. In [16] they use dense optical flow.
However, we use disparity computed from depth wherever it
is available, and otherwise use Deqing Sun’s implementation
of Black and Anandan’s dense optical flow method [54, 55].
The disparity term is formulated as:

Ed(r)=
∑
m
ωocc
mm′(r

(j)
m − r (j+1)

m′ )2 (6)

where j is the index of a view in light field i.e., every
two consecutive views contribute to the disparity term. m
and m′ denote two corresponding pixels. We only constrain
those pixels which are not occluded. In case optical flow
is used for matching, occlusion map is simply computed
using a forward/backward check of the flow field with zero
thresholding to enforce consistency. However, in case depth
is available, similar to [2] we compute occlusion mask using
normalized depth D:

ωocc
mm′ =

{
0.01 |Dm−Dm′ |> 0.01
1 otherwise.

(7)

Please note that one might be tempted to use such
occlusion masks, to enforce consistency, in the retinex term
as well. However, by doing so we lose information due
to missing data in each view. Note that, light-field data
is mostly redundant unless there is a large baseline and
parallax; therefore, disparity term is most effective in these
cases. When reducing computation time is a priority and
depth information is not available, user might choose to
disable disparity for a dense diffuse light field. However,
we observed that disparity term improves the quality of
the results especially in case of noisy images and flickering
illumination. As mentioned in Section 2.1, while some
methods use surface normals information extracted from
disparity, we found using a prior on surface normals to
be less effective as these estimated normals are noisy and
often not effective enough to disambiguate complexities like
cast shadows.

4.2.3 Absolute Scale Term:
It is widely known in the intrinsic image literature that
the absolute scale of intrinsic shading and reflectance
layer is ambiguous; and therefore, each method estimates
these values up to a constant magnitude. In our particular
appearance editing application, extreme shading values
(especially black and white shading edges) could result
in artifacts when e.g., boosting wrinkles or producing a
translucent effect. We solve this by adding a constraint on
shading magnitude which prefers moderate values. Such
constraint has been used by Xie et al. [16] considering only
the brightest pixel, or Bell et al. [20] constraining every
pixel. Constraining the brightest pixel often is not enough,
and due to dimensionality of the light-field data considering
each pixel is too expensive. Instead, we find constraining
25% of all pixel uniformly sampled from each view to be a
good trade-off. Therefore, we formulate this term to penalize
extreme shading values on sampled pixels and squeeze them
toward a constant s̄= log(0.5).

Ea(r)=
∑
j
|sj− s̄|2 =

∑
j
|ij− rj− s̄|2. (8)

4.2.4 L1 Regularization:
We use the method of [56] to further penalize L1 norm
of reflectance. This enforces sparsity in the reflectance
image which can replace local and non-local constraints
on reflectance introduced in [16]. Final optimization prob-
lem can be simplified as the following regularized least
squares problem:

min
r
‖Tr − d‖22+ λ‖r‖1 (9)

T represents the constraint matrix, d is a vector representing
the R.H.S of all our constraint equations and r is the
unknown reflectance. In all our experiments λ = 0.1 gives
reasonable results. Garces et al. [2] use a L1 filtering as
a pre- and post-processing step to improve consistency
and reduce noise. Instead we use L1 regularization as an
integral part of our optimization improving the quality of our
estimation results.

Many existing methods use a reflectance clustering
scheme to further achieve global reflectance sparsity [17, 20,
48, 57]. However, such clustering can be quite sensitive to the
choice of number of clusters as well as the effectiveness of
the chosen color space and correctness of white balancing. In
general, clustering tends to bemore suitable for scenes which
contain a limited sparse set of colors. More complex and
natural scenes, especially from nature and landscape, often
do not follow the global reflectance sparsity assumption.
Therefore, in the current work, we take advantage of our
edge-based local sparsity scheme.

4.3 Extension to Dense Light fields
In case of a dense light field, the first step is to do a sparse
sampling. The intrinsic decomposition of the sparse samples
is performed using the method described in Section 4.2. The
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(a) Original Image (b) Enhanced wrinkles

(c) Vivid/Rubber like (d) Metallic

(e) Pearl like (f) Wet-Paint

Figure 4. Different type of material edits using our framework, (b) sift
operation: S (HLA,10) (c) sift operation: R (LLA,10) (d) sift operation:
C (AAA,3) (e) sift operation: S (HHA,−5), R (HAP ,−6), and C (LAA,4)
(f) sift operation: R (HHN ,5.5) and C (HHN ,5.5). The top left of each
image shows a zoomed in version of the region marked by the blue
rectangle in (a). Original image and ground-truth intrinsic layers are taken
from [61].

sparse reflectance is then propagated among all the views to
get a dense reflectance output. Let us consider that we have
sparse reflectance for views at position a and c, given by Ra
and Rc respectively.

The reflectance at intermediate position b, say Rb, is
obtained by finding a minimizer for the energy functional in
Eq. (10).

E(Rb)=
∫
�

(1− ζmn)(‖∇Rb−∇Ib‖2)

+ wa(‖Rb−Tab(Ra)‖2)
+ wc(‖Rb−Tcb(Rc)‖2). (10)

Please note that ζmn was used to avoid smoothing
of reflectance at reflectance edges (refer Eqs (3) and (5)).
In Eq. (10) we use 1 − ζmn to impose gradient domain
constraint only at reflectance edges. In Section 4.2 we
discuss how these edges are obtained. The weights wa and
wb represent the quality of image mapping. Tab is a warp
operator that maps view Ia to Ib and Tcb is a warp operator
that maps view Ic to Ib. We use the same warp operators to
map reflectance Ra and Rc . The energy formulation is based
on the idea introduced in [58] and further explored in [59].

However, we have modified this energy for our specific
purpose. The first modification is introduced in the form of a
weight, 1− ζmn for the first energy term. By introducing such

(a) Our Metallic (b) [12] Metallic

(c) Our Weathering (d) [12] Weathering

Figure 5. Comparison of our sifting framework with original
luminance-based band sifting, (a) sift operation: S (HHP ,3) and
C (HHP ,8) (b) sift operation: L(HHP ,8) (c) sift operation: S (HLA,9),
R (AAA,0.6), and C (AAA.08) (d) sift operation: L(HLA,9). The top left
of each image shows a zoomed in version of the region marked by the
blue rectangle in (a).

a weight, reflectance is enhanced while it is being propagated
to dense views. The second modification is making use of
two neighboring views, in the angular domain, and their
sparse reflectance in the energy formulation. In [59], the
authors consider only one previous view in temporal or
angular domain. By making use of two nearest neighbors
we ensure better consistency among views and also faster
convergence for energy minimization. A detailed discussion
of the sparse reflectance propagation is presented in the
supplementary material.

5. LIGHT-FIELD APPEARANCE EDITING
In this section, we extend band sifting of the luminance
channel as proposed in [12] to independent processing
of each intrinsic image layer as derived in Section 4. In
Section 5.1 we revisit the problem of specularity removal.
We describe how an approximate pseudo-specular layer
extraction can be done using band sifting. In Section 5.2,
we provide a brief description of some of the effects
achieved using our sifting-based material and appearance
editing framework. We show examples of applying these
effects to real-world scenes. In Section 5.3 we compare
our editing framework with [12] in terms of quality and
robustness for effects like weathering and metallic look. In
Sections 5.2 and 5.3 we use ground-truth intrinsic layers
for a fair evaluation of our appearance editing module
and demonstrating its strength (see Figures 4 and 5). All
the remaining results in the article make use of our full
framework (including intrinsic layers). We further introduce
new effects such as pearl and translucency in Section 5.4.

Based on Eq. (1) we introduce the following notation to
describe band sifting of image I (also refer to Fig. 1):

I = S(fsasss, κs) ·R(frar sr , κr )+C(fcacsc, κc), (11)
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where flal sl represents a component of intrinsic layer
l ∈ s, r, c that undergoes band sifting. Each component of
flal sl is characterized by the following signal categories:
spatial frequency fl , signal amplitude al and its sign sl . Similar
to [12], we allow only a predefined set of subcategories:
fl ∈ {H , L,A}, al ∈ {H , L,A}, sl ∈ {P,N ,A}, where H and
L denote high- and low-frequency/amplitude range, P and
N represent positive and negative values, and A stands for
‘‘all,’’ i.e, the complete category. By controlling the value of
multiplication factor κl , we can boost (κl > 1) or reduce
(0< κl < 1) the selected component of the image signal. In
addition, we extend over [12] by supporting negative values
of κl introducing a new invert operation. For some of our
material edits we modify the saturation of reflectance layer.
The modification is governed by a multiplication factor κd ,
where κd > 1 depicts an increase and 0< κd < 1 implies a
decrease in saturation respectively.

Note that in this notation only a single component of
each intrinsic layer might undergo band sifting, and the
remaining signal in such layer remains intact. In practice,
such a manipulation scope is sufficient to achieve most
appearance changes presented in this work. In Section 7, we
discuss ideas formanipulatingmultiple components per each
intrinsic layer.

An example operation where we boost the high (H)
frequency, low (L) amplitude, and positive (P) components
of shading layer by a factor of 4 can be written as:
I = S(HLA, 4) · R + C . Note that in the above example
reflectance and specularity layers remain unchanged.We use
L(fLaLsL, κL) notation to indicate when wemean the original
band sifting [12] where an operation is performed on the
luminance channel L of the image instead of on its intrinsic
layers. We follow the above convention in our examples to
denote intrinsic layermodifications and original band sifting
respectively.

5.1 Highlight/Pseudo-Specular Layer Extraction
In [10], the authors have established relationship between
image statistics and the perception of lightness and gloss.
Perceptual experiments indicate that by modifying the
skewness of subbands of luminance histogram, perception
of gloss can be altered. In [12], the authors observe
that positive subband coefficients correspond to bright
features like highlights, and the negative values represent
features like crevices and holes. We use this observation
to first identify and then extract these bright regions using
sifting -based operations.

The positive component of the subbands of the image
luminance channel corresponds to its bright regions. We
first sift the positive components for the complete image
(Figure 6(a)) to identify the bright regions, using sifting
operation: L(AAP, κl), where κl > 1. We then look for all the
pixels which got modified due to this operation to obtain a
binary mask (Fig. 6(b)). In the next step we use invert sifting
operation only in the masked region: L(AAP, κl), where
κl < 0. By performing such a step we reduce the highlights
present in the image. The difference between the original

(a) Original Image (b) Specular Mask

(c) Specular Layer (d) Diffuse Image

Figure 6. Specular extraction input and obtained result. Please note that
specular layer is rescaled for better visualization. Original image is taken
from [60].

image and the image with reduced highlights Fig. 6(d) is the
highlight or the pseudo-specular layer (Fig. 6(c)).

5.2 Types of Appearance Editing
Here, we explore various operations and their effects.
We illustrate appearance changes due to editing of
shading, reflectance, and specularity layers, as well as their
combinations.

Intrinsic Shading Layer: of an image contains infor-
mation on object geometry and illumination. By apply-
ing sifting operations on this layer we can enhance or
suppress the object shape and geometry details. Here we
mostly focus on presenting the outcome of boost operation
(refer to Section 5). The reduce operation typically leads
to the opposite effect. By boosting the high-frequency,
low-amplitude coefficients in the shading layer, we can
enhance the fine-level surface details, such as wrinkles and
bumps (Fig. 4(b)).

Intrinsic Reflectance Layer:of an image contains the color
and texture information. Similarly to shading, we can apply
band-sifting like operations on this layer to enhance color
details. By boosting the low-frequency coefficients in the
reflectance layer we can make the scene look more vivid
(Fig. 4(c)). Texture colors can be made more pronounced by
boosting high-frequency coefficients (Fig. 4(f)).

Intrinsic Specularity Layer: Humans make use of shine
and gloss information to classify objects into different
categories. By making an object look more shiny, one can
make the material appear more plastic or metal like. By
boosting all coefficients in the specularity layer we can
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Couch (View 1) Reading Room (View 1) Workshop (View 1)

Figure 7. Our full-framework results for the appearance edit of weathering and it is reverse effect imparting a fresh look in the masked region. In case of
weathering we apply sift operation like: S (HLP , κs) where κs > 1 to enhance wrinkles like fine shape details, R (AAA, κr ), C (AAA, κc ) where 0< κr , κc < 1
to reduce reflectance and specular brightness and desaturation of chroma channels of reflectance by a factor say κd where 0< κd < 1. In case of fresh
look we apply sift operation like: S (HLA, κs), R (HLA, κr ), where 0< κr , κs < 1 to smooth shading and reflectance, C (AAA, κc ) where κc > 1 for increasing
the shine of the object and finally the saturation of chroma channels of reflectance is increased by a factor of κd , where κd > 1. Please look at the figure
header for exact values in this case.

increase the overall specularity of the objects, therebymaking
it look less diffuse and more metallic (Fig. 4(d)).

Multiple Intrinsic Layers: By sifting the combination of
intrinsic layers we can achieve other interesting appearance
edits such as wet paint (Fig. 4(f)), wet-oily/metallic look
(Fig. 5(a)), andweathering (Fig. 5). Theweathering effect can
be further enhanced by desaturating the chroma channels of
reflectance layer (see Figure 7 second row).

5.3 Comparison with Boyadzhiev et al.
Please note that some effects mentioned till now can also
be partly achieved by simply sifting the luminance channel
of an image [12]. However, in the latter case only moderate
boost or reduce factors are typically applicable due to possible
unnatural look or even explicit artifacts (Fig. 5). The obvious
reason for such artifacts is poorer selectivity of edited signal
in the luminance channel. As shown in Fig. 5(a) and (c),
sifting shading and specularity is more robust than sifting
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Original Image Our Old Band-Sift Old

Figure 8. Comparison of marking a human face old using our framework
with that of the original band sifting [12]. Please see supplementary
enlarged images. Original image is taken from [12].

the entire luminance with similar factor. Similarly, more
convincing weathered look can be achieved by boosting
shading, and reducing reflectance and specularity, which
is not possible when a single luminance channel is edited
(see Fig. 5(d), Figure 8). Moreover, all our sifting examples
are performed on pixel intensity channel given by, In =√
r2+ g 2+ b2, where r , g , and b are the color channels,

instead of luminance L = 0.2126r + 0.7152g + 0.0722b.
We observed that by using In instead of luminance L,
sifting becomes more robust against color artifacts. In
the supplementary material, we provide additional results
showing how the range of edits is increased in our case as
compared to [12].

5.4 New Appearance Effects
By making use of multiple intrinsic layers we produce new
appearance effects which were not possible by simple 2D
image filtering to the best of our knowledge. Please note that
attempts have been made to achieve such appearance editing
using only images [5, 62]. However, that involved partial to
full inverse rendering.

Translucency: is one of the important effects in this
category. As proposed by [7], inverting the high-frequency
components of shading layer makes an object appear more
translucent. Inspired by their work, we propose techniques
which add up to produce a realistic translucent look. By
inverting the high-frequency coefficients of both shading and
reflectance layers we achieve a certain degree of translucency.
We can enhance this effect further by smoothing and
desaturating the chroma channels of the reflectance layer.
In order to make translucency effect look more realistic
we take inspiration from the work of [5], and in-paint
the background within the object boundaries (Figures 9

Figure 9. Translucency results. From left to right: Original image; translucency with parameters S (HAA,7), R (HAP ,−9), andC (LAA,10) using intrinsic layers
(reflectance, shading, and specularity) calculated by our own method; and translucency with parameters S (HAA,−15), R (HAP ,−10), and C (LAA,7).
While our intrinsic layers are not perfect, we nevertheless achieve a convincing translucent look. Original image and ground-truth intrinsic images are
taken from [69].

and 10). By refraining from such in-painting and using
a more moderate boosting coefficients we can achieve a
pearl-like look (Fig. 4(e)). In [63] the authors have discussed
how to reconstruct the background, behind occlusions,
using synthetic aperture refocusing. The synthetic aperture
technique can also be used for moderately sparse light fields.
In [64] the authors get rid of reflections and occlusions to
separate an image into occlusions/reflections and a clear
background. For our transparent appearance edit, where
the background is typically distorted due to refraction and
blurred, a rough approximation of background is enough.
Webelieve that such ideas for background reconstruction can
greatly improve the realism of our transparent edits.We leave
detailed investigations in this regard as future work.

Wetness: appearance edit is inspired from a recent work
of Shimano et al. [66], where the authors conclude two
fundamental characteristics of a wet surface appearance:
darkening and spectral sharpening. We perform darkening
on reflectance layer by reducing its intensity, spectral
sharpening is achieved by increasing the saturation of chroma
channels of reflectance layer. We further enhance this
effect by amplifying the fine shape details of an object by
manipulating the shading layer (Figure 11).

Depth-guided Selective Filtering: In case of light field, we
can create depth maps for a given scene using off-the-shelf
depth estimation techniques. We can then make use of these
depth maps to selectively target objects at different depths
for all the effects mentioned previously e.g., by modulation
of editing magnitude (effectively, the coefficient κ in Eq. 11)
as a function of depth as demonstrated in Figure 12. Please
note that the appearance editing is more pronounced for the
objects in front.

6. EVALUATION RESULTS
In this section, we present an evaluation of the two key com-
ponents of our framework: intrinsic image decomposition
and extended band sifting. To this goal we use five real-world
datasets [60, 67–70]. Ground-truth intrinsic data is only
available for the stereo in [69]. Due to space limit, some of
our results are presented in the supplementary materials and
videos. We also discuss the computational complexity for all
key components of our technique. Finally, we present user
interaction scenarios for material appearance editing.
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Translucent EffectOriginal Image

Figure 10. Translucency effect produced using our intrinsic decomposition
and sifting-based editing. Original image is taken from [65].

Original Image Wetness Effect

Figure 11. Wetness effect applied to the chair (from Fig. 8 top left).
Original image is taken from [67].

6.1 Light-field Intrinsic Image Decomposition
Since intrinsic image decomposition is a well-established
research problem on its own, in this section we evaluate
our decomposition approach as presented in Section 4 with
respect to the state-of-the-artmethods for single images [20],
RGB-D [15], video [17], stereo-image pairs [16, 51], and light
fields [2, 3].

Note that we do not compare against multi-view
methods like [71, 72] since they use a 360◦ coverage of the
object, which require that either the environment map or
the true geometry is given, and each of their scenes contains
a single object. We further exclude works like [73] since
they require a single known light source, single object, and
user interaction.

Figs. 2 and 3 compare our results with respect to [2,
15–17, 20], where typically we produce more consistent and
shading-free reflectance for sparsely sampled light-field data.
For example in Fig. 3, other methods label reflectance edges
as shading specially on the eyes and numbers. Note that our
results are not only consistent among views, but also within
each view and do not exhibit patch-like artifacts. Recently,
Bonneel et al. [58] showed promising results on improving
consistency across views for the reflectance layer as produced
by existing methods. Yet, achieving consistency within an
image had remained a challenging task, which we address
using our optimization scheme. We further show in the
supplementary material and video results that our light-field
decomposition is more consistent than simply applying
Bonneel et al. consistency scheme to the per-view intrinsic
image decomposition. Figure 13 shows that unlike [51], in
our results the missing correspondence between views due
to occlusions does not result in artifacts, and we recover
consistent reflectance.

Figure 14 compares our method with [3]. Both [2]
and [3] leverage the dense light-field structure and rely on
its small baseline, and hence would not handle sparse light

Original Image Edited Image

Figure 12. Cropped Couch scene from the Disney dataset and its
wrinkled version that is increasingly blended with the original image as a
function of depth.

fields (10–20 cm baselines). Nevertheless, we compare our
performance with these methods by applying our intrinsic
image decomposition on a sparse subsample of dense
light-field data.

6.2 Appearance Editing Using Intrinsic Layers
Here we evaluate the performance of our appearance editing
framework using intrinsic image layers estimated by our
method. Fig. 9 presents our Translucency operation on stereo
images of [69] (15 cmbaseline).We compare the results when
using intrinsic layers estimated by our method versus the
ground truth. While our method has misclassified some of
the reflectance edges as shading edges, the perceptual quality
of the final result has not particularly suffered. Furthermore,
Fig. 7 presents results of applying our full framework using
intrinsic layers estimated by our method on three different
scenes.

6.3 Performance
In this section, we discuss the performance of our complete
pipeline for an example 1D (only horizontal parallax) light
field composed of 101 × 1 views of spatial resolution
960× 720 (Fig. 2 Reading Room).

6.3.1 Light-Field Intrinsic Decomposition:
As the first pre-processing step we extract the specular layer
for each view. It takes 14–15 s per view for specularity
extraction. In the next step we subsample the light field
and extract 11 sparse views for intrinsic decomposition.
The intrinsic decomposition, including white balancing,
of 11 views takes 70–80 min on average. The sparse
results are then propagated across remaining 90 views
to get dense results. The propagation step takes 30–35 s
per view on average. Please note that both for intrinsic
decomposition and consistent propagation step we assume
that we already have the optical flow values for computing
correspondence between views. Thus our unoptimized
matlab code for intrinsic decomposition and consistent
propagation, as a whole, takes approximately 1.5 min per
view. The unoptimized matlab code runs on a Windows 64
bitmachinewith 32GBRAMand Intel XeonCPU (3.50GHz,
2 processors).
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Original Image Maurer et al.

Our white-balanced (WB) Our w/o WB

Figure 13. Comparison of the reflectance layer extraction using ours
(bottom row) and Maurer et al. [51] (top row) methods on a multi-view
stereo dataset. Note that due to occlusion the method by Maurer
et al. produces artifacts to the right of the fountain. Our results with and
without white balancing show that in some cases (especially outdoors)
white balancing the image is not necessary. In our optimization scheme
the pre-processing step for white balancing can be enabled/disabled by
setting a flag. Original image is taken from (fountain-P11 scene) [68].

6.3.2 Interactive Appearance Editing:
Once we have the intrinsic layers of reflectance, shading and
specularity for each view we can proceed with appearance
editing. Our interactive image editing interface, takes as an
input a selected view of the light field and its corresponding
intrinsic layers. The GPU implementation of the subband
creation takes 1–1.5 s, which is a one time process. The GPU
implementation of intrinsic layers sifting, then allows a user
to interactively manipulate the image appearance at the rate
of 50–60 ms per edit. We then apply similar edits on all the
views of the light field, which takes 1–1.7 s per view. The
above parallel C++ implementation is based on OpenCV
and CUDA (using Nvidia GTX 970 GPU).

6.4 User Interaction
The interactive interface allows a user to play with different
parameters for a single image. Please note that many of the
high-level appearance edits (such as ‘‘old’’ look shown in
Fig. 8) involve combinations of parameters that remain in
certain relation while performingmanipulations. To simplify
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Figure 14. Comparison of our intrinsic image decomposition with
the work of Alperovich and Goldluecke [3]. Original image is taken
from [70].

the editing task we provide a single slider to perform
such aggregated parameter changes as demonstrated in the
supplemental video. The intuitive interface enables us to
quickly find the parameter values for the desired appearance
which can later be applied to all the views. Due to our consis-
tent intrinsic layer decomposition, regularity is maintained
between views for different appearance modifications.

We could further simplify the user navigation over
the parameter choices by developing a collaborative editing
system [74] that registers parameter configurations that are
often selected by the users. Alternatively, crowd sourcing
can be used to learn such meaningful parameter config-
urations [75]. We could then enable sampling from such
parameter distributions to obtain meaningful appearance
variations, possibly supported by image-gallery-style user
interfaces [76]. We relegate such interaction scenarios as
future work.

7. DISCUSSION
Our goal is to handle various possibilities by providing a
generic framework which works for different sources of
data and different types of objects and materials. All the
mentioned appearance editing operations are applicable for
single image and video as well. We do not require the user
to switch to light field, however in case of light fields we
assure better quality through per-view consistency.Moreover
in case of light fields, depth computation is straightforward
which is necessary for depth-guided appearance editing.

One aspect which we have not considered in our
material editing framework is that of applying multiple
sifting operations on the same intrinsic layer. For example,
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Original Image Translucent Effect

Figure 15. Translucency effect produced using our full framework. Please
note that the shadow of the object does not look proper along with it is
translucent counterpart. Original image is taken from [65].

S(HLA, 4) and S(LHN ,−3). Such operations can be applied
in a cascading manner one after another or in a parallel fash-
ion. If done in parallel, we can use different ways to combine
these outputs, for example by taking a linear combination.

7.1 Limitations
While our translucent appearance effect performswell on the
object itself and produces the desired result, cast shadows and
reflections of the object on its surrounding also need to be
accordingly corrected. Figure 15 demonstrates a failure case
example where the object has taken a translucent appearance
that no longer matches its reflection.

Finally, we believe improving specular layer extrac-
tion and using a multi-illuminant illumination estimation
method to be good avenues for future work.

8. CONCLUSION
We present a framework for intrinsic image-based surface
appearance editing on wide-baseline light-field data. We
extract reflectance and shading layers by jointly optimizing
on different views to maintain both angular and spatial
consistency improving over the state-of-the-art solutions.
We present a rich variety of perceptual appearance editing
effects by filtering each intrinsic layer separately in terms
of frequency, amplitude, and sign. We demonstrate that
our intrinsic image-based filtering improves over previous
luminance-based solutions in terms of robustness, as well as
enables new appearance effects like wetness, translucency,
pearlescence. Unlike full inverse rendering, we do not require
geometry or environment map information. Our modular
framework facilitates future extensions. The project web page
with supplementary material and more results is available at
http://light-field-appearance-intrinsic.mpi-inf.mpg.de/.
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